Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.319
Filtrar
1.
J Exp Bot ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305223

RESUMEN

Post-transcriptional and post-translational modification of transcription factors (TFs) and pathway enzymes significantly affect the stress-stimulated biosynthesis of specialized metabolites (SM). Protein phosphorylation is one of the conserved and ancient mechanisms that critically influences many biological processes including specialized metabolism. The phosphorylation of TFs and enzymes by protein kinases (PKs), especially the Mitogen-Activated Protein Kinases (MAPKs), is well-studied in plants. While the roles of MAPKs in plant growth and development, phytohormone signaling, and immunity are well elucidated, significant recent advances have also been made in understanding the involvement of MAPKs in specialized metabolism. However, a comprehensive review highlighting the significant progress in the past several years is notably missing. This review focuses on MAPK-mediated regulation of several important SM, including phenylpropanoids (flavonoids and lignin), terpenoids (artemisinin and other terpenoids), alkaloids (terpenoid indole alkaloids and nicotine), and other nitrogen- and sulfur-containing SM (camalexin and indole glucosinolates). In addition to MAPKs, other PKs also regulate SM biosynthesis. For comparison, we briefly discuss the regulation by other PKs, such as sucrose non-fermenting-1 (SNF)-related protein kinases (SnRKs) and calcium-dependent protein kinases (CPKs). Furthermore, we provide future perspectives in this active area of research.

2.
Sci Total Environ ; 954: 176237, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277014

RESUMEN

How to improve the growth efficiency of microalgae is the bottleneck of microalgae large-scale application. The addition of trace substances can promote the growth of microalgae, but there is no suitable model that can be used to predict the effects of trace substance concentrations on the growth of microalgae. In the present study, a mathematical model based on hormesis is proposed to describe the effects produced by trace substances on the biomass of microalgae and applied to assess the dose-response of four phytohormones on Scenedesmus sp. LX1 with a high coefficient of determination (R2 ≥ 0.90). Several new mathematical parameters, such as starting effective dose (SD), inflection point dose (PD), concentration for 0 % of maximal effect, end effective dose (ED), maximum stimulatory effect (MSE), and maximum inhibitory effect (MIE), were extracted and useful to help researchers in applying trace substances to assist in the production of microalgal biomass for data reference and prediction. In concrete terms, the above model parameters can be well applied to screen the trace substances, dominant algal species and determine the concentration range. This study provides valuable insights into the potential of using phytohormones to enhance the biomass production of microalgae and offers a new approach to optimizing the culture of microalgae.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39253909

RESUMEN

The human population is growing and alternate food options are needed to provide food and nutritional security to mankind. Reduced agricultural output as a result of climate change and increased demand for grains because of continuous population growth have created a gap between demand and supply of food. Buckwheat is a pseudocereal crop plant with high nutritional value that can be included as an alternate food in our diet. It is a traditional crop plant grown in the high mountains of the Himalayas for food as well as fodder. It completes its life cycle in 3-4 months, so is mostly grown as a second crop in between main crops like maize and barley. It also acts as a green manure by improving the phosphorus content of the soil. Buck-wheat has high nutritional value as it is rich in essential amino acids, vitamin B, trace elements, and other nutrients. The main bioactive compounds identified in buckwheat are rutin, quercetin, isoquercetin, d-chiroinositol, resveratol, and vitexin, which are responsible for its pharmacolog-ical properties. Research focused on value addition by exploring its nutritional, pharmaceutical, and other alternative uses of commercial importance, is needed for reviving buckwheat cultiva-tion practices and its conservation. Considering the multifarious applications of buckwheat, this review summarizes the currently available knowledge on the agronomic and nutraceutical sig-nificance of buckwheat to project its value as a future crop in the avenue of agriculture and functional food.

4.
BMC Plant Biol ; 24(1): 827, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227801

RESUMEN

Global warming is a leading environmental stress that reduces plant productivity worldwide. Several beneficial microorganisms reduce stress; however, the mechanism by which plant-microbe interactions occur and reduce stress remains to be fully elucidated. The aim of the present study was to elucidate the mutualistic interaction between the plant growth-promoting rhizobacterial strain SH-19 and soybeans of the Pungsannamul variety. The results showed that SH-19 possessed several plant growth-promoting traits, such as the production of indole-3-acetic acid, siderophore, and exopolysaccharide, and had the capacity for phosphate solubilisation. The heat tolerance assay showed that SH-19 could withstand temperatures up to 45 °C. The strain SH-19 was identified as P. megaterium using the 16S ribosomal DNA gene sequence technique. Inoculation of soybeans with SH-19 improved seedling characteristics under high-temperature stress. This may be due to an increase in the endogenous salicylic acid level and a decrease in the abscisic acid level compared with the negative control group. The strain of SH-19 increased the activity of the endogenous antioxidant defense system, resulting in the upregulation of GSH (44.8%), SOD (23.1%), APX (11%), and CAT (52.6%). Furthermore, this study involved the transcription factors GmHSP, GmbZIP1, and GmNCED3. The findings showed upregulation of the two transcription factors GmbZIP1 (17%), GmNCED3 (15%) involved in ABA biosynthesis and induced stomatal regulation, similarly, a downregulation of the expression pattern of GmHSP by 25% was observed. Overall, the results of this study indicate that the strain SH-19 promotes plant growth, reduces high-temperature stress, and improves physiological parameters by regulating endogenous phytohormones, the antioxidant defense system, and genetic expression. The isolated strain (SH-19) could be commercialized as a biofertilizer.


Asunto(s)
Glycine max , Glycine max/microbiología , Glycine max/genética , Glycine max/metabolismo , Glycine max/fisiología , Respuesta al Choque Térmico , Transducción de Señal , Burkholderiales/genética , Burkholderiales/fisiología , Burkholderiales/metabolismo , Metabolismo Secundario , Reguladores del Crecimiento de las Plantas/metabolismo , Simbiosis , Ácido Salicílico/metabolismo
5.
Plants (Basel) ; 13(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39273855

RESUMEN

Phytohormones play a crucial role in regulating growth, productivity, and development while also aiding in the response to diverse environmental changes, encompassing both biotic and abiotic factors. Phytohormone levels in soil and plant tissues are influenced by specific soil bacteria, leading to direct effects on plant growth, development, and stress tolerance. Specific plant growth-promoting bacteria can either synthesize or degrade specific plant phytohormones. Moreover, a wide range of volatile organic compounds synthesized by plant growth-promoting bacteria have been found to influence the expression of phytohormones. Bacteria-plant interactions become more significant under conditions of abiotic stress such as saline soils, drought, and heavy metal pollution. Phytohormones function in a synergistic or antagonistic manner rather than in isolation. The study of plant growth-promoting bacteria involves a range of approaches, such as identifying singular substances or hormones, comparing mutant and non-mutant bacterial strains, screening for individual gene presence, and utilizing omics approaches for analysis. Each approach uncovers the concealed aspects concerning the effects of plant growth-promoting bacteria on plants. Publications that prioritize the comprehensive examination of the private aspects of PGPB and cultivated plant interactions are of utmost significance and crucial for advancing the practical application of microbial biofertilizers. This review explores the potential of PGPB-plant interactions in promoting sustainable agriculture. We summarize the interactions, focusing on the mechanisms through which plant growth-promoting bacteria have a beneficial effect on plant growth and development via phytohormones, with particular emphasis on detecting the synthesis of phytohormones by plant growth-promoting bacteria.

6.
Plants (Basel) ; 13(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273884

RESUMEN

Table grape viticulture, due to the impact of climate change, will have to face many challenges in the coming decades, including resistance to pathogens and physiological disorders. Our attention was focused on fruit cracking due to its ubiquitous presence in several species. This study explores the effects of three different treatments on the epidermis and cuticle of table grape berries by evaluating the impact of the girdling technique on various fruit quality parameters, including cuticle thickness, sugar content, acidity, color, bunch weight, and rheological properties. The treatments were (1) calcium chloride (CaCl2), (2) calcium chloride + salicylic acid (CaCl2 + SA), and (3) calcium chloride + Ascophyllum nodosum (CaCl2 + AN), with and without girdling, plus an untreated control. This research was conducted over the 2021-2022 growing season in a commercial vineyard in Licodia Eubea, Sicily, Italy. The results indicate significant variations in cuticle thickness and other qualitative traits throughout the growth and ripening phases, with notable differences depending on the treatment used. This study's findings suggest that specific treatments can influence the structural integrity of the grape cuticle, potentially impacting the fruit's susceptibility to cracking and overall marketability. The findings provide valuable insights into the role of chemical treatments and cultural techniques in enhancing fruit quality and resistance to environmental stresses in table grape cultivation.

7.
Foods ; 13(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39272441

RESUMEN

Pulsed light is an emerging technique in plant physiology recognized for its ability to enhance germination and accumulate γ-aminobutyric acid in maize. Pulsed light involves exposing plants to brief, high-intensity bursts of light, which can enhance photosynthesis, improve growth, and increase resistance to environmental stresses. Despite its promising potential, the specific metabolic changes leading to γ-aminobutyric acid enrichment in maize induced by pulsed light are not fully understood. This study addresses this gap by quantifying key nutrients and γ-aminobutyric acid-related compounds during maize germination and investigating the underlying mechanisms using non-targeted metabolomics. Our findings indicate that pulsed light significantly promotes maize germination and accelerates the hydrolysis of proteins, sugars, and lipids. This acceleration is likely due to the activation of enzymes involved in these metabolic pathways. Additionally, pulsed light markedly increases the content of glutamic acid and the activity of glutamate decarboxylase, which are crucial for γ-aminobutyric acid synthesis. Moreover, pulsed light significantly reduces the activity of γ-aminobutyric transaminase, thereby inhibiting γ-aminobutyric acid decomposition and resulting in a substantial increase in γ-aminobutyric acid content, with a 27.20% increase observed in germinated maize following pulsed light treatment. Metabolomic analysis further revealed enrichment of metabolic pathways associated with γ-aminobutyric acid, including amino acid metabolism, carbohydrate metabolism, plant hormone signal transduction, energy metabolism, pyrimidine metabolism, and ABC transporters. In conclusion, pulsed light is a robust and efficient method for producing sprouted maize with a high γ-aminobutyric acid content. This technique provides a novel approach for developing sprouted cereal foods with enhanced nutritional profiles, leveraging the physiological benefits of γ-aminobutyric acid, which include stress alleviation and potential health benefits for humans.

8.
Annu Rev Phytopathol ; 62(1): 127-156, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39251211

RESUMEN

Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.


Asunto(s)
Micorrizas , Inmunidad de la Planta , Simbiosis , Micorrizas/fisiología , Plantas/inmunología , Plantas/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología
9.
Environ Res ; : 119984, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270957

RESUMEN

Microalgae have the potential to fix CO2 into valuable compounds. Low photosynthetic efficiency caused by low light was one of the challenges faced by microalgae carbon sequestration. In this study, Melatonin (MT) and indole-propionic acid (IPA) were used to alleviate the growth inhibition of Spirulina in CAMC system under low light restriction. The results showed that MT and IPA increased biomass and carbon fixation capacity. 10 mg/L IPA group achieved the maximum biomass and carbon fixation capacity, which were 17.11% and 21.46% higher than control. MT and IPA promoted the synthesis of chlorophyll, which in turn captured more light energy for microalgae growth. The increase of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) activities enhanced the resistance of microalgae to low light stress. MT and IPA promoted the secretion of extracellular polymeric substances (EPS) which was benefit to protect cells. The maximum phycocyanin content and yield was found in 10 mg-IPA group, which was 20.67% and 46.67% higher than control. MT and IPA improved the synthesis of carbohydrates and proteins and increased carbohydrates and proteins yield. This indicated that adding phytohormones was an effective method to alleviate the growth of microalgae restricted by low light stress, which provided a theoretical guidance for the application of CAMC system in CO2 capture and resource utilization.

10.
Front Plant Sci ; 15: 1441893, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258302

RESUMEN

Flavonoids, including proanthocyanidins (PAs), anthocyanins and flavonols are essential secondary metabolites that contribute to the nutritional value and sensory quality of grape berry and red wine. Advances in molecular biology technology have led to substantial progress in understanding the regulation of flavonoid biosynthesis. The influence of terroir on grape berries and wine has garnered increasing attention, yet its comprehensive regulatory network remains underexplored. In terms of application, environmental factors such as water, light, and temperature are more easily regulated in grapevines compared to soil conditions. Therefore, we summarize their effects on flavonoid content and composition, constructing a network that links environmental factors, hormones, and metabolites to provide a deeper understanding of the underlying mechanisms. This review enriches the knowledge of the regulatory network mechanisms governing flavonoid responses to environmental factors in grapes.

11.
Stress Biol ; 4(1): 36, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158750

RESUMEN

Gamma-aminobutyric acid (GABA), a ubiquitous non-protein 4-carbon amino acid present in both prokaryotic and eukaryotic organisms. It is conventionally recognized as a neurotransmitter in mammals and plays a crucial role in plants. The context of this review centers on the impact of GABA in mitigating abiotic stresses induced by climate change, such as drought, salinity, heat, and heavy metal exposure. Beyond its neurotransmitter role, GABA emerges as a key player in diverse metabolic processes, safeguarding plants against multifaceted abiotic as well as biotic challenges. This comprehensive exploration delves into the GABA biosynthetic pathway, its transport mechanisms, and its intricate interplay with various abiotic stresses. The discussion extends to the nuanced relationship between GABA and phytohormones during abiotic stress acclimation, offering insights into the strategic development of mitigation strategies against these stresses. The delineation of GABA's crosstalk with phytohormones underscores its pivotal role in formulating crucial strategies for abiotic stress alleviation in plants.

12.
PeerJ ; 12: e17882, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184384

RESUMEN

Plants and bacteria are co-evolving and interact with one another in a continuous process. This interaction enables the plant to assimilate the nutrients and acquire protection with the help of beneficial bacteria known as plant growth-promoting bacteria (PGPB). These beneficial bacteria naturally produce bioactive compounds that can assist plants' stress tolerance. Moreover, they employ various direct and indirect processes to induce plant growth and protect plants against pathogens. The direct mechanisms involve phytohormone production, phosphate solubilization, zinc solubilization, potassium solubilization, ammonia production, and nitrogen fixation while, the production of siderophores, lytic enzymes, hydrogen cyanide, and antibiotics are included under indirect mechanisms. This property can be exploited to prepare bioformulants for biofertilizers, biopesticides, and biofungicides, which are convenient alternatives for chemical-based products to achieve sustainable agricultural practices. However, the application and importance of PGPB in sustainable agriculture are still debatable despite its immense diversity and plant growth-supporting activities. Moreover, the performance of PGPB varies greatly and is dictated by the environmental factors affecting plant growth and development. This review emphasizes the role of PGPB in plant growth-promoting activities (stress tolerance, production of bioactive compounds and phytohormones) and summarises new formulations and opportunities.


Asunto(s)
Bacterias , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Estrés Fisiológico , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo , Adaptación Fisiológica , Plantas/microbiología , Plantas/metabolismo , Microbiología del Suelo
13.
Front Plant Sci ; 15: 1418358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184578

RESUMEN

Immature fruit abscission of Camellia oleifera (C. oleifera) is a common problem limiting yield increases. However, the regulatory mechanisms underlying immature fruit abscission in C. oleifera are unclear. In this study, we systematically investigated changes in the morphological, physiological, and gene expression of fruit abscission zones (FAZs) of soon-to-abscise fruits (M2). We found that fruit abscission before ripening mainly occurs during the August abscission stage of 'Huashuo'. At the beginning of this stage, the FAZs of M2 have a marked dent, and the separation layer structures are preliminarily formed. Phytohormone analysis showed that the contents of indole-3-acetic acid (IAA) and jasmonic acid (JA) in the FAZs of M2 were significantly decreased compared with the non-abscised fruits, while the content of trans-zeatin (TZR) was increased. Transcriptome analysis identified differentially expressed genes (DEGs) mainly involved in phytohormone metabolism, including ethylene, auxin, JA, and the cis-zeatin signal transduction pathway. There were also many DEGs involved in cell wall catabolism. Weighted gene co-expression network analysis (WGCNA) further suggested that the transcription factors NAC100 and ERF114 participate in the immature fruit abscission of C. oleifera. This study provides insights into the fruit abscission mechanism of C. oleifera.

14.
Plant Cell Rep ; 43(9): 216, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145796

RESUMEN

Rare earth elements (REEs) comprises of a uniform group of lanthanides and scandium (Sc) and yttrium (Y) finding their key importance in agriculture sectors, electronic and defense industries, and renewable energy production. The immense application of REEs as plant growth promoters has led to their undesirable accumulation in the soil system raising concerns for REE pollution as upcoming stresses. This review mainly addresses the chemistry of REEs, uptake and distribution and their biphasic responses in plant systems and possible plausible techniques that could mitigate/alleviate REE contamination. It extends beyond the present understanding of the biphasic impacts of rare earth elements (REEs) on physio-biochemical attributes. It not only provides landmarks for further exploration of the interrelated phytohormonal and molecular biphasic nature but also introduces novel approaches aimed at mitigating their toxicities. By delving into innovative strategies such as recycling, substitution, and phytohormone-assisted mitigation, the review expands upon existing knowledge of REEs whilst also offering pathways to tackle the challenges associated with REE utilization.


Asunto(s)
Metales de Tierras Raras , Plantas , Metales de Tierras Raras/metabolismo , Plantas/metabolismo , Plantas/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Suelo/química
15.
Plant Physiol Biochem ; 215: 109068, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216160

RESUMEN

Although much interest has been focused on the role of selenium (Se) in plant nutrition over the last 20 years, the influences of organic selenium (selenomethionine; Se-Met) and inorganic selenium (potassium selenite; Se-K) on the growth and physiological characters of cadmium (Cd)-stressed Glycine max L.) seedlings have not yet been studied. In this study, the impacts of Se-Met or Se-K on the growth, water physiological parameters (gaseous exchange and leaf water content), photosynthetic and antioxidant capacities, and hormonal balance of G. max seedlings grown under 1.0 mM Cd stress were studied. The results showed that 30 µM Se-K up-regulates water physiological parameters, photosynthetic indices, antioxidant systems, enzymatic gene expression, total antioxidant activity (TAA), and hormonal balance. In addition, it down-regulates levels of reactive oxygen species (ROS; superoxide free radicals and hydrogen peroxide), oxidative damage (malondialdehyde content as an indicator of lipid peroxidation and electrolyte leakage), Cd translocation factor, and Cd content of Cd-stressed G. max seedlings. These positive findings were in favor of seedling growth and development under Cd stress. However, 50 µM Se-Met was more efficient than 30 µM Se-K in promoting the above-mentioned parameters of Cd-stressed G. max seedlings. From the current results, we conclude Se-Met could represent a promising strategy to contribute to the development and sustainability of crop production on soils contaminated with Cd at a concentration of up to 1.0 mM. However, further work is warranted to better understand the precise mechanisms of Se-Met action under Cd stress conditions.


Asunto(s)
Antioxidantes , Cadmio , Glycine max , Selenio , Cadmio/toxicidad , Cadmio/metabolismo , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Glycine max/genética , Glycine max/crecimiento & desarrollo , Antioxidantes/metabolismo , Selenio/metabolismo , Selenio/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Regulación hacia Abajo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Selenometionina/metabolismo , Selenometionina/farmacología , Estrés Oxidativo/efectos de los fármacos , Malondialdehído/metabolismo
16.
J Chem Ecol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138763

RESUMEN

The spotted lanternfly (SLF), Lycorma delicatula is an invasive species in the United States that has emerged as a significant pest in vineyards. This polyphagous insect causes significant damage to grapevines and tree of heaven (TOH). SLF feeds voraciously on plant tissues using its piercing and sucking mouthparts through which it injects saliva and uptakes plant sap. Despite its impact, research on fundamental mechanisms mediating SLF interactions with their predominant hosts is limited. This study documents the morphology of salivary glands and quantifies plant hormones in salivary glands of SLF adults fed on grapevines and TOH using Liquid Chromatography-Mass Spectrometry (LC/MS). SLF adults have one pair of large salivary glands, ranging from 10 to 15 mm in length that extend from the insect's head to the last sections of the abdomen. The salivary glands of SLF contain salicylic acid (89 ng/g), abscisic acid (6.5 ng/g), 12-oxo-phytodienoic acid (5.7 ng/g), indole-3-acetic acid (2 ng/g), jasmonic acid (0.6 ng/g), jasmonic acid isoleucine (0.037 ng/g), and the cytokinin ribosides trans-zeatin (0.6 ng/g) and cis-zeatin (0.1 ng/g). While the concentrations of these hormones were similar in insects fed on grapevines and TOH, abscisic acid was more abundant in insects fed on grapevines, and jasmonic acid isoleucine was only detected in insects fed on grape. These results are discussed in the context of the possible implications that these hormones may have on the regulation of plant defenses. This study contributes to our understanding of the composition of SLF saliva and its potential role in plant immunity.

17.
Sci Rep ; 14(1): 18635, 2024 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128921

RESUMEN

Evolution of unisexual flowers involves extreme changes in floral development. Spinach is one of the species to discern the formation and evolution of dioecy. MADS-box gene family is involved in regulation of floral organ identity and development and in many other plant developmental processes. However, there is no systematic analysis of MADS-box family genes in spinach. A comprehensive genome-wide analysis and transcriptome profiling of MADS-box genes were undertaken to understand their involvement in unisexual flower development at different stages in spinach. In total, 54 MADS-box genes found to be unevenly located across 6 chromosomes and can be divided into type I and type II genes. Twenty type I MADS-box genes are subdivided into Mα, Mß and Mγ subgroups. While thirty-four type II SoMADSs consist of 3 MIKC*, and 31 MIKCC -type genes including sixteen floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in spinach. Gene structure, motif distribution, physiochemical properties, gene duplication and collinearity analyses for these genes are performed in detail. Promoters of both types of SoMADS genes contain mainly MeJA and ABA response elements. Expression profiling indicated that MIKCc genes exhibited more dynamic and intricate expression patterns compared to M-type genes and the majority of type-II genes AP1, SVP, and SOC1 sub-groups showed female flower-biased expression profiles, suggesting their role in carpel development, while PI showed male-biased expression throughout flower developmental stages, suggesting their role in stamen development. These results provide genomic resources and insights into spinach dioecious flower development and expedite spinach improvement.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS , Spinacia oleracea , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Spinacia oleracea/genética , Spinacia oleracea/crecimiento & desarrollo , Spinacia oleracea/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Estudio de Asociación del Genoma Completo , Duplicación de Gen
18.
Plants (Basel) ; 13(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124205

RESUMEN

The aim of this study was to investigate the differences between Castanea sativa Mill. and Castanea crenata Siebold & Zucc. × Castanea sativa Mill. in rooting ability in relation to endogenous levels of auxin, auxin cofactors and inhibitors that influence rooting success. Leafy cuttings of the two commercial cultivars 'Marsol' and 'Maraval' (Castanea crenata × Castanea sativa) and the native accession 'Kozjak' (Castanea sativa) were analyzed. Endogenous indole-3-acetic acid (IAA) concentration was assessed at the beginning of propagation (day 0); in addition, strigolactones, flavonoids, rooting ability and quality were assessed 120 days after. The concentration of endogenous IAA in 'Maraval' (324.34 ± 28.66 ng g-1) and 'Marsol' (251.60 ± 35.44 ng g-1) was significantly higher than in 'Kozjak' (112.87 ± 35.44 ng g-1). The best rooting result was observed with the genotypes 'Maraval' (100.00 ± 0.00%) and 'Marsol' (90.48 ± 6.15%). A significantly lower strigol concentration was observed in the roots of 'Maraval' (75.54 ± 17.93 ng g-1) compared with other genotypes. The total flavonoid concentration in 'Maraval' was significantly higher (2794.99 ± 187.13 µg g-1) than in 'Kozjak' (1057.38 ± 61.05 µg g-1). Our results indicate that the concentration of endogenous IAA has a significant influence on rooting success. The results further indicate that in the case of flavonoids and strigolactones, not only the individual compounds but also their ratio is important for rooting success. Correlation coefficients calculated between analyzed compounds and rooting success point toward specific functions of flavonoids and strigolactones in the rooting of Castanea that need to be functionally analyzed.

19.
Plants (Basel) ; 13(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39124214

RESUMEN

Smoke-water (SW) and Karrikinolide1 (KAR1) release dormancy and improve seed germination in many plant species. Therefore, we tested SW (1:2500 v/v) and KAR1 (10-7 M) to break the morphological dormancy of celery cultivar (Apium graveolens L.). In the first trial, seeds were subjected to a 21-day incubation period at 20 °C with SW and KAR1 applied as single treatments. KAR1 showed significantly improved germination (30.7%) as compared to SW (17.2%) and a water control (14.7%). In seed soaking experiments, SW, KAR1, and gibberellic acid (GA3) treatments showed higher germination percentages than the water control after 3 and 6 h of soaking. However, prolonged soaking (12 h) reduced germination percentages for all treatments, indicating a detrimental effect. Analysis of KAR1 content dynamics in 7-day- and 21-day-old celery seeds indicated its prolonged effects on germination and dormancy alleviation. Phytohormones, including auxins in 7-day-old and cytokinins in 7-day- and 21-day-old celery seedlings, along with their precursors and metabolites, were analyzed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) after treatment with KAR1 and SW. The analysis of auxin levels in 7-day-old seeds revealed a negative correlation between seed germination and auxin (indole-3-acetic acid, IAA) content. Notably, it was found that KAR1-treated seeds significantly reduced IAA levels in all treatments. SW and KAR1 did not significantly affect cytokinin levels during celery germination except for N6-Isopentenyladenine. Hence, further research is needed to understand their precise role in celery seed germination. This work will improve our understanding of the role of bioactive compounds from plant-derived smoke and how they regulate hormonal responses and improve germination efficiency in celery.

20.
Front Plant Sci ; 15: 1369074, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100087

RESUMEN

The adaptation of pathogenic fungi to plant-specialized metabolites is necessary for their survival and reproduction. The biotrophic fungus Ustilago maydis can cause maize smut and produce tumors in maize (Zea mays), resulting in reduced maize yield and significant economic losses. Qualitative analysis using UPLC-MS/MS revealed that the infection of maize variety B73 with U. maydis resulted in increased levels of phytohormones, phenolics, and alkaloids in maize seedling tissues. However, correlation analysis showed that nearly all compounds in the mechanical damage group were significantly negatively correlated with the shoot growth indexes of maize B73. The correlation coefficients of 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA) and maize B73 shoot length and shoot weight were r = -0.56 (p < 0.01) and r = -0.75 (p < 0.001), respectively. In the inoculation group, these correlations weakened, with the correlation coefficients between HMBOA and maize B73 shoot length and shoot weight being r = 0.02 and r = -0.1, respectively. The correlation coefficients between 6-methoxy-2-benzoxazolinone (MBOA) and the shoot weight were r = -0.73 (p < 0.001) and r = -0.15 in the mechanical damage group and inoculation group, respectively. These findings suggest that increased concentrations of these compounds are more positively associated with mechanical damage than with U. maydis infection. At high concentrations, most of these compounds had an inhibitory effect on U. maydis. This study investigated the ability of U. maydis to regulate various compounds, including phytohormones, phenolic acids, and alkaloids in maize B73, providing evidence that U. maydis has adapted to the specialized metabolites produced by maize B73.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA