Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Front Plant Sci ; 15: 1377793, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855463

RESUMEN

The mutualistic plant rhizobacteria which improve plant development and productivity are known as plant growth-promoting rhizobacteria (PGPR). It is more significant due to their ability to help the plants in different ways. The main physiological responses, such as malondialdehyde, membrane stability index, relative leaf water content, photosynthetic leaf gas exchange, chlorophyll fluorescence efficiency of photosystem-II, and photosynthetic pigments are observed in plants during unfavorable environmental conditions. Plant rhizobacteria are one of the more crucial chemical messengers that mediate plant development in response to stressed conditions. The interaction of plant rhizobacteria with essential plant nutrition can enhance the agricultural sustainability of various plant genotypes or cultivars. Rhizobacterial inoculated plants induce biochemical variations resulting in increased stress resistance efficiency, defined as induced systemic resistance. Omic strategies revealed plant rhizobacteria inoculation caused the upregulation of stress-responsive genes-numerous recent approaches have been developed to protect plants from unfavorable environmental threats. The plant microbes and compounds they secrete constitute valuable biostimulants and play significant roles in regulating plant stress mechanisms. The present review summarized the recent developments in the functional characteristics and action mechanisms of plant rhizobacteria in sustaining the development and production of plants under unfavorable environmental conditions, with special attention on plant rhizobacteria-mediated physiological and molecular responses associated with stress-induced responses.

2.
Sci Total Environ ; 946: 174198, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38914330

RESUMEN

The use of glyphosate-based herbicides (GBHs) to control weeds has increased exponentially in recent decades, and their residues and degradation products have been found in soils across the globe. GBH residues in soil have been shown to affect plant physiology and specialised metabolite biosynthesis, which, in turn, may impact plant resistance to biotic stressors. In a greenhouse study, we investigated the interactive effects between soil GBH residues and herbivory on the performance, phytohormone concentrations, phenolic compound concentrations and volatile organic compound (VOC) emissions of two woodland strawberry (Fragaria vesca) genotypes, which were classified as herbivore resistant and herbivore susceptible. Plants were subjected to herbivory by strawberry leaf beetle (Galerucella tenella) larvae, and to GBH residues by growing in soil collected from a field site with GBH treatments twice a year over the past eight years. Soil GBH residues reduced the belowground biomass of the susceptible genotype and the aboveground biomass of both woodland strawberry genotypes. Herbivory increased the belowground biomass of the resistant genotype and the root-shoot ratio of both genotypes. At the metabolite level, herbivory induced the emission of several VOCs. Jasmonic acid, abscisic acid and auxin concentrations were induced by herbivory, in contrast to salicylic acid, which was only induced by herbivory in combination with soil GBH residues in the resistant genotype. The concentrations of phenolic compounds were higher in the resistant genotype compared to the susceptible genotype and were induced by soil GBH residues in the resistant genotype. Our results indicate that soil GBH residues can differentially affect plant performance, phytohormone concentrations and phenolic compound concentrations under herbivore attack, in a genotype-dependent manner. Soil GBH altered plant responses to herbivory, which may impact plant resistance traits and species interactions. With ongoing agrochemical pollution, we need to consider plant cultivars with better resistance to polluted soils while maintaining plant resilience under challenging environmental conditions.


Asunto(s)
Fragaria , Genotipo , Herbicidas , Herbivoria , Contaminantes del Suelo , Suelo , Fragaria/genética , Contaminantes del Suelo/metabolismo , Suelo/química , Animales , Reguladores del Crecimiento de las Plantas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
3.
Plant Physiol Biochem ; 205: 108210, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38006792

RESUMEN

Expeditious industrialization and anthropogenic activities have resulted in large amounts of heavy metals (HMs) being released into the environment. These HMs affect crop yields and directly threaten global food security. Therefore, significant efforts have been made to control the toxic effects of HMs on crops. When HMs are taken up by plants, various mechanisms are stimulated to alleviate HM stress, including the biosynthesis and transport of auxin in the plant. Interestingly, researchers have noted the significant potential of auxin in mediating resistance to HM stress, primarily by reducing uptake of metals, promoting chelation and sequestration in plant tissues, and mitigating oxidative damage. Both exogenous administration of auxin and manipulation of intrinsic auxin status are effective strategies to protect plants from the negative consequences of HMs stress. Regulation of genes and transcription factors related to auxin homeostasis has been shown to be related to varying degrees to the type and concentration of HMs. Therefore, to derive the maximum benefit from auxin-mediated mechanisms to attenuate HM toxicities, it is essential to gain a comprehensive understanding of signaling pathways involved in regulatory actions. This review primarily emphases on the auxin-mediated mechanisms participating in the injurious effects of HMs in plants. Thus, it will pave the way to understanding the mechanism of auxin homeostasis in regulating HM tolerance in plants and become a tool for developing sustainable strategies for agricultural growth in the future.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Estrés Oxidativo , Productos Agrícolas/metabolismo , Homeostasis , Ácidos Indolacéticos , Contaminantes del Suelo/análisis , Suelo
4.
Front Plant Sci ; 14: 1257098, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810383

RESUMEN

Microbial volatile organic compounds (MVOCs) are mixtures of gas-phase hydrophobic carbon-based molecules produced by microorganisms such as bacteria and fungi. They can act as airborne signals sensed by plants being crucial players in triggering signaling cascades influencing their secondary metabolism, development, and growth. The role of fungal volatile organic compounds (FVOCs) from beneficial or detrimental species to influence the physiology and priming effect of plants has been well studied. However, the plants mechanisms to discern between FVOCs from friend or foe remains significantly understudied. Under this outlook, we present an overview of the VOCs produced by plant-associate fungal species, with a particular focus on the challenges faced in VOCs research: i) understanding how plants could perceive FVOCs, ii) investigating the differential responses of plants to VOCs from beneficial or detrimental fungal strains, and finally, iii) exploring practical aspects related to the collection of VOCs and their eco-friendly application in agriculture.

5.
Plants (Basel) ; 12(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299100

RESUMEN

Nitric oxide (NO) is a small, diatomic, gaseous, free radicle, lipophilic, diffusible, and highly reactive molecule with unique properties that make it a crucial signaling molecule with important physiological, biochemical, and molecular implications for plants under normal and stressful conditions. NO regulates plant growth and developmental processes, such as seed germination, root growth, shoot development, and flowering. It is also a signaling molecule in various plant growth processes, such as cell elongation, differentiation, and proliferation. NO also regulates the expression of genes encoding hormones and signaling molecules associated with plant development. Abiotic stresses induce NO production in plants, which can regulate various biological processes, such as stomatal closure, antioxidant defense, ion homeostasis, and the induction of stress-responsive genes. Moreover, NO can activate plant defense response mechanisms, such as the production of pathogenesis-related proteins, phytohormones, and metabolites against biotic and oxidative stressors. NO can also directly inhibit pathogen growth by damaging their DNA and proteins. Overall, NO exhibits diverse regulatory roles in plant growth, development, and defense responses through complex molecular mechanisms that still require further studies. Understanding NO's role in plant biology is essential for developing strategies for improved plant growth and stress tolerance in agriculture and environmental management.

6.
Environ Res ; 229: 115966, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37100368

RESUMEN

BACKGROUND: Environmental stresses pose a significant threat to plant growth and ecosystem productivity, particularly in arid lands that are more susceptible to climate change. Strigolactones (SLs), carotenoid-derived plant hormones, have emerged as a potential tool for mitigating environmental stresses. METHODS: This review aimed to gather information on SLs' role in enhancing plant tolerance to ecological stresses and their possible use in improving the resistance mechanisms of arid land plant species to intense aridity in the face of climate change. RESULTS: Roots exude SLs under different environmental stresses, including macronutrient deficiency, especially phosphorus (P), which facilitates a symbiotic association with arbuscular mycorrhiza fungi (AMF). SLs, in association with AMF, improve root system architecture, nutrient acquisition, water uptake, stomatal conductance, antioxidant mechanisms, morphological traits, and overall stress tolerance in plants. Transcriptomic analysis revealed that SL-mediated acclimatization to abiotic stresses involves multiple hormonal pathways, including abscisic acid (ABA), cytokinins (CK), gibberellic acid (GA), and auxin. However, most of the experiments have been conducted on crops, and little attention has been paid to the dominant vegetation in arid lands that plays a crucial role in reducing soil erosion, desertification, and land degradation. All the environmental gradients (nutrient starvation, drought, salinity, and temperature) that trigger SL biosynthesis/exudation prevail in arid regions. The above-mentioned functions of SLs can potentially be used to improve vegetation restoration and sustainable agriculture. CONCLUSIONS: Present review concluded that knowledge on SL-mediated tolerance in plants is developed, but still in-depth research is needed on downstream signaling components in plants, SL molecular mechanisms and physiological interactions, efficient methods of synthetic SLs production, and their effective application in field conditions. This review also invites researchers to explore the possible application of SLs in improving the survival rate of indigenous vegetation in arid lands, which can potentially help combat land degradation problems.


Asunto(s)
Ecosistema , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Lactonas/metabolismo , Plantas , Estrés Fisiológico
7.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834758

RESUMEN

Radiation is widespread in nature, including ultraviolet radiation from the sun, cosmic radiation and radiation emitted by natural radionuclides. Over the years, the increasing industrialization of human beings has brought about more radiation, such as enhanced UV-B radiation due to ground ozone decay, and the emission and contamination of nuclear waste due to the increasing nuclear power plants and radioactive material industry. With additional radiation reaching plants, both negative effects including damage to cell membranes, reduction of photosynthetic rate and premature aging and benefits such as growth promotion and stress resistance enhancement have been observed. ROS (Reactive oxygen species) are reactive oxidants in plant cells, including hydrogen peroxide (H2O2), superoxide anions (O2•-) and hydroxide anion radicals (·OH), which may stimulate the antioxidant system of plants and act as signaling molecules to regulate downstream reactions. A number of studies have observed the change of ROS in plant cells under radiation, and new technology such as RNA-seq has molecularly revealed the regulation of radiative biological effects by ROS. This review summarized recent progress on the role of ROS in plant response to radiations including UV, ion beam and plasma, and may help to reveal the mechanisms of plant responses to radiation.


Asunto(s)
Peróxido de Hidrógeno , Rayos Ultravioleta , Humanos , Especies Reactivas de Oxígeno/metabolismo , Superóxidos , Antioxidantes/metabolismo
8.
Plant Signal Behav ; 18(1): 2180159, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36800921

RESUMEN

Partial mycoheterotrophic i.e., mixotrophic, plants are the species which partially depend on mycorrhizal fungi for its nutrients. Although some of these plants are known to show plasticity in the degree of fungal dependence induced by the changes in light condition, the genetic background of this plasticity is largely unsolved. Here, we investigated the relationships between environmental conditions and nutrient sources based on 13C and 15N enrichment in mixotrophic orchid Cymbidium goeringii. We also shaded them for 2 months and evaluated the effect of light condition on the nutrient sources based on the abundance of 13C and 15N and the gene expressions by RNA-seq based de novo assembly. The shading had no effect on isotope enrichment, possibly because of the translocation of carbon and nitrogen from the storage organs. Gene expression analysis showed the upregulation of genes involved in jasmonic acid response in leaves of the shaded plants, which suggests that the jasmonic acid played an important role in regulation of degree of dependence against the mycorrhizal fungi. Our results suggest that mixotrophic plants might be controlling their dependency against the mycorrhizal fungi by a common mechanism with the autotrophic plants.


Asunto(s)
Micorrizas , Orchidaceae , Simbiosis/genética , Micorrizas/fisiología , Ciclopentanos/metabolismo , Orchidaceae/microbiología , Expresión Génica
9.
Front Plant Sci ; 13: 1052660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438139

RESUMEN

Global climate change is expected to further increase the frequency and severity of extreme events, such as high temperature/heat waves as well as drought in the future. Thus, how plant responds to high temperature and drought has become a key research topic. In this study, we extracted data from Web of Science Core Collections database, and synthesized plant responses to high temperature and drought based on bibliometric methods using software of R and VOSviewer. The results showed that a stabilized increasing trend of the publications (1199 papers) was found during the period of 2008 to 2014, and then showed a rapid increase (2583 papers) from year 2015 to 2021. Secondly, the top five dominant research fields of plant responses to high temperature and drought were Plant Science, Agroforestry Science, Environmental Science, Biochemistry, and Molecular Biology, respectively. The largest amount of published article has been found in the Frontiers in Plant Science journal, which has the highest global total citations and H-index. We also found that the journal of Plant Physiology has the highest local citations. From the most cited papers and references, the most important research focus was the improvement of crop yield and vegetation stress resistance. Furthermore, "drought" has been the most prominent keyword over the last 14 years, and more attention has been paid to "climate change" over the last 5 years. Under future climate change, how to regulate growth and development of food crops subjected to high temperature and drought stress may become a hotspot, and increasing research is critical to provide more insights into plant responses to high temperature and drought by linking plant above-below ground components. To summarize, this research will contribute to a comprehensive understanding of the past, present, and future research on plant responses to high temperature and drought.

10.
Toxics ; 10(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36136464

RESUMEN

Accelerating heavy metal pollution is a hot issue due to a continuous growth in consumerism and increased activities in various global industries. Soil contamination with heavy metals has resulted in their incorporation into the human food web via plant components. Accumulation and amplification of heavy metals in human tissues through the consumption of medicinal plants can have hazardous health outcomes. Therefore, in this critical review we aim to bring together published information on this subject, with a special highlight on the knowledge gaps related to heavy metal stress in medicinal plants, their responses, and human health related risks. In this respect, this review outlines the key contamination sources of heavy metals in plants, as well as the absorption, mobilization and translocation of metal ions in plant compartments, while considering their respective mechanisms of detoxification. In addition, this literature review attempts to highlight how stress and defensive strategies operate in plants, pointing out the main stressors, either biotic or abiotic (e.g., heavy metals), and the role of reactive oxygen species (ROS) in stress answers. Finally, in our research, we further aim to capture the risks caused by heavy metals in medicinal plants to human health through the assessment of both a hazard quotient (HQ) and hazard index (HI).

11.
Mol Plant Microbe Interact ; 35(7): 583-591, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35253477

RESUMEN

Drought plays a central role in increasing the incidence and severity of dry root rot (DRR) disease in chickpea. This is an economically devastating disease, compromising chickpea yields particularly severely in recent years due to erratic rainfall patterns. Macrophomina phaseolina (formerly Rhizoctonia bataticola) is the causal agent of DRR disease in the chickpea plant. The infection pattern in chickpea roots under well-watered conditions and drought stress are poorly understood at present. This study provides detailed disease symptomatology and the characteristics of DRR fungus at morphological and molecular levels. Using microscopy techniques, the infection pattern of DRR fungus in susceptible chickpea roots was investigated under well-watered and drought-stress conditions. Our observations suggested that drought stress intensifies the progression of already ongoing infection by weakening the endodermal barrier and overall defense. Transcriptomic analysis suggested that the plant's innate immune defense program is downregulated in infected roots when subjected to drought stress. Furthermore, genes involved in hormonal regulation are differentially expressed under drought stress. These findings provide hints in terms of potential chickpea genes to target in crop improvement programs to develop climate-change-resilient cultivars.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Cicer , Ascomicetos , Cicer/genética , Cicer/microbiología , Sequías , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/microbiología , Agua
12.
Mol Plant Microbe Interact ; 35(5): 393-400, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35147444

RESUMEN

The Arabidopsis PENETRATION 3 (PEN3) ATP binding cassette (ABC) transporter contributes to penetration resistance against nonadapted powdery mildew fungi and is targeted to papillae deposited at sites of interaction with the fungus. Timely recruitment of PEN3 and other components of penetration resistance to the host-pathogen interface is important for successful defense against this biotrophic pathogen. A forward genetic screen was previously carried out to identify Arabidopsis mutants that mistarget the PEN3 transporter or fail to accumulate PEN3 at sites of attempted powdery mildew penetration. This study focuses on PEN3 mistargeting in the aberrant localization of PEN3 4 (alp4) mutant and identification of the causal gene. In the alp4 mutant, PEN3 accumulates within the endomembrane system in an apparently abnormal endoplasmic reticulum and is not exported into papillae at powdery mildew penetration sites. This targeting defect compromises defenses at the host-pathogen interface, resulting in increased penetration success by a nonadapted powdery mildew. Genetic mapping identified alp4 as an allele of GOLGI DEFECTS 36 (GOLD36), a gene encoding a GDSL-lipase/esterase family protein that is involved in maintaining normal morphology and organization of multiple endomembrane compartments. Genetic complementation confirmed that mutation in GOLD36 is responsible for the PEN3 targeting and powdery mildew penetration resistance defects in alp4. These results reinforce the importance of endomembrane trafficking in resistance to haustorium-forming phytopathogens such as powdery mildew fungi.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplásmico , Enfermedades de las Plantas/microbiología
13.
New Phytol ; 233(6): 2548-2560, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34953172

RESUMEN

The phenotypic plasticity of flowering plants in response to herbivore damage to vegetative tissues can affect plant interactions with flower-feeding organisms. Such induced systemic responses are probably regulated by defence-related phytohormones that signal flowers to alter secondary chemistry that affects resistance to florivores. Current knowledge on the effects of damage to vegetative tissues on plant interactions with florivores and the underlying mechanisms is limited. We compared the preference and performance of two florivores on flowering Brassica nigra plants damaged by one of three herbivores feeding from roots or leaves. To investigate the underlying mechanisms, we quantified expression patterns of marker genes for defence-related phytohormonal pathways, and concentrations of phytohormones and glucosinolates in buds and flowers. Florivores displayed contrasting preferences for plants damaged by herbivores feeding on roots and leaves. Chewing florivores performed better on plants damaged by folivores, but worse on plants damaged by the root herbivore. Chewing root and foliar herbivory led to specific induced changes in the phytohormone profile of buds and flowers. This resulted in increased glucosinolate concentrations for leaf-damaged plants, and decreased glucosinolate concentrations for root-damaged plants. The outcome of herbivore-herbivore interactions spanning from vegetative tissues to floral tissues is unique for the inducing root/leaf herbivore and receiving florivore combination.


Asunto(s)
Flores , Herbivoria , Flores/fisiología , Planta de la Mostaza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo
14.
Mol Plant Microbe Interact ; 35(7): 554-566, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34726476

RESUMEN

In plants, a first layer of inducible immunity is conferred by pattern recognition receptors (PRRs) that bind microbe- and damage-associated molecular patterns to activate pattern-triggered immunity (PTI). PTI is strengthened or followed by another potent form of immunity when intracellular receptors recognize pathogen effectors, termed effector-triggered immunity. Immunity signaling regulators have been reported to influence abiotic stress responses as well, yet the governing principles and mechanisms remain ambiguous. Here, we report that PRRs of a leucine-rich repeat ectodomain also confer salt tolerance in Arabidopsis thaliana, following recognition of cognate ligands such as bacterial flagellin (flg22 epitope) and elongation factor Tu (elf18 epitope), and the endogenous Pep peptides. Pattern-triggered salt tolerance (PTST) requires authentic PTI signaling components; namely, the PRR-associated kinases BAK1 and BIK1 and the NADPH oxidase RBOHD. Exposure to salt stress induces the release of Pep precursors, pointing to the involvement of the endogenous immunogenic peptides in developing plant tolerance to high salinity. Transcriptome profiling reveals an inventory of PTST target genes, which increase or acquire salt responsiveness following a preexposure to immunogenic patterns. In good accordance, plants challenged with nonpathogenic bacteria also acquired salt tolerance in a manner dependent on PRRs. Our findings provide insight into signaling plasticity underlying biotic or abiotic stress cross-tolerance in plants conferred by PRRs.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Epítopos , Leucina , Péptidos , Inmunidad de la Planta/fisiología , Plantas , Proteínas Serina-Treonina Quinasas , Receptores de Reconocimiento de Patrones/genética , Tolerancia a la Sal/genética
15.
Mol Plant Microbe Interact ; 35(3): 257-273, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34931906

RESUMEN

The lipopolysaccharides (LPS) of gram-negative bacteria trigger a nitrosative and oxidative burst in both animals and plants during pathogen invasion. Liberibacter crescens strain BT-1 is a surrogate for functional genomic studies of the uncultured pathogenic 'Candidatus Liberibacter' spp. that are associated with severe diseases such as citrus greening and potato zebra chip. Structural determination of L. crescens LPS revealed the presence of a very long chain fatty acid modification. L. crescens LPS pretreatment suppressed growth of Xanthomonas perforans on nonhost tobacco (Nicotiana benthamiana) and X. citri subsp. citri on host orange (Citrus sinensis), confirming bioactivity of L. crescens LPS in activation of systemic acquired resistance (SAR). L. crescens LPS elicited a rapid burst of nitric oxide (NO) in suspension cultured tobacco cells. Pharmacological inhibitor assays confirmed that arginine-utilizing NO synthase (NOS) activity was the primary source of NO generation elicited by L. crescens LPS. LPS treatment also resulted in biological markers of NO-mediated SAR activation, including an increase in the glutathione pool, callose deposition, and activation of the salicylic acid and azelaic acid (AzA) signaling networks. Transient expression of 'Ca. L. asiaticus' bacterioferritin comigratory protein (BCP) peroxiredoxin in tobacco compromised AzA signaling, a prerequisite for LPS-triggered SAR. Western blot analyses revealed that 'Ca. L. asiaticus' BCP peroxiredoxin prevented peroxynitrite-mediated tyrosine nitration in tobacco. 'Ca. L. asiaticus' BCP peroxiredoxin (i) attenuates NO-mediated SAR signaling and (ii) scavenges peroxynitrite radicals, which would facilitate repetitive cycles of 'Ca. L. asiaticus' acquisition and transmission by fecund psyllids throughout the limited flush period in citrus.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Citrus , Rhizobiaceae , Proteínas Bacterianas , Citrus/microbiología , Grupo Citocromo b , Ferritinas , Liberibacter , Lipopolisacáridos/metabolismo , Estrés Nitrosativo , Peroxirredoxinas/metabolismo , Enfermedades de las Plantas/microbiología , Rhizobiaceae/metabolismo
16.
Mol Plant Microbe Interact ; 35(2): 98-108, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34664986

RESUMEN

Being sessile, plants are continuously challenged by changes in their surrounding environment and must survive and defend themselves against a multitude of pathogens. Plants have evolved a mode for pathogen recognition that activates signaling cascades such as reactive oxygen species, mitogen-activated protein kinase, and Ca2+ pathways, in coordination with hormone signaling, to execute the defense response at the local and systemic levels. Phytopathogens have evolved to manipulate cellular and hormonal signaling and exploit hosts' cell-to-cell connections in many ways at multiple levels. Overall, triumph over pathogens depends on how efficiently the pathogens are recognized and how rapidly the plant response is initiated through efficient intercellular communication via apoplastic and symplastic routes. Here, we review how intercellular communication in plants is mediated, manipulated, and maneuvered during plant-pathogen interaction.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.


Asunto(s)
Comunicación Celular , Plantas
17.
Plants (Basel) ; 10(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34834668

RESUMEN

Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are toxic components of atmospheric particles. These pollutants induce a wide variety of responses in plants, leading to tolerance or toxicity. Their effects on plants depend on many different environmental conditions, not only the type and concentration of contaminant, temperature or soil pH, but also on the physiological or genetic status of the plant. The main detoxification process in plants is the accumulation of the contaminant in vacuoles or cell walls. PAHs are normally transformed by enzymatic plant machinery prior to conjugation and immobilization; heavy metals are frequently chelated by some molecules, with glutathione, phytochelatins and metallothioneins being the main players in heavy metal detoxification. Besides these detoxification mechanisms, the presence of contaminants leads to the production of the reactive oxygen species (ROS) and the dynamic of ROS production and detoxification renders different outcomes in different scenarios, from cellular death to the induction of stress resistances. ROS responses have been extensively studied; the complexity of the ROS response and the subsequent cascade of effects on phytohormones and metabolic changes, which depend on local concentrations in different organelles and on the lifetime of each ROS species, allow the plant to modulate its responses to different environmental clues. Basic knowledge of plant responses toward pollutants is key to improving phytoremediation technologies.

18.
Mol Plant Microbe Interact ; 34(12): 1358-1364, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34615361

RESUMEN

E3 ubiquitin ligase salt- and drought-induced ring finger 1 (SDIR1) plays a novel role in modulating plant immunity against pathogens. The molecular interactors of SDIR1 during pathogen infection are not known. SDIR1-interacting jasmonate zinc-finger inflorescence meristem domain (JAZ) proteins were identified through a yeast two-hybrid (Y2H) screen. Full-length JAZ9 interacts with SDIR1 only in the presence of coronatine (a bacteria-secreted toxin) or jasmonic acid (JA) in a Y2H assay. The bimolecular fluorescence complementation and pull-down assays confirm the in planta interaction of these proteins. JAZ9 proteins, negative regulators of JA-mediated plant defense, were degraded during the pathogen infection by SDIR1 through a proteasomal pathway causing disease susceptibility against hemibiotrophic pathogens.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2021.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Represoras , Ubiquitina-Proteína Ligasas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Sequías , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Cloruro de Sodio
19.
Mol Plant Microbe Interact ; 34(12): 1346-1349, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34505817

RESUMEN

The first of three International Society for Molecular Plant-Microbe Interactions (IS-MPMI) eSymposia was convened on 12 and 13 July 2021, with the theme "Molecular Mechanism & Structure-Zooming in on Plant Immunity". Hosted by Jian-Min Zhou (Beijing, China) and Jane Parker (Cologne, Germany), the eSymposium centered on "Top 10 Unanswered Questions in MPMI" number five: Does effector-triggered immunity (ETI) potentiate and restore pattern-triggered immunity (PTI)-or is there really a binary distinction between ETI and PTI? Since the previous International Congress of IS-MPMI in 2019, substantial progress has been made in untangling the complex signaling underlying plant immunity, including a greater understanding of the structure and function of key proteins. A clear need emerged for the MPMI community to come together virtually to share new knowledge around plant immunity. Over the course of two synchronous, half days of programming, participants from 32 countries attended two plenary sessions with engaging panel discussions and networked through interactive hours and poster breakout rooms. In this report, we summarize the concerted effort by multiple laboratories to study the molecular mechanisms underlying ETI and PTI, highlighting the essential role of plant resistosomes in the formation of calcium channels during an immune response. We conclude our report by forming new questions about how overlapping signaling mechanisms are controlled.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Inmunidad de la Planta , Plantas , China , Enfermedades de las Plantas , Transducción de Señal
20.
Mol Plant Microbe Interact ; 34(12): 1423-1432, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34515495

RESUMEN

Alternative splicing of pre-mRNAs is an important gene regulatory mechanism shaping the transcriptome. AtMC1 is an Arabidopsis thaliana type I metacaspase that positively regulates the hypersensitive response. Here, we found that AtMC1 is involved in the regulation of plant immunity to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and is physically associated with Sm-like4 (LSM4), which is involved in pre-mRNA splicing. AtMC1 and LSM4 protein levels both increased with their coexpression as compared with their separate expression in vivo. Like AtMC1, LSM4 negatively regulates plant immunity to P. syringae pv. tomato DC3000 infection. By RNA sequencing, AtMC1 was shown to modulate the splicing of many pre-mRNAs, including 4CL3, which is a negative regulator of plant immunity. Thus, AtMC1 plays a regulatory role in pre-mRNA splicing, which might contribute to AtMC1-mediated plant immunity.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Inmunidad de la Planta , Pseudomonas syringae/metabolismo , Precursores del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA