Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2027): 20240953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39013421

RESUMEN

The selective factors that shape phenotypic diversity in prey communities with aposematic animals are diverse and coincide with similar diversity in the strength of underlying secondary defences. However, quantitative assessments of colour pattern variation and the strength of chemical defences in assemblages of aposematic species are lacking. We quantified colour pattern diversity using quantitative colour pattern analysis (QCPA) in 13 dorid nudibranch species (Infraorder: Doridoidei) that varied in the strength of their chemical defences. We accounted for the physiological properties of a potential predator's visual system (a triggerfish, Rhinecanthus aculeatus) and modelled the appearance of nudibranchs from multiple viewing distances (2 and 10 cm). We identified distinct colour pattern properties associated with the presence and strength of chemical defences. Specifically, increases in chemical defences indicated increases in colour pattern boldness (i.e. visual contrast elicited via either or potentially coinciding chromatic, achromatic and/or spatial contrast). Colour patterns were also less variable among species with chemical defences when compared to undefended species. Our results indicate correlations between secondary defences and diverse, bold colouration while showing that chemical defences coincide with decreased colour pattern variability among species. Our study suggests that complex spatiochromatic properties of colour patterns perceived by potential predators can be used to make inferences on the presence and strength of chemical defences.


Asunto(s)
Color , Gastrópodos , Conducta Predatoria , Animales , Gastrópodos/fisiología , Pigmentación , Mimetismo Biológico
2.
Proc Biol Sci ; 290(2003): 20231160, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37491958

RESUMEN

Aposematic signals visually advertise underlying anti-predatory defences in many species. They should be detectable (e.g. contrasting against the background) and bold (e.g. using internal pattern contrast) to enhance predator recognition, learning and memorization. However, the signalling function of aposematic colour patterns may be distance-dependent: signals may be undetectable from a distance to reduce increased attacks from naïve predators but bold when viewed up close. Using quantitative colour pattern analysis, we quantified the chromatic and achromatic detectability and boldness of colour patterns in 13 nudibranch species with variable strength of chemical defences in terms of unpalatability and toxicity, approximating the visual perception of a triggerfish (Rhinecanthus aculeatus) across a predation sequence (detection to subjugation). When viewed from an ecologically relevant distance of 30 cm, there were no differences in detectability and boldness between well-defended and undefended species. However, when viewed at closer distances (less than 30 cm), well-defended species were more detectable and bolder than undefended species. As distance increased, detectability decreased more significantly than boldness for defended species. For undefended species, boldness and detectability remained comparatively consistent, regardless of viewing distance. We provide evidence for distance-dependent signalling in aposematic nudibranchs and highlight the importance of distinguishing signal detectability from boldness in studies of aposematism.


Asunto(s)
Evolución Biológica , Gastrópodos , Animales , Percepción Visual , Aprendizaje , Conducta Predatoria
3.
J Exp Biol ; 225(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36354306

RESUMEN

Edge detection is important for object detection and recognition. However, we do not know whether edge statistics accurately predict the detection of prey by potential predators. This is crucial given the growing availability of image analysis software and their application across non-human visual systems. Here, we investigated whether Boundary Strength Analysis (BSA), Local Edge Intensity Analysis (LEIA) and the Gabor edge disruption ratio (GabRat) could predict the speed and success with which triggerfish (Rhinecanthus aculeatus) detected patterned circular stimuli against a noisy visual background, in both chromatic and achromatic presentations. We found various statistically significant correlations between edge statistics and detection speed depending on treatment and viewing distance; however, individual pattern statistics only explained up to 2% of the variation in detection time, and up to 6% when considering edge statistics simultaneously. We also found changes in fish response over time. While highlighting the importance of spatial acuity and relevant viewing distances in the study of visual signals, our results demonstrate the importance of considering explained variation when interpreting colour pattern statistics in behavioural experiments. We emphasize the need for statistical approaches suitable for investigating task-specific predictive relationships and ecological effects when considering animal behaviour. This is particularly important given the ever-increasing dimensionality and size of datasets in the field of visual ecology.

4.
Behav Ecol ; 28(3): 890-898, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29622922

RESUMEN

Individual foraging specialization describes the phenomenon where conspecifics within a population of generalists exhibit differences in foraging behavior, each specializing on different prey types. Individual specialization is widespread in animals, yet is understudied in invertebrates, despite potential impacts to food web and population dynamics. Sceliphron caementarium (Hymenoptera: Sphecidae) is an excellent system to examine individual specialization. Females of these mud dauber wasps capture and paralyze spiders which they store in mud nests to provision their offspring. Individuals may make hundreds of prey choices in their short lifespan and fully intact prey items can be easily excavated from their mud nests, where each distinct nest cell represents a discrete foraging bout. Using data collected from a single population of S. caementarium (where all individuals had access to the same resources), we found evidence of strong individual specialization; individuals utilized different resources (with respect to prey taxa, prey ecological guild, and prey size) to provision their nests. The extent of individual specialization differed widely within the population with some females displaying extreme specialization (taking only prey from a single species) while others were generalists (taking prey from up to 6 spider families). We also found evidence of temporal consistency in individual specialization over multiple foraging events. We discuss these findings broadly in the context of search images, responses to changing prey availability, and intraspecific competition pressure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA