Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.687
Filtrar
1.
Heliyon ; 10(17): e36867, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39351296

RESUMEN

Chitosan (CTS) is one of the natural healers' alternatives to chemical products within the scope of good agricultural practices. It can be used in the improvement of agriculture (prevention of toxic metal uptake by plants) due to its chelating feature of metal ions. This study aims to investigate the effectiveness of chitosan in eliminating the negative effects of cadmium (Cd) stress on pepper (Capsicum annum L.). The results showed that Cd stress significantly decreased plant growth, chlorophyll content, and leaf water relative content, followed by an increase in proline, antioxidant enzyme activities, and abscisic acid (ABA) content. According to the results, Cd treatment (200 mg kg-1) significantly increased the aspartate, glutamate, asparagine, histidine, and phenylalanine content, while it significantly decreased the content of endogenous hormones such as gibberellic acid (GA), indole-3-acetic acid (IAA), and salicylic acid (SA). However, CTS application decreased the uptake of Cd and caused a decrease in hydrogen peroxide (H2O2), abscisic acid (ABA), and melondialdehyde (MDA) content, as well as an increase in plant performance, and GA, IAA, and SA content in the plants grown under Cd pollution compared to the ones treated with Cd and without CTS. This study suggests that CTS application helps pepper seedlings tolerate Cd stress through a decrease in Cd uptake, and an increase in amino acids and hormone content.

2.
Front Plant Sci ; 15: 1412426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39354941

RESUMEN

Plant growth-promoting bacteria (PGPB) are considered a promising tool for triggering the synthesis of bioactive compounds in plants and to produce healthy foods. This study aimed to demonstrate the impact of PGPB on the growth, accumulation of primary and secondary metabolites, biological activities, and nutritional qualities of Eruca sativa (arugula), a key leafy vegetable worldwide. To this end, Jeotgalicoccus sp. (JW0823), was isolated and identified by using partial 16S rDNA-based identification and phylogenetic analysis. The findings revealed that JW0823 significantly boosted plant biomass production by about 45% (P<0.05) and enhanced pigment contents by 47.5% to 83.8%. JW0823-treated plants showed remarkable improvements in their proximate composition and vitamin contents, with vitamin E levels increasing by 161.5%. JW0823 induced the accumulation of bioactive metabolites including antioxidants, vitamins, unsaturated fatty acids, and essential amino acids, thereby improving the nutritional qualities of treated plants. An increase in the amounts of amino acids was recorded, with isoleucine showing the highest increase of 270.2%. This was accompanied by increased activity of the key enzymes involved in amino acid biosynthesis, including glutamine synthase, dihydrodipicolinate synthase, cystathionine γ-synthase, and phenylalanine ammonia-lyase enzymes. Consequently, the total antioxidant and antidiabetic activities of the inoculated plants were enhanced. Additionally, JW0823 improved antimicrobial activity against several pathogenic microorganisms. Overall, the JW0823 treatment is a highly promising method for enhancing the health-promoting properties and biological characteristics of E. sativa, making it a valuable tool for improving the quality of this important leafy vegetable.

3.
J Mol Model ; 30(11): 359, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356293

RESUMEN

CONTEXT: This study addresses the development of sustainable pyridinium ionic liquids (ILs) because of their potential applications in agriculture and pharmaceuticals. Pyridinium-based ILs are known for their low melting points, high thermal stability, and moderate solvation properties. We synthesized three novel pyridinium-based ILs: 1-(2-(isopentyloxy)-2-oxoethyl)pyridin-1-ium chloride, 1-(2-(hexyloxy)-2-oxoethyl)pyridin-1-ium chloride, and 1-(2-(benzyloxy)-2-oxoethyl)pyridin-1-ium chloride. The biological activities of these compounds were evaluated through plant growth promotion, herbicidal, and insecticidal assays. Our results show that the benzyloxy derivative significantly enhances wheat and cucumber growth, whereas the isopentyloxy compound has potent herbicidal effects. Computational methods, including DFT calculations and molecular docking, were applied to understand the structure‒activity relationships (SARs) and mechanisms of action. METHODS: The computational techniques involved dispersion-corrected density functional theory (DFT) with the B3LYP functional and the 6-311G** basis set. Grimme's D3 corrections were included to account for dispersion interactions. The calculations were performed via GAMESS-US software. Quantum descriptors of reactivity, such as ionization potential, electron affinity, chemical potential, and electrophilicity index, were derived from the HOMO and LUMO energies. Molecular docking studies were conducted via the CB-Dock server via AutoDock Vina software to predict binding affinities to cancer-related proteins. Petra/Osiris/Molinspiration (POM) analysis was used to predict the drug likeness and other pharmaceutical properties of the synthesized ILs.


Asunto(s)
Líquidos Iónicos , Simulación del Acoplamiento Molecular , Compuestos de Piridinio , Líquidos Iónicos/química , Compuestos de Piridinio/química , Herbicidas/química , Herbicidas/farmacología , Relación Estructura-Actividad , Insecticidas/química , Insecticidas/farmacología , Teoría Funcional de la Densidad , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/efectos de los fármacos , Estructura Molecular , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo
4.
Carbohydr Polym ; 344: 122524, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39218547

RESUMEN

The paper reports new multifunctional plant biostimulant formulations obtained via in situ hydrogelation of chitosan with salicylaldehyde in the presence of a mimetic naphthalimide-based strigolactone, in specific conditions. Various analytical techniques (FTIR, 1H NMR, SEM, POM, TGA, WRXD) were employed to understand the particularities of the hydrogelation mechanism and its consequences on the formulations' properties. Further, in order to evaluate their potential for the targeted application, the swelling in media of pH characteristic for different soils, water holding capacity, soil biodegradability, in vitro release of the strigolactone mimic and impact on tomatoes plant growth in laboratory conditions were investigated and discussed. It was found that the strigolactone mimic has the ability to bond to the chitosan matrix via physical forces, favoring a prolonged release. Moreover, the combination of chitosan with the strigolactone mimic in an optimal mass ratio triggered a synergistic effect on the plant growth, up to 4 times higher compared to the neat control soil.


Asunto(s)
Quitosano , Lactonas , Solanum lycopersicum , Quitosano/química , Lactonas/química , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Aldehídos/química , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/química , Hidrogeles/química , Compuestos Heterocíclicos con 3 Anillos/química , Concentración de Iones de Hidrógeno , Suelo/química
5.
AIMS Microbiol ; 10(3): 572-595, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219756

RESUMEN

Leguminous tree root nodule nitrogen-fixing bacteria are critical for recuperation of soil C and N cycle processes after disturbance in tropical forests, while other nodule-associated bacteria (NAB) may enhance nodule development and activity, and plant growth. However, little is known of these root nodule microbiomes. Through DNA analysis, we evaluated the bacterial taxa associated with the root nodules of the 1-year-old, 2-year-old, 13-year-old, and old growth Inga punctata trees in a cloud forest. Bradyrhizobium diazoefficiens was the dominant taxon found in all nodules at 63.16% to 85.71% mean percent sequences (MPS) of the total nodule bacterial DNA and was found in the youngest nodules examined (1 year old), suggesting that it is the primary nodular bacteria. There were 26 other NAB genera with collective MPS levels between 7.4% to 12.2%, while 15 of these genera were found in the Bulk Forest soils at collective MPS levels of 4.6%. These bacterial community compositions were different between the NAB and Bulk Forest soils, suggesting the NAB became concentrated within the root nodules, resulting in communities with different compositions from the Bulk Forest soils. Twenty-three of the 26 NAB genera were previously identified with the potential to perform 9 plant growth promoting (PGP) activities, suggesting their importance in root nodule development and plant growth. These NAB communities appeared to successionally develop over time into more complex taxonomic communities, which is consistent with the outcome of advanced microbial communities following succession. The presence of both B. diazoefficiens and the NAB communities in the nodules across all ages of tree roots, and the potential for PGP activities linked with most of the NAB genera, suggest the importance of B. diazoefficiens and the NAB community for nodule development and enhanced development and growth of I. punctata throughout its lifespan, and most critically in the younger plants.

6.
Heliyon ; 10(16): e35966, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224290

RESUMEN

Plant growth-promoting microorganisms (PGPMs), such as Pantoea sp. YSD J2, promote plant development and stress resistance, while their role in flavonoids accumulation still needs to be further understood. To investigate the complex flavonoid biosynthesis pathway of Cyperus esculentus L. var. sativus (tigernut), we compared Pantoea sp. YSD J2 inoculation (YSD J2) and water inoculation (CK) groups. YSD J2 significantly elevated the content of indole-3-acetic acid (IAA) and orientin. Furthermore, when analyzing flavonoid metabolome, YSD J2 caused increased levels of uralenol, petunidin-3-O-glucoside-5-O-arabinoside, luteolin-7-O-glucuronide-(2 â†’ 1)-glucuronide, kaempferol-3-O-neohesperidoside, cyanidin-3-O-(2″-O-glucosyl)glucoside, kaempferol-3-O-glucuronide-7-O-glucoside, quercetin-3-O-glucoside, luteolin-7-O-glucuronide-(2 â†’ 1)-(2″-sinapoyl)glucuronide, and quercetin-4'-O-glucoside, which further enhanced antioxidant activity. We then performed RNA-seq and LC-MS/MS, aiming to validate key genes and related flavonoid metabolites under YSD J2 inoculation, and rebuild the gene-metabolites regulatory subnetworks. Furthermore, the expression patterns of the trans cinnamate 4-monooxygenase (CYP73A), flavonol-3-O-L-rhamnoside-7-O-glucosyltransferase (UGT73C6), shikimate O-hydroxycinnamoyltransferase (HCT), chalcone isomerase (CHI), flavonol synthase (FLS), and anthocyanidin synthase (ANS) genes were confirmed by qRT-PCR. Additionally, 4 transcription factors (TF) (especially bHLH34, Cluster-37505.3) under YSD J2 inoculation are also engaged in regulating flavonoid accumulation. Moreover, the current work sheds new light on studying the regulatory effect of Pantoea sp. YSD J2 on tigernut development and flavonoid biosynthesis.

7.
Plant Cell Environ ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254322

RESUMEN

The Mediator complex is a multisubunit transcription coregulator that transfers regulatory signals from different transcription factors to RNA polymerase II (Pol II) to control Pol II-dependent transcription in eukaryotes. Studies on Arabidopsis Mediator subunits have revealed their unique or overlapping functions in various aspects of plant growth, stress adaptation and metabolite homeostasis. Therefore, the utilization of the plant Mediator complex for crop improvement has been of great interest. Advances in genome editing and sequencing techniques have expedited the characterization of Mediator subunits in economically important crops such as tomato, rice, wheat, soybean, sugarcane, pea, chickpea, rapeseed and hop. In this review, we summarize recent progress in understanding the molecular mechanisms of how the Mediator complex regulates crop growth, development and adaptation to environmental stress. We also discuss the conserved and diverse functions of the Mediator complex in different plant species. In addition, we propose several future research directions to deepen our understanding of the important roles of Mediator subunits and their interacting proteins, which would provide promising targets for genetic modification to develop new cultivars with desirable agronomic traits.

8.
Microbiol Resour Announc ; : e0025724, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254331

RESUMEN

Here, we report the genome sequence of Dietzia cinnamea 55, isolated from the Negev Desert, Israel. D. cinnamea 55 was found to promote the growth of several cereal crops (corn, wheat, and pearl millet) in greenhouse and field studies.

9.
Braz J Microbiol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254801

RESUMEN

Mushroom associated microbes could be utilized to improve crop productivity providing nutrients, plant growth promoting substances, production of hydrolytic enzymes and protecting plant from biotic and abiotic stress. An endophyte designated as KUFC101 was isolated from fruit body of Pleurotus ostreatus and identified as Porostereum umbrinoalutaceum based on nuclear-rRNA gene sequence analysis. Growth in different culture media, metal tolerance, biochemical characterization and effect on chilli plant growth promotion were studied. The isolate showed best growth in Malt extract medium and least growth in synthetic media. It could tolerate toxic metals (Mg, Ca, Fe, Cu, Mn, Zn and Cd each at 100 ppm concentration). It produced amylase, cellulase, chitinase, pectinase, catecholate type of siderophore and indole acetic acid, and inhibited growth of Alternaria solani and Penicillium citrinum. It could colonize in the rhizosphere of chilli plant and influence growth of chilli plant by improving biomass and metabolite content. Porostereum umbrinoalutaceum KUFC101 could be utilized in formulation of biofertiliser under sustainable agricultural system.

10.
Microbiol Resour Announc ; : e0064324, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248538

RESUMEN

We report the complete genome sequence of Peribacillus simplex, a spore-forming bacterium originally classified within the Bacillus genus. Peribacillus simplex exhibits antibiotic, plant growth-promoting, and xenobiotic-degrading activities and resistance to environmental contamination. The genome sequence of Peribacillus simplex will provide insights into its capabilities and potential as a biocontrol agent.

11.
Front Plant Sci ; 15: 1451887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239205

RESUMEN

The rising demand for vegetables has driven the adoption of greenhouse cultivation to guarantee high yields and quality of fresh produce year-round. Consequently, this elevates the demand for fertilizers, whose costs are progressively escalating. Bacillus safensis RGM 2450 and Bacillus siamensis RGM 2529 are plant growth-promoting rhizobacteria (PGPR). The combination of these strains exhibited synergistic activity in stimulating the growth and seedling hydration of tomatoes. In this study, the effects of inoculation with a RGM 2450 plus RGM 2529 formulation were evaluated under 66% and 100% fertilization programs in tomato crops under greenhouse conditions. Fertilization programs (66% and 100%) with or without commercial biostimulants were used as control treatments. In this assay, the NPK percentage in the plant tissue, tomato average weight, tomato average weight per harvest, tomato diameter, and changes in the colonization, structure, and diversity of the bacterial rhizosphere were measured. The 100% and 66% fertilization programs supplemented with the RGM 2529 plus RGM 2450 formulation increased the average weight of tomatoes per harvest without statistical difference between them, but with the other treatments. The 66% fertilization with RGM 2450 plus RGM 2529 increased between 1.5 and 2.0 times the average weight of tomatoes per harvest compared to the 66% and 100% fertilizations with and without commercial biostimulant treatments, respectively. This study represents the first report demonstrating that the application of a formulation based on a mixture of B. siamensis and B. safensis in a fertilization program reduced by 33% is equivalent in productivity to a conventional fertilization program for tomato cultivation, achieving an increase in potential plant growth-promoting rizobacteria of the genus Flavobacterium. Therefore, the adoption of a combination of these bacterial strains within the framework of a 66% inorganic fertilization program is a sustainable approach to achieving greater tomato production and reducing the environmental risks associated with the use of inorganic fertilization.

12.
Front Plant Sci ; 15: 1398846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228831

RESUMEN

Studies are being conducted to develop strategies to reduce the adverse effects of salinity stress. In the present study, it was aimed to determine the interactive effects of salinity stress with biochar on plant growth-the physiological and biochemical attributes of forage peas (Pisum sativum ssp. arvense L.). Salt applications were carried out with irrigation water at concentrations of 0, 25, 50, 75, and 100 mM NaCl. The experiment was conducted using a randomized complete block design with three applications [control: 0 (B0), 2.5% biochar (B1), and 5% biochar (B2)], five salt doses [0 (S0), 25 (S1), 50 (S2), 75 (S3), and 100 (S4) mM NaCl], and three replications, arranged in a 3 × 5 factorial arrangement. In the salt-stressed environment, the highest plant height (18.75 cm) and stem diameter (1.71 mm) in forage pea seedlings were obtained with the application of B1. The root fresh (0.59 g/plant) and dry weight (0.36 g/plant) were determined to be the highest in the B1 application, both in non-saline and saline environments. A decrease in plant chlorophyll content in forage pea plants was observed parallel to the increasing salt levels. Specifically, lower H2O2, MDA, and proline content were determined at all salt levels with biochar applications, while in the B0 application these values were recorded at the highest levels. Furthermore, in the study, it was observed that the CAT, POD, and SOD enzyme activities were at their lowest levels at all salt levels with the biochar application, while in the B0 application, these values were determined to be at the highest levels. There was a significant decrease in plant mineral content, excluding Cl and Na, parallel to the increasing salt levels. The findings of the study indicate that biochar amendment can enhance forage peas' growth by modulating the plant physiology and biochemistry under salt stress. Considering the plant growth parameters, no significant difference was detected between 2.5% and 5% biochar application. Therefore, application of 2.5 biochar may be recommended.

13.
Front Plant Sci ; 15: 1403922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228838

RESUMEN

Lentil (Lens culinaris Medik.) is a cool season legume crop that plays vital roles in food and nutritional security, mostly in the least developed countries. Lentil is often cultivated in dry and semi-dry regions, where the primary abiotic factor is drought, which negatively impacts lentil growth and development, resulting in a reduction of yield. To withstand drought-induced multiple negative effects, lentil plants evolved a variety of adaptation strategies that can be classified within three broad categories of drought tolerance mechanisms (i.e., escape, avoidance, and tolerance). Lentil adapts to drought by the modulation of various traits in the root system, leaf architecture, canopy structure, branching, anatomical features, and flowering process. Furthermore, the activation of certain defensive biochemical pathways as well as the regulation of gene functions contributes to lentil drought tolerance. Plant breeders typically employ conventional and mutational breeding approaches to develop lentil varieties that can withstand drought effects; however, little progress has been made in developing drought-tolerant lentil varieties using genomics-assisted technologies. This review highlights the current understanding of morpho-physiological, biochemical, and molecular mechanisms of lentil adaptation to drought stress. We also discuss the potential application of omics-assisted breeding approaches to develop lentil varieties with superior drought tolerance traits.

14.
Plant Physiol Biochem ; 216: 109092, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39241626

RESUMEN

Continuous cropping of peanuts presents significant challenges to sustainable production due to soil-borne diseases like root rot caused by Fusarium species. In this study, field inoculation experiments treatments and in vitro agar plate confrontation tests were conducted, including non-inoculated controls (CK), inoculation with Pseudomonas fluorescens (PF), Fusarium oxysporum (FO), and co-inoculation with both (PF + FO). The aim was to explore the antifungal mechanisms of Pseudomonas fluorescens in mitigating root rot and enhancing peanut yield. The results indicated that PF and PF + FO significantly enhanced peanut root activity, as well as superoxide dismutase, catalase, and glutathione S-transferase activities, while simultaneously decreasing the accumulation of reactive oxygen species and malondialdehyde contents, compared to FO treatment. Additionally, PF treatment notably increased lignin content through enhanced phenylalanine ammonia lyase, cinnamate 3-hydroxylase, and peroxidase activity compared to CK and FO treatment. Moreover, PF treatment resulted in longer roots and a higher average diameter and surface area, potentially due to increased endogenous levels of auxin and zeatin riboside, coupled with decreased abscisic acid content. PF treatment significantly elevated chlorophyll content and the maximum photochemical efficiency of PSII in the light-adapted state, the actual photochemical efficiency and the proportion of PSII reaction centers open, leading to improved photosynthetic performance. Confrontation culture assays revealed PF's notable inhibitory effects on Fusarium oxysporum growth, subsequently reducing rot disease incidence in the field. Ultimately, PF treatment led to increased peanut yield by enhancing plant numbers and pod weight compared to FO treatment, indicating its potential in mitigating Fusarium oxysporum-induced root rot disease under continuous cropping systems.

15.
Plant Signal Behav ; 19(1): 2399426, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39231270

RESUMEN

Tripartite interactions among plants, fungi, and bacteria are critical for maintaining plant growth and fitness, and volatile organic compounds (VOCs) play a significant role in these interactions. However, the functions of VOCs within the niche of mycoheterotrophic plants, which represent unique types of interactions, remain poorly understood. Gastrodia elata, a mycoheterotrophic orchid species, forms a symbiotic relationship with specific Armillaria species, serving as a model system to investigate this intriguing issue. Rahnella aceris HPDA25 is a plant growth-promoting bacteria isolated from G. elata, which has been found to facilitate the establishment of G. elata-Armillaria symbiosis. In this study, using the tripartite symbiotic system of G. elata-Armillaria gallica-R. aceris HPDA25, we investigate the role of VOCs in the interaction among mycoheterotrophic plants, fungi, and bacteria. Our results showed that 33 VOCs of HPDA25-inducible symbiotic G. elata elevated compared to non-symbiotic G. elata, indicating that VOCs indeed play a role in the symbiotic process. Among these, 21 VOCs were accessible, and six active VOCs showed complete growth inhibition activities against A. gallica, while R. aceris HPDA25 had no significant effect. In addition, three key genes of G. elata have been identified that may contribute to the increased concentration of six active VOCs. These results revealed for the first time the VOCs profile of G. elata and demonstrated its regulatory role in the tripartite symbiotic system involving G. elata, Armillaria, and bacteria.


Asunto(s)
Armillaria , Gastrodia , Simbiosis , Compuestos Orgánicos Volátiles , Simbiosis/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Gastrodia/microbiología , Gastrodia/metabolismo , Gastrodia/genética , Armillaria/metabolismo , Armillaria/genética
16.
BMC Plant Biol ; 24(1): 832, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39232682

RESUMEN

BACKGROUND: Oxidative stress mediated by reactive oxygen species (ROS) is a common denominator in arsenic toxicity. Arsenic stress in soil affects the water absorption, decrease stomatal conductance, reduction in osmotic, and leaf water potential, which restrict water uptake and osmotic stress in plants. Arsenic-induced osmotic stress triggers the overproduction of ROS, which causes a number of germination, physiological, biochemical, and antioxidant alterations. Antioxidants with potential to reduce ROS levels ameliorate the arsenic-induced lesions. Plant growth promoting rhizobacteria (PGPR) increase the total soluble sugars and proline, which scavenging OH radicals thereby prevent the oxidative damages cause by ROS. The main objective of this study was to evaluate the potential role of Arsenic resistant PGPR in growth of maize by mitigating arsenic stress. METHODOLOGY: Arsenic tolerant PGPR strain MD3 (Pseudochrobactrum asaccharolyticum) was used to dismiss the 'As' induced oxidative stress in maize grown at concentrations of 50 and 100 mg/kg. Previously isolated arsenic tolerant bacterial strain MD3 "Pseudochrobactrum asaccharolyticum was used for this experiment. Further, growth promoting potential of MD3 was done by germination and physio-biochemical analysis of maize seeds. Experimental units were arranged in Completely Randomized Design (CRD). A total of 6 sets of treatments viz., control, arsenic treated (50 & 100 mg/kg), bacterial inoculated (MD3), and arsenic stress plus bacterial inoculated with three replicates were used for Petri plates and pot experiments. After treating with this MD3 strain, seeds of corn were grown in pots filled with or without 50 mg/kg and 100 mg/kg sodium arsenate. RESULTS: The plants under arsenic stress (100 mg/kg) decreased the osmotic potential (0.8 MPa) as compared to control indicated the osmotic stress, which caused the reduction in growth, physiological parameters, proline accumulation, alteration in antioxidant enzymes (Superoxide dismutase-SOD, catalase-CAT, peroxidase-POD), increased MDA content, and H2O2 in maize plants. As-tolerant Pseudochrobactrum asaccharolyticum improved the plant growth by reducing the oxidation stress and antioxidant enzymes by proline accumulation. PCA analysis revealed that all six treatments scattered differently across the PC1 and PC2, having 85.51% and 9.72% data variance, respectively. This indicating the efficiency of As-tolerant strains. The heatmap supported the As-tolerant strains were positively correlated with growth parameters and physiological activities of the maize plants. CONCLUSION: This study concluded that Pseudochrobactrum asaccharolyticum reduced the 'As' toxicity in maize plant through the augmentation of the antioxidant defense system. Thus, MD3 (Pseudochrobactrum asaccharolyticum) strain can be considered as bio-fertilizer.


Asunto(s)
Antioxidantes , Arsénico , Estrés Oxidativo , Agua , Zea mays , Zea mays/microbiología , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Estrés Oxidativo/efectos de los fármacos , Arsénico/toxicidad , Antioxidantes/metabolismo , Agua/metabolismo , Burkholderiales/metabolismo , Burkholderiales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
17.
Front Microbiol ; 15: 1430546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234545

RESUMEN

Global climate change poses a significant threat to plant growth and crop yield and is exacerbated by environmental factors, such as drought, salinity, greenhouse gasses, and extreme temperatures. Plant growth-promoting rhizobacteria (PGPR) help plants withstand drought. However, the mechanisms underlying PGPR-plant interactions remain unclear. Thus, this study aimed to isolate PGPR, Bacillus megaterium strains CACC109 and CACC119, from a ginseng field and investigate the mechanisms underlying PGPR-stimulated tolerance to drought stress by evaluating their plant growth-promoting activities and effects on rice growth and stress tolerance through in vitro assays, pot experiments, and physiological and molecular analyses. Compared with B. megaterium type strain ATCC14581, CACC109 and CACC119 exhibited higher survival rates under osmotic stress, indicating their potential to enhance drought tolerance. Additionally, CACC109 and CACC119 strains exhibited various plant growth-promoting activities, including phosphate solubilization, nitrogen fixation, indole-3-acetic acid production, siderophore secretion, 1-aminocyclopropane-1-carboxylate deaminase activity, and exopolysaccharide production. After inoculation, CACC109 and CACC119 significantly improved the seed germination of rice (Oryza sativa L.) under osmotic stress and promoted root growth under stressed and non-stressed conditions. They also facilitated plant growth in pot experiments, as evidenced by increased shoot and root lengths, weights, and leaf widths. Furthermore, CACC109 and CACC119 improved plant physiological characteristics, such as chlorophyll levels, and production of osmolytes, such as proline. In particular, CACC109- and CACC119-treated rice plants showed better drought tolerance, as evidenced by their higher survival rates, greater chlorophyll contents, and lower water loss rates, compared with mock-treated rice plants. Application of CACC109 and CACC119 upregulated the expression of antioxidant-related genes (e.g., OsCAT, OsPOD, OsAPX, and OsSOD) and drought-responsive genes (e.g., OsWRKY47, OsZIP23, OsDREB2, OsNAC066, OsAREB1, and OsAREB2). In conclusion, CACC109 and CACC119 are promising biostimulants for enhancing plant growth and conferring resistance to abiotic stresses in crop production. Future studies should conduct field trials to validate these findings under real agricultural conditions, optimize inoculation methods for practical use, and further investigate the biochemical and physiological responses underlying the observed benefits.

18.
Sci Rep ; 14(1): 21373, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39266608

RESUMEN

Salinity stress negatively affects the growth and yield of crops worldwide. Onion (Allium cepa L.) is moderately sensitive to salinity. Beneficial microorganisms can potentially confer salinity tolerance. This study investigated the effects of endomycorrhizal fungi (M), Pseudomonas putida (Ps) and their combination (MPs) on onion growth under control (0 ppm), moderate (2000 ppm) and high (4000 ppm) NaCl salinity levels. A pot experiment was conducted with sandy loam soil and onion cultivar Giza 20. Results showed that salinity reduced growth attributes, leaf pigments, biomass and bulb yield while increasing oxidative stress markers. However, individual or combined inoculations significantly increased plant height, bulb diameter and biomass production compared to uninoculated plants under saline conditions. MPs treatment provided the highest stimulation, followed by Pseudomonas and mycorrhizae alone. Overall, dual microbial inoculation showed synergistic interaction, conferring maximum benefits for onion growth, bulbing through integrated physiological and biochemical processes under salinity. Bulb yield showed 3.5, 36 and 83% increase over control at 0, 2000 and 4000 ppm salinity, respectively. In conclusion, combined application of mycorrhizal-Pseudomonas inoculations (MPs) effectively mitigate salinity stress. This approach serves as a promising biotechnology for ensuring sustainable onion productivity under saline conditions.


Asunto(s)
Cebollas , Pseudomonas putida , Salinidad , Pseudomonas putida/fisiología , Pseudomonas putida/crecimiento & desarrollo , Pseudomonas putida/efectos de los fármacos , Cebollas/microbiología , Micorrizas/fisiología , Biomasa , Estrés Salino , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Tolerancia a la Sal , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Estrés Oxidativo/efectos de los fármacos
19.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273109

RESUMEN

Plants are an important source for the discovery of novel natural growth regulators. We used activity screening to demonstrate that treatment of Nipponbare seeds with 25 µg/mL isopimaric acid significantly increased the resulting shoot length, root length, and shoot weight of rice seedlings by 11.37 ± 5.05%, 12.96 ± 7.63%, and 27.98 ± 10.88% and that it has a higher activity than Gibberellin A3 (GA3) at the same concentration. A total of 213 inbred lines of different rice lineages were screened, and we found that isopimaric acid had different growth promotional activities on rice seedlings of different varieties. After induction with 25 µg/mL isopimaric acid, 15.02% of the rice varieties tested showed increased growth, while 15.96% of the varieties showed decreased growth; the growth of the remaining 69.02% did not show any significant change from the control. In the rice varieties showing an increase in growth, the shoot length and shoot weight significantly increased, accounting for 21.88% and 31.25%. The root length and weight significantly increased, accounting for 6.25% and 3.13%. Using genome-wide association studies (GWASs), linkage disequilibrium block, and gene haplotype significance analysis, we identified single nucleotide polymorphism (SNP) signals that were significantly associated with the length and weight of shoots on chromosomes 2 and 8, respectively. After that, we obtained 17 candidate genes related to the length of shoots and 4 candidate genes related to the weight of shoots. Finally, from the gene annotation data and gene tissue-specific expression; two genes related to this isopimaric acid regulation phenotype were identified as OsASC1 (LOC_Os02g37080) on chromosome 2 and OsBUD13 (LOC_Os08g08080) on chromosome 8. Subcellular localization analysis indicated that OsASC1 was expressed in the plasma membrane and the nuclear membrane, while OsBUD13 was expressed in the nucleus. Further RT-qPCR analysis showed that the relative expression levels of the resistance gene OsASC1 and the antibody protein gene OsBUD13 decreased significantly following treatment with 25 µg/mL isopimaric acid. These results suggest that isopimaric acid may inhibit defense pathways in order to promote the growth of rice seedlings.


Asunto(s)
Abietanos , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Oryza , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Polimorfismo de Nucleótido Simple , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/efectos de los fármacos , Sitios de Carácter Cuantitativo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo
20.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273241

RESUMEN

Heat stress inhibits plant growth and productivity. Among the main regulators, B-box zinc-finger (BBX) proteins are well-known for their contribution to plant photomorphogenesis and responses to abiotic stress. Our research pinpoints that SlBBX31, a BBX protein harboring a conserved B-box domain, serves as a suppressor of plant growth and heat tolerance in tomato (Solanum lycopersicum L.). Overexpressing (OE) SlBBX31 in tomato exhibited yellowing leaves due to notable reduction in chlorophyll content and net photosynthetic rate (Pn). Furthermore, the pollen viability of OE lines obviously decreased and fruit bearing was delayed. This not only affected the fruit setting rate and the number of plump seeds but also influenced the size of the fruit. These results indicate that SlBBX31 may be involved in the growth process of tomato, specifically in terms of photosynthesis, flowering, and the fruiting process. Conversely, under heat-stress treatment, SlBBX31 knockout (KO) plants displayed superior heat tolerance, evidenced by their improved membrane stability, heightened antioxidant enzyme activities, and reduced accumulation of reactive oxygen species (ROS). Further transcriptome analysis between OE lines and KO lines under heat stress revealed the impact of SlBBX31 on the expression of genes linked to photosynthesis, heat-stress signaling, ROS scavenging, and hormone regulation. These findings underscore the essential role of SlBBX31 in regulating tomato growth and heat-stress resistance and will provide valuable insights for improving heat-tolerant tomato varieties.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotosíntesis , Termotolerancia/genética , Especies Reactivas de Oxígeno/metabolismo , Plantas Modificadas Genéticamente/genética , Clorofila/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA