Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
J Appl Microbiol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39366754

RESUMEN

AIMS: To explore the therapeutic potential of Forsythoside B in treating Streptococcus pneumoniae (S. pneumoniae) infections, focusing on its ability to inhibit pneumolysin activity and protect cells from damage. METHODS AND RESULTS: Hemolysis tests were used to evaluate Forsythoside B's inhibitory effect on pneumolysin activity, while growth curve analysis assessed its impact on S. pneumoniae growth. Western blotting and oligomerization analysis were conducted to examine its influence on pneumolysin oligomerization. Cytotoxicity assays, including LDH release and live/dead cell staining, evaluated the protective effects of Forsythoside B against pneumolysin-induced damage in A549 cells. Additionally, a mouse model was employed to test the effects on survival rates, lung bacterial load, and inflammation. The results showed that Forsythoside B significantly inhibited pneumolysin activity, reduced its oligomerization, and protected A549 cells from damage without affecting bacterial growth. In the mouse model, it improved survival rates and reduced lung inflammation, indicating its potential as a therapeutic agent against S. pneumoniae infections. CONCLUSIONS: Forsythoside B shows potential as a therapeutic agent for treating pneumonia, particularly in infections caused by S. pneumoniae.

2.
Heliyon ; 10(19): e38611, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39397991

RESUMEN

Objective: In this study, to provide new methods for the treatment of Streptococcus pneumoniae infection, we aimed to describe the anti-inflammatory and antibacterial value of glycyrrhetinic acid on the basis of its inhibitory effect on bacterial growth (without killing the bacteria) and its reduction of the toxicity of S. pneumoniae. Methods: A mouse model was established via intranasal administration of Streptococcus pneumoniae D39, and glycyrrhetinic acid was subcutaneously injected for treatment. The wet‒dry ratio, bacterial flora content and inflammatory factor levels in the mouse lungs were determined. Cell experiments were used to evaluate glycyrrhetinic acid-mediated inhibition of PLY hemolysis and A549 cell death, and WB was used to measure glycyrrhetinic acid-mediated inhibition of PLY oligomerization. Results: Glycyrrhetinic acid reduced the levels of inflammatory factors, the dry‒wet ratio, the abundance of S. pneumoniae in the lungs of infected mice, pneumolysin-mediated A549 cell death, erythrocyte hemolysis and PLY oligoplasia. Conclusion: Glycyrrhetinic acid can reduce the virulence of S. pneumoniae by preventing the oligomerization of PLY.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39285123

RESUMEN

The bacterium Streptococcus pneumoniae has become a leading cause of meningitis, sepsis, and bacterial pneumonia worldwide, with increased prevalence of antibiotic-resistant serotypes serving to exacerbate the issue. The main factor responsible for colonization and immune response escape in pneumococcal infections is the secreted molecule pneumolysin, which is a subset within a family of related toxins that form transmembrane pores in biological membranes through cholesterol recognition and binding. The conserved activity and structure of pneumolysin between all observed S. pneumoniae serotypes, along with its requirement for pathogenicity, has made this molecule an attractive target for vaccination, diagnostic, and sequestration platforms, but not yet as a facilitative agent for therapeutic treatment. Consequently, the present work aimed to examine the impact of liposomal cholesterol content for pneumolysin-induced release of the encapsulated antimicrobial peptide nisin. It was determined that a cholesterol content above 45 mol% was necessary to facilitate interactions with both purified pneumolysin toxin and S. pneumoniae culture, demonstrated through enhanced nisin release and a reduction in hemolytic rates upon exposure of the toxin with cholesterol-rich vesicles. Antibacterial testing highlighted the ability of the developed platform to elicit a potent and specific bactericidal response in vitro against cultured S. pneumoniae when compared to a control strain, Staphylococcus epidermidis. It further improved viability of a fibroblast cell line upon S. pneumoniae challenge, outperforming free nisin via the synergistic impact of simultaneous bacterial clearance and pneumolysin neutralization. These findings collectively indicate that cholesterol-rich liposomes hold promise as a selective treatment platform against pneumococcal infections.

4.
mSphere ; : e0065524, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39345124

RESUMEN

Streptococcus pneumoniae is one of the major pathogens responsible for bacterial meningitis and neurological sequelae. The present study was conducted to identify a non-hematogenous route used by S. pneumoniae to gain access to brain tissue without causing bacteremia or pneumonia, as well as bacterial and host factors involved in this process. To investigate the molecular mechanisms and dissemination pathways of pneumococcal infection in brain tissue, mice were intranasally inoculated with S. pneumoniae strain EF3030, a clinical isolate from a patient with otitis media. Pneumococci were isolated from the frontal olfactory bulb, caudal cerebrum, and cerebellum, with neither bacteremia nor pneumonia observed in the present model. Immunostaining imaging revealed the presence of S. pneumoniae organisms in olfactory nerve fibers. Knockout of the ply gene encoding pneumolysin (PLY) markedly compromised the ability of the bacterial organisms to disseminate into brain tissue, whereas the dissemination efficiency of the complemented strain was restored to nearly the same level as the wild type. Notably, distinct upregulation of Gli1 and Snail1, which are involved in the transcriptional repression of junctional proteins, along with downregulation of E-cadherin, was detected in nasal lavage samples from mice infected with the wild-type or complemented strain, but not in those from mice infected with the ply mutant. Taken together, the present findings indicate that PLY induces Gli1-Snail1-dependent dysfunction of the nasal epithelial barrier, thus allowing pneumococcal dissemination to brain tissue that occurs in a non-hematogenous manner.IMPORTANCEBacterial meningitis, considered to be caused by bacteremia, can lead to blood-brain barrier disruption and bacterial dissemination into the central nervous system. Despite the availability of intravenously administered antibiotics with cerebrospinal fluid transferability, bacterial meningitis remains associated with high rates of morbidity and mortality. Here, we utilized Streptococcus pneumoniae strain EF3030, clinically isolated from otitis media, for the construction of a murine infection model to investigate the molecular mechanisms by which nasally colonized pneumococci disseminate into brain tissue. The obtained findings indicate that pneumolysin (PLY) induces Gli1-Snail1-dependent dysfunction of the nasal epithelial barrier, which facilitates pneumococcal dissemination to brain tissue in a non-hematogenous manner. Our results support the existence of an alternative route by which S. pneumoniae can reach the central nervous system and indicate the need for the development of novel therapeutic strategies, which would be an important contribution to the clinical management of bacterial meningitis.

5.
Bull Exp Biol Med ; 177(2): 248-251, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39090461

RESUMEN

We compared the immunogenicity of recombinant S. pneumoniae pneumolysin (rPly) when administered with and without Al(OH)3 adjuvant, and evaluated the protective properties of recombinant protein in the active defense experiment. It was shown that double immunization with rPly+Al(OH)3 increases the levels of IgG antibodies in comparison with the control (p<0.01), while triple immunization results in a more significant increase in IgG antibody levels (p<0.001). Double immunization with rPly without Al(OH)3 does not induce a significant increase in antibody levels in comparison with the control, while triple immunization results in a slight but significant increase in antibody levels (p<0.05). The active defense test proved the protective activity of rPly against S. pneumoniae serotype 3 at intranasal infection.


Asunto(s)
Anticuerpos Antibacterianos , Proteínas Bacterianas , Inmunoglobulina G , Proteínas Recombinantes , Streptococcus pneumoniae , Estreptolisinas , Estreptolisinas/inmunología , Estreptolisinas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Streptococcus pneumoniae/inmunología , Streptococcus pneumoniae/genética , Animales , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Ratones , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/prevención & control , Infecciones Neumocócicas/microbiología , Adyuvantes Inmunológicos , Hidróxido de Aluminio/inmunología , Hidróxido de Aluminio/administración & dosificación , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/administración & dosificación , Femenino
6.
Vaccines (Basel) ; 12(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39203953

RESUMEN

Background: Protein-based pneumococcal vaccines (PBPVs) may offer expanded protection against Streptococcus pneumoniae and tackle the antimicrobial resistance crisis in pneumococcal infections. This study examined the safety and immunogenicity in healthy adults vaccinated with three doses of a protein-based pneumococcal vaccine containing pneumococcal surface protein A (PspA) (PRX1, P3296 and P5668) and in combination with a recombinant detoxified pneumolysin protein (PlyLD). Methods: This phase Ia randomized, double blind, placebo-controlled clinical study enrolled healthy adults aged 18-49 years. The participants were randomized into experimental (low-dose, medium-dose, high-dose) and placebo groups in a ratio of 3:1. Three doses of investigational vaccine were given to the participants with an interval of two months. Safety endpoints included the occurrence of total adverse reactions, solicited local and systemic adverse reactions, unsolicited adverse reactions, serious adverse events (SAEs), and several laboratory parameters. Immunogenicity endpoints included geometric mean titers (GMT) of anti-PspA (PRX1, P3296 and P5668) and anti-PlyLD antibodies level as determined by ELISA, seropositivity rates of PspA and PlyLD antibodies (>4-fold increase) and neutralization activity of anti-Ply antibody in serum. Results: A total of 118 participants completed the study of three doses. The candidate PBPV was safe and well-tolerated in all experimental groups. No vaccine-related SAEs were observed in this study. Most solicited adverse reactions were mild and transient. The most frequently reported solicited adverse reactions in the medium- and high-dose groups was pain at the injection site, while in the low-dose group it was elevated blood pressure. The immunogenicity data showed a sharp increase in the GMT level of anti-PspA-RX1, anti-PspA-3296, anti-PspA-5668, and anti-PlyLD antibodies in serum. The results also showed that the elicited antibodies were dosage-dependent. The high-dose group showed a higher immune response against PspA-RX1, PspA-3296, PspA-5668, and PlyLD antigens. However, repeat vaccination did not increase the level of anti-PspA antibodies but the level of anti-PlyLD antibody. High seropositivity rates were also observed for anti-PspA-RX1, anti-PspA-3296, anti-PspA-5668, and anti-PlyLD antibodies. In addition, a significant difference in the GMT levels of anti-Ply antibody between the high-, medium-, and low-dose groups post each vaccination were indicated by neutralization activity tests. Conclusions: The PBPV showed a safe and immunogenic profile in this clinical trial. Taking into consideration both safety and immunogenicity data, we propose a single dose of 50 µg (medium dose) of PBPV as the optimum approach in providing expanded protection against Streptococcus pneumoniae.

7.
Bull Exp Biol Med ; 177(1): 137-139, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38960960

RESUMEN

We studied toxicity of recombinant Streptococcus pneumoniae pneumolysin protein in experiments on mice and its cytopathogenic effect on cultures of Vero green monkey kidney cells and human lung carcinoma A549 cells in vitro. In vivo and in vitro experiments proved the absence of compromised toxicity and direct cytopathogenic action of the recombinant protein.


Asunto(s)
Proteínas Bacterianas , Proteínas Recombinantes , Streptococcus pneumoniae , Estreptolisinas , Estreptolisinas/toxicidad , Estreptolisinas/genética , Animales , Proteínas Bacterianas/toxicidad , Proteínas Bacterianas/genética , Chlorocebus aethiops , Ratones , Células Vero , Streptococcus pneumoniae/efectos de los fármacos , Humanos , Proteínas Recombinantes/toxicidad , Proteínas Recombinantes/genética , Células A549
8.
Toxins (Basel) ; 16(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38922127

RESUMEN

A major Streptococcus pneumoniae pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, binding membrane cholesterol and producing permanent lytic or transient pores. During brain infections, vascular damage with variable ischemia occurs. The role of ischemia on pneumolysin's pore-forming capacity remains unknown. In acute brain slice cultures and primary cultured glia, we studied acute toxin lysis (via propidium iodide staining and LDH release) and transient pore formation (by analyzing increases in the intracellular calcium). We analyzed normal peripheral tissue glucose conditions (80 mg%), normal brain glucose levels (20 mg%), and brain hypoglycemic conditions (3 mg%), in combinations either with normoxia (8% oxygen) or hypoxia (2% oxygen). At 80 mg% glucose, hypoxia enhanced cytolysis via pneumolysin. At 20 mg% glucose, hypoxia did not affect cell lysis, but impaired calcium restoration after non-lytic pore formation. Only at 3 mg% glucose, during normoxia, did pneumolysin produce stronger lysis. In hypoglycemic (3 mg% glucose) conditions, pneumolysin caused a milder calcium increase, but restoration was missing. Microglia bound more pneumolysin than astrocytes and demonstrated generally stronger calcium elevation. Thus, our work demonstrated that the toxin pore-forming capacity in cells continuously diminishes when oxygen is reduced, overlapping with a continuously reduced ability of cells to maintain homeostasis of the calcium influx once oxygen and glucose are reduced.


Asunto(s)
Proteínas Bacterianas , Colesterol , Glucosa , Oxígeno , Streptococcus pneumoniae , Estreptolisinas , Estreptolisinas/toxicidad , Estreptolisinas/metabolismo , Glucosa/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/toxicidad , Oxígeno/metabolismo , Colesterol/metabolismo , Streptococcus pneumoniae/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Calcio/metabolismo , Células Cultivadas , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo
9.
Cell Rep ; 43(3): 113962, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483905

RESUMEN

Pneumolysin (Ply) is an indispensable cholesterol-dependent cytolysin for pneumococcal infection. Although Ply-induced disruption of pneumococci-containing endosomal vesicles is a prerequisite for the evasion of endolysosomal bacterial clearance, its potent activity can be a double-edged sword, having a detrimental effect on bacterial survivability by inducing severe endosomal disruption, bactericidal autophagy, and scaffold epithelial cell death. Thus, Ply activity must be maintained at optimal levels. We develop a highly sensitive assay to monitor endosomal disruption using NanoBiT-Nanobody, which shows that the pneumococcal sialidase NanA can fine-tune Ply activity by trimming sialic acid from cell-membrane-bound glycans. In addition, oseltamivir, an influenza A virus sialidase inhibitor, promotes Ply-induced endosomal disruption and cytotoxicity by inhibiting NanA activity in vitro and greater tissue damage and bacterial clearance in vivo. Our findings provide a foundation for innovative therapeutic strategies for severe pneumococcal infections by exploiting the duality of Ply activity.


Asunto(s)
Neuraminidasa , Infecciones Neumocócicas , Humanos , Neuraminidasa/metabolismo , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Proteínas Bacterianas/metabolismo
10.
J Cell Sci ; 137(4)2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38411297

RESUMEN

Following invasion of the host cell, pore-forming toxins secreted by pathogens compromise vacuole integrity and expose the microbe to diverse intracellular defence mechanisms. However, the quantitative correlation between toxin expression levels and consequent pore dynamics, fostering the intracellular life of pathogens, remains largely unexplored. In this study, using Streptococcus pneumoniae and its secreted pore-forming toxin pneumolysin (Ply) as a model system, we explored various facets of host-pathogen interactions in the host cytosol. Using time-lapse fluorescence imaging, we monitored pore formation dynamics and lifespans of different pneumococcal subpopulations inside host cells. Based on experimental histograms of various event timescales such as pore formation time, vacuolar death or cytosolic escape time and total degradation time, we developed a mathematical model based on first-passage processes that could correlate the event timescales to intravacuolar toxin accumulation. This allowed us to estimate Ply production rate, burst size and threshold Ply quantities that trigger these outcomes. Collectively, we present a general method that illustrates a correlation between toxin expression levels and pore dynamics, dictating intracellular lifespans of pathogens.


Asunto(s)
Longevidad , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Citosol/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Interacciones Huésped-Patógeno
11.
Toxins (Basel) ; 15(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37888624

RESUMEN

Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. The pore-forming cholesterol-dependent cytolysin (CDC) pneumolysin (PLY) and the physiological metabolite hydrogen peroxide (H2O2) can greatly increase the virulence of pneumococci. Although most studies have focused on the contribution of both virulence factors to the course of pneumococcal infection, it is unknown whether or how H2O2 can affect PLY activity. Of note, S. pneumoniae exploits endogenous H2O2 as an intracellular signalling molecule to modulate the activity of several proteins. Here, we demonstrate that H2O2 negatively affects the haemolytic activity of PLY in a concentration-dependent manner. Prevention of cysteine-dependent sulfenylation upon substitution of the unique and highly conserved cysteine residue to serine in PLY significantly reduces the toxin's susceptibility to H2O2 treatment and completely abolishes the ability of DTT to activate PLY. We also detect a clear gradual correlation between endogenous H2O2 generation and PLY release, with decreased H2O2 production causing a decline in the release of PLY. Comparative transcriptome sequencing analysis of the wild-type S. pneumoniae strain and three mutants impaired in H2O2 production indicates enhanced expression of several genes involved in peptidoglycan (PG) synthesis and in the production of choline-binding proteins (CPBs). One explanation for the impact of H2O2 on PLY release is the observed upregulation of the PG bridge formation alanyltransferases MurM and MurN, which evidentially negatively affect the PLY release. Our findings shed light on the significance of endogenous pneumococcal H2O2 in controlling PLY activity and release.


Asunto(s)
Peróxido de Hidrógeno , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Peróxido de Hidrógeno/metabolismo , Cisteína/metabolismo , Estreptolisinas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
12.
Microb Pathog ; 185: 106382, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839759

RESUMEN

The increasing incidence of Streptococcus pneumoniae (S. pneumoniae) infection severely threatened the global public heath, causing a significant fatality in immunocompromised hosts. Notably, pneumolysin (PLY) as a pore-forming cytolysin plays a crucial role in the pathogenesis of pneumococcal pneumonia and lung injury. In this study, a natural flavonoid isorhamnetin was identified as a PLY inhibition to suppress PLY-induced hemolysis by engaging the predicted residues and attenuate cytolysin PLY-mediated A549 cells injury. Underlying mechanisms revealed that PLY inhibitor isorhamnetin further contributed to decrease the formation of bacterial biofilms without affecting the expression of PLY. In vivo S. pneumoniae infection confirmed that the pathological injury of lung tissue evoked by S. pneumoniae was ameliorated by isorhamnetin treatment. Collectively, these results presented that isorhamnetin could inhibit the biological activity of PLY, thus reducing the pathogenicity of S. pneumoniae. In summary, our study laid a foundation for the feasible anti-virulence strategy targeting PLY, and provided a promising PLY inhibitor for the treatment of S. pneumoniae infection.


Asunto(s)
Infecciones Neumocócicas , Humanos , Infecciones Neumocócicas/tratamiento farmacológico , Streptococcus pneumoniae/metabolismo , Estreptolisinas , Proteínas Bacterianas/metabolismo , Citotoxinas/metabolismo
13.
Front Immunol ; 14: 1278346, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818378

RESUMEN

Pneumococcal infections continue to pose a significant global health concern, necessitating the development of effective vaccines. Despite the progress shown by pneumococcal polysaccharide and conjugate vaccines, their limited coverage and the emergence of non-vaccine serotypes have highlighted the need for alternative approaches. Protein-based pneumococcal vaccines, targeting conserved surface proteins of Streptococcus pneumoniae, have emerged as a promising strategy. In this review, we provide an overview of the advancements made in the development of pneumococcal protein vaccines. We discuss the key protein vaccine candidates, highlight their vaccination results in animal studies, and explore the challenges and future directions in protein-based pneumococcal vaccine.


Asunto(s)
Infecciones Neumocócicas , Vacunas Neumococicas , Animales , Infecciones Neumocócicas/prevención & control , Streptococcus pneumoniae , Proteínas Bacterianas , Vacunas Conjugadas
14.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37446214

RESUMEN

Despite innovative advances in anti-infective therapies and vaccine development technologies, community-acquired pneumonia (CAP) remains the most persistent cause of infection-related mortality globally. Confronting the ongoing threat posed by Streptococcus pneumoniae (the pneumococcus), the most common bacterial cause of CAP, particularly to the non-immune elderly, remains challenging due to the propensity of the elderly to develop invasive pneumococcal disease (IPD), together with the predilection of the pathogen for the heart. The resultant development of often fatal cardiovascular events (CVEs), particularly during the first seven days of acute infection, is now recognized as a relatively common complication of IPD. The current review represents an update on the prevalence and types of CVEs associated with acute bacterial CAP, particularly IPD. In addition, it is focused on recent insights into the involvement of the pneumococcal pore-forming toxin, pneumolysin (Ply), in subverting host immune defenses, particularly the protective functions of the alveolar macrophage during early-stage disease. This, in turn, enables extra-pulmonary dissemination of the pathogen, leading to cardiac invasion, cardiotoxicity and myocardial dysfunction. The review concludes with an overview of the current status of macrolide antibiotics in the treatment of bacterial CAP in general, as well as severe pneumococcal CAP, including a consideration of the mechanisms by which these agents inhibit the production of Ply by macrolide-resistant strains of the pathogen.


Asunto(s)
Enfermedades Cardiovasculares , Infecciones Comunitarias Adquiridas , Infecciones Neumocócicas , Neumonía Neumocócica , Adulto , Humanos , Anciano , Neumonía Neumocócica/tratamiento farmacológico , Neumonía Neumocócica/epidemiología , Neumonía Neumocócica/complicaciones , Prevalencia , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones Neumocócicas/epidemiología , Streptococcus pneumoniae , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Macrólidos/uso terapéutico , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Infecciones Comunitarias Adquiridas/epidemiología , Infecciones Comunitarias Adquiridas/complicaciones , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología
15.
Histochem Cell Biol ; 160(2): 83-96, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37386200

RESUMEN

Recent investigations analyzed in depth the biochemical and biophysical properties of the endothelial glycocalyx. In comparison, this complex cell-covering structure is largely understudied in alveolar epithelial cells. To better characterize the alveolar glycocalyx ultrastructure, unaffected versus injured human lung tissue explants and mouse lungs were analyzed by transmission electron microscopy. Lung tissue was treated with either heparinase (HEP), known to shed glycocalyx components, or pneumolysin (PLY), the exotoxin of Streptococcus pneumoniae not investigated for structural glycocalyx effects so far. Cationic colloidal thorium dioxide (cThO2) particles were used for glycocalyx glycosaminoglycan visualization. The level of cThO2 particles orthogonal to apical cell membranes (≙ stained glycosaminoglycan height) of alveolar epithelial type I (AEI) and type II (AEII) cells was stereologically measured. In addition, cThO2 particle density was studied by dual-axis electron tomography (≙ stained glycosaminoglycan density in three dimensions). For untreated samples, the average cThO2 particle level was ≈ 18 nm for human AEI, ≈ 17 nm for mouse AEI, ≈ 44 nm for human AEII and ≈ 35 nm for mouse AEII. Both treatments, HEP and PLY, resulted in a significant reduction of cThO2 particle levels on human and mouse AEI and AEII. Moreover, a HEP- and PLY-associated reduction in cThO2 particle density was observed. The present study provides quantitative data on the differential glycocalyx distribution on AEI and AEII based on cThO2 and demonstrates alveolar glycocalyx shedding in response to HEP or PLY resulting in a structural reduction in both glycosaminoglycan height and density. Future studies should elucidate the underlying alveolar epithelial cell type-specific distribution of glycocalyx subcomponents for better functional understanding.


Asunto(s)
Glicocálix , Dióxido de Torio , Ratones , Humanos , Animales , Liasa de Heparina , Electrones , Glicosaminoglicanos
16.
Bull Exp Biol Med ; 174(6): 749-753, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37160796

RESUMEN

A recombinant form of pneumolysin from Streptococcus pneumoniae was obtained. By using Vector NTI Advance 11.0 bioinformatic analysis software, specific primers were designed in order to amplify the genome fragment of strain No. 3358 S. pneumoniae serotype 19F containing the nucleotide sequence encoding the full-length pneumolysin protein. A PCR product with a molecular weight corresponding to the nucleotide sequence of the S. pneumoniae genome fragment encoding the full-length pneumolysin was obtained. An expression system for recombinant pneumolysin in E. coli was constructed. Sequencing confirmed the identity of the inserted nucleotide sequence encoding the full-length recombinant pneumolysin synthesized in E. coli M15 strain. Purification of the recombinant protein was performed by affinity chromatography using Ni-Sepharose in 8 M urea buffer solution. Confirmation of the recombinant protein was performed by immunoblotting with monoclonal antibodies to pneumolysin.


Asunto(s)
Escherichia coli , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Estreptolisinas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Pneumonia (Nathan) ; 15(1): 5, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36870980

RESUMEN

Streptococcus pneumoniae (Spn) is a major public health problem, as it is a main cause of otitis media, community-acquired pneumonia, bacteremia, sepsis, and meningitis. Acute episodes of pneumococcal disease have been demonstrated to cause organ damage with lingering negative consequences. Cytotoxic products released by the bacterium, biomechanical and physiological stress resulting from infection, and the corresponding inflammatory response together contribute to organ damage accrued during infection. The collective result of this damage can be acutely life-threatening, but among survivors, it also contributes to the long-lasting sequelae of pneumococcal disease. These include the development of new morbidities or exacerbation of pre-existing conditions such as COPD, heart disease, and neurological impairments. Currently, pneumonia is ranked as the 9th leading cause of death, but this estimate only considers short-term mortality and likely underestimates the true long-term impact of disease. Herein, we review the data that indicates damage incurred during acute pneumococcal infection can result in long-term sequelae which reduces quality of life and life expectancy among pneumococcal disease survivors.

18.
J Cell Mol Med ; 27(4): 563-575, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36747468

RESUMEN

Streptococcus pneumoniae (S. pneumoniae) is a major causative agent of respiratory disease in patients and can cause respiratory distress and other symptoms in severe cases. Pneumolysin (PLY) is a pore-forming toxin that induces host tissue injury and inflammatory responses. Sortase A (SrtA), a catalytic enzyme that anchors surface-associated virulence factors, is critical for S. pneumoniae virulence. Here, we found that the active ingredient of the Chinese herb Scutellaria baicalensis, wogonin, simultaneously inhibited the haemolytic activity of PLY and SrtA activity. Consequently, wogonin decreased PLY-mediated cell damage and reduced SrtA-mediated biofilm formation by S. pneumoniae. Furthermore, our data indicated that wogonin did not affect PLY expression but directly altered its oligomerization, leading to reduced activity. Furthermore, the analysis of a mouse pneumonia model further revealed that wogonin reduced mortality in mice infected with S. pneumoniae laboratory strain D39 and S. pneumoniae clinical isolate E1, reduced the number of colony-forming units in infected mice and decreased the W/D ratio and levels of the inflammatory factors TNF-α, IL-6 and IL-1ß in the lungs of infected mice. Thus, wogonin reduces S. pneumoniae pathogenicity by inhibiting the dual targets PLY and SrtA, providing a treatment option for S. pneumoniae infection.


Asunto(s)
Proteínas Bacterianas , Streptococcus pneumoniae , Animales , Ratones , Virulencia , Proteínas Bacterianas/metabolismo
19.
BMC Bioinformatics ; 24(1): 67, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829109

RESUMEN

BACKGROUND: Streptococcus pneumoniae (Pneumococcus) has remained a leading cause of fatal infections such as pneumonia, meningitis, and sepsis. Moreover, this pathogen plays a major role in bacterial co-infection in patients with life-threatening respiratory virus diseases such as influenza and COVID-19. High morbidity and mortality in over one million cases, especially in very young children and the elderly, are the main motivations for pneumococcal vaccine development. Due to the limitations of the currently marketed polysaccharide-based vaccines, non-serotype-specific protein-based vaccines have received wide research interest in recent years. One step further is to identify high antigenic regions within multiple highly-conserved proteins in order to develop peptide vaccines that can affect various stages of pneumococcal infection, providing broader serotype coverage and more effective protection. In this study, immunoinformatics tools were used to design an effective multi-epitope vaccine in order to elicit neutralizing antibodies against multiple strains of pneumococcus. RESULTS: The B- and T-cell epitopes from highly protective antigens PspA (clades 1-5) and PhtD were predicted and immunodominant peptides were linked to each other with proper linkers. The domain 4 of Ply, as a potential TLR4 agonist adjuvant candidate, was attached to the end of the construct to enhance the immunogenicity of the epitope vaccine. The evaluation of the physicochemical and immunological properties showed that the final construct was stable, soluble, antigenic, and non-allergenic. Furthermore, the protein was found to be acidic and hydrophilic in nature. The protein 3D-structure was built and refined, and the Ramachandran plot, ProSA-web, ERRAT, and Verify3D validated the quality of the final model. Molecular docking analysis showed that the designed construct via Ply domain 4 had a strong interaction with TLR4. The structural stability of the docked complex was confirmed by molecular dynamics. Finally, codon optimization was performed for gene expression in E. coli, followed by in silico cloning in the pET28a(+) vector. CONCLUSION: The computational analysis of the construct showed acceptable results, however, the suggested vaccine needs to be experimentally verified in laboratory to ensure its safety and immunogenicity.


Asunto(s)
COVID-19 , Streptococcus pneumoniae , Niño , Humanos , Preescolar , Anciano , Simulación del Acoplamiento Molecular , Escherichia coli , Receptor Toll-Like 4 , Epítopos de Linfocito T/química , Vacunas de Subunidad/química , Vacunas de Subunidad/genética , Epítopos de Linfocito B , Biología Computacional/métodos
20.
Front Bioeng Biotechnol ; 11: 1108300, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777254

RESUMEN

Streptococcus pneumoniae is a bacterial pathogen exclusive to humans, responsible for respiratory and systemic diseases. Pneumococcal protein vaccines have been proposed as serotype-independent alternatives to currently used conjugated polysaccharide vaccines, which have presented limitations regarding their coverage. Previously in our group, pneumococcal surface protein A (PspA) and detoxified pneumolysin (PdT) were genetically fused and the hybrid protein protected mice against pneumococcal challenge, offered higher cross-protection against different strains and showed greater opsonophagocytosis rate than co-administered proteins. As juxtaposed fusion was unstable to upscale production of the protein, flexible (PspA-FL-PdT) and rigid (PspA-RL-PdT) molecular linkers were inserted between the antigens to increase stability. This work aimed to produce recombinant fusion proteins, evaluate their stability after linker insertion, both in silico and experimentally, and enable the production of two antigens in a single process. The two constructs with linkers were cloned into Escherichia coli and hybrid proteins were purified using chromatography; purity was evaluated by SDS-PAGE and stability by Western blot and high performance size exclusion chromatography. PspA-FL-PdT showed higher stability at -20°C and 4°C, without additional preservatives. In silico analyses also showed differences regarding stability of the fusion proteins, with molecule without linker presenting disallowed amino acid positions in Ramachandran plot and PspA-FL-PdT showing the best scores, in agreement with experimental results. Mice were immunized with three doses and different amounts of each protein. Both fusion proteins protected all groups of mice against intranasal lethal challenge. The results show the importance of hybrid protein structure on the stability of the products, which is essential for a successful bioprocess development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA