Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.560
Filtrar
1.
J Environ Sci (China) ; 150: 188-201, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306395

RESUMEN

To improve the activity of Co/Al2O3 catalysts in selective catalytic oxidation of ammonia (NH3-SCO), valence state and size of active centers of Al2O3-supported Co catalysts were adjusted by conducting H2 reduction pretreatment. The NH3-SCO activity of the adjusted 2Co/Al2O3 catalyst was substantially improved, outperforming other catalysts with higher Co-loading. Fresh Co/Al2O3 catalysts exhibited multitemperature reduction processes, enabling the control of the valence state of the Co-active centers by adjusting the reduction temperature. Changes in the state of the Co-active centers also led to differences in redox capacity of the catalysts, resulting in different reaction mechanisms for NH3-SCO. However, in situ diffuse reflectance infrared Fourier transform spectra revealed that an excessive O2 activation capacity caused overoxidation of NH3 to NO and NO2. The NH3-SCO activity of the 2Co/Al2O3 catalyst with low redox capacity was successfully increased while controlling and optimizing the N2 selectivity by modulating the active centers via H2 pretreatment, which is a universal method used for enhancing the redox properties of catalysts. Thus, this method has great potential for application in the design of inexpensive and highly active catalysts.


Asunto(s)
Óxido de Aluminio , Amoníaco , Cobalto , Oxidación-Reducción , Amoníaco/química , Catálisis , Óxido de Aluminio/química , Cobalto/química , Modelos Químicos , Contaminantes Atmosféricos/química
2.
Food Chem ; 463(Pt 1): 141079, 2025 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-39255707

RESUMEN

Utilizing treated wastewater for crop cultivation is essential in regions with scarce freshwater resources for irrigation. This study evaluated the growth, fruit yield, nutritional and phytochemical quality of tomato fruits cultivated using a treated wastewater-based hydroponics system developed for the Trans Himalaya, India. Tomatoes grown with treated wastewater exhibited better growth, yield, nutritional content, phytochemical properties, and antioxidant activities than those grown in soil. Specifically, the lycopene and ß carotene were significantly (p < 0.05) higher in tomato fruits cultivated in treated wastewater (0.05 ± 0.00 and 0.09 ± 0.00 mg/g) than soil (0.02 ± 0.00 and 0.01 ± 0.00 mg/g). Also, significantly (p < 0.05) higher carbohydrate and protein contents (55.91 ± 1.19 and 21.34 ± 0.31 mg/g, respectively) were obtained under-treated wastewater than soil (39.48 ± 0.07 and 18.52 ± 0.10 mg/g). Similar trends were also obtained in phytochemicals and mineral analysis. However, morphological, proximate, and phytochemical characteristics of tomatoes in nutrient and wastewater-based hydroponics were comparable. Treated wastewater offers eco-friendly benefits for quality crop production.


Asunto(s)
Frutas , Hidroponía , Valor Nutritivo , Solanum lycopersicum , Aguas Residuales , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Aguas Residuales/química , Aguas Residuales/análisis , Frutas/crecimiento & desarrollo , Frutas/química , Frutas/metabolismo , India , Antioxidantes/metabolismo , Antioxidantes/análisis , Antioxidantes/química , Licopeno/análisis , Licopeno/metabolismo , Riego Agrícola , Producción de Cultivos/métodos
3.
J Pharm Biomed Anal ; 252: 116508, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39426275

RESUMEN

Metabolomics intends to maximize the quantity of available metabolites for the global metabolome, which largely depends on sample pretreatment protocols. However, there are few studies that comprehensively examined the effects of extraction and reconstitution solvents on metabolome coverage of adherent mammalian cells. In this study, the human cholangiocarcinoma TFK-1 cells were chosen as a cell model, and eight extraction solvents and five reconstitution solvents were used for the pretreatment based on ultrahigh performance liquid chromatography coupled with mass spectrometry (UPLC/MS). The coverage, reproducibility, and stability of the data were norms to evaluate the effectiveness of different extraction solvents and reconstitution solvents. Based on the number of metabolites, the mean Euclidean distance (EDMEAN) in the principal component analysis (PCA) 3D score plots and the relative standard deviation (RSD) distribution of metabolites, it was demonstrated that MeOH-CHCl3-H2O (8:1:1, v/v/v) was the optimal extraction solvent and MeOH-H2O (1:1, v/v) or H2O was superior to other reconstitution solvents for RP column analysis, and the extraction solvent MeOH-ACN-H2O (2:2:1, v/v/v) and the reconstitution solvents ACN-H2O (4:1, v/v) or MeOH-H2O (1:1, v/v) provide the best performance for HILIC column analysis. The optimized pretreatment methods explored in this study expand the coverage of polar and non-polar metabolites and improve the reproducibility and stability of the metabolic data, which can be applied to UPLC/MS-based global metabolomics study on cholangiocarcinoma cells, potentially providing better extraction solvents and reconstitution solvents for other adherent mammalian cells with similar chemical and physical properties.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Metabolómica , Solventes , Colangiocarcinoma/metabolismo , Metabolómica/métodos , Cromatografía Líquida de Alta Presión/métodos , Humanos , Solventes/química , Línea Celular Tumoral , Neoplasias de los Conductos Biliares/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masas/métodos , Metaboloma/efectos de los fármacos , Análisis de Componente Principal , Espectrometría de Masas en Tándem/métodos
4.
Food Chem ; 463(Pt 2): 141262, 2025 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-39298858

RESUMEN

Phthalate acid esters (PAEs) are ubiquitous environmental pollutants present in food samples, necessitating accurate detection for risk assessment and remediation efforts. This review provides an updated overview of the recent progress on the PAEs analysis regarding sample pretreatment techniques and analytical methodologies over the latest decade. Advances in sample preparation include solid-based extraction techniques replacing conventional liquid-liquid extraction, with solid sorbents emerging as promising alternatives due to their minimal solvent consumption and enhanced selectivity. Although techniques like the microextraction methods offer versatility and reduced solvent reliance, there is a need for more efficient and environmentally friendly techniques enabling on-site portable detection. High-resolution mass spectrometry is increasingly utilized for its enhanced sensitivity and reduced contamination risks. However, challenges persist in developing in situ analytical techniques for trace PAEs in complex food samples. Future research should prioritize novel analytical techniques with superior sensitivity and selectivity, addressing current limitations to meet the demand for precise PAEs detection in diverse food matrices.


Asunto(s)
Ésteres , Contaminación de Alimentos , Ácidos Ftálicos , Ácidos Ftálicos/análisis , Ácidos Ftálicos/aislamiento & purificación , Ácidos Ftálicos/química , Ésteres/análisis , Ésteres/química , Ésteres/aislamiento & purificación , Contaminación de Alimentos/análisis , Extracción en Fase Sólida/métodos , Extracción en Fase Sólida/instrumentación , Espectrometría de Masas , Análisis de los Alimentos/métodos , Contaminantes Ambientales/análisis , Contaminantes Ambientales/aislamiento & purificación , Contaminantes Ambientales/química
5.
J Environ Sci (China) ; 148: 321-335, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095168

RESUMEN

Sewage sludge in cities of Yangzi River Belt, China, generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system, which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion (CAD). Therefore, this paper is on a pilot scale, a bio-thermophilic pretreatment anaerobic digestion (BTPAD) for low organic sludge (volatile solids (VS) of 4%) was operated with a long-term continuous flow of 200 days. The VS degradation rate and CH4 yield of BTPAD increased by 19.93% and 53.33%, respectively, compared to those of CAD. The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge. Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales, Coprothermobacter and Gelria, was capable of hydrolyzing acidified proteins, and provided more volatile fatty acid (VFA) for the subsequent reaction. Biome combined with fluorescence quantitative polymerase chain reaction (PCR) analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage, indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD. Furthermore, the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/microbiología , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Proyectos Piloto , Reactores Biológicos/microbiología , Metano/metabolismo , Metano/análisis , Carbono/metabolismo , Carbono/análisis , China , Biocombustibles
6.
J Environ Sci (China) ; 147: 36-49, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003054

RESUMEN

Anaerobic digestion (AD) is widely employed for sludge stabilization and waste reduction. However, the slow hydrolysis process hinders methane production and leads to prolonged sludge issues. In this study, an efficient and eco-friendly lysozyme pre-treatment method was utilized to address these challenges. By optimizing lysozyme dosage, hydrolysis and cell lysis were maximized. Furthermore, lysozyme combined with hydrothermal pretreatment enhanced overall efficiency. Results indicate that: (1) When lysozyme dosage reached 90 mg/g TS after 240 min of pretreatment, SCOD, soluble polysaccharides, and protein content reached their maxima at 855.00, 44.09, and 204.86 mg/L, respectively. This represented an increase of 85.87%, 365.58%, and 259.21% compared to the untreated sludge. Three-dimensional fluorescence spectroscopy revealed the highest fluorescence intensity in the IV region (soluble microbial product), promoting microbial metabolic activity. (2) Lysozyme combined with hydrothermal pretreatment significantly increased SCOD, soluble proteins, and polysaccharide release from sludge, reducing SCOD release time. Orthogonal experiments identified Group 3 as the most effective for SCOD and soluble polysaccharide release, while Group 9 released the most soluble proteins. The significance order of factors influencing SCOD, soluble proteins, and polysaccharide release is hydrothermal temperature > hydrothermal time > enzymatic digestion time.(3) The lysozyme-assisted hydrothermal pretreatment group exhibited the fastest release and the highest SCOD concentration of 8,135.00 mg/L during anaerobic digestion. Maximum SCOD consumption and cumulative gas production increased by 95.89% and 130.58%, respectively, compared to the control group, allowing gas production to conclude 3 days earlier.


Asunto(s)
Muramidasa , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Muramidasa/metabolismo , Aguas del Alcantarillado/química , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Metano , Hidrólisis
7.
Methods Mol Biol ; 2855: 341-354, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39354317

RESUMEN

Bioactive lipid mediators derived from arachidonic acid constitute an attractive pool of metabolites that reflect cellular function and signaling, as well as potential biomarkers that may respond quantitatively to disease progression or pharmacological treatment. Their quantitative measurement in biological samples is complicated by the number of isomers that share common structural features, which are not easily distinguished by immunoassays or reverse phase chromatography-tandem mass spectrometry. Here, we present a method that enables the rapid analysis of a panel of over 25 biologically important eicosanoids in a 96-well format for cell culture supernatants, plasma, and organ tissues using convergence chromatography-tandem mass spectrometry to resolve these analytes of interest.


Asunto(s)
Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Humanos , Eicosanoides/análisis , Eicosanoides/metabolismo , Animales , Cromatografía Liquida/métodos , Lípidos/análisis , Lípidos/química , Biomarcadores , Lipidómica/métodos
8.
Food Chem ; 464(Pt 2): 141705, 2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39503089

RESUMEN

The peanuts heat pretreatment is a crucial step for the following oil extraction, influencing both efficiency and oil quality. The present study investigated the effects of oven roasting (OR, 150 °C, 25 min), infrared ray roasting (IRR, 150 °C, 25 min), and microwave roasting (MR, 700 W, 5 min) on the quality characteristics, anti-oxidation attributes, and phenolic compound compositions of peanut oil. All pretreatment methods changed the physicochemical properties and bioactive compounds of peanut oil. Notably, IRR resulted in the highest oxidation induction index (9.25 h) and enhanced free radical scavenging activity, with increases of 55 % (2,2-diphenyl-1-picrylhydrazyl (DPPH)) and 121 % (2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS)) compared with the control. Furthermore, the free phenolics content (Free-P) increased significantly, particularly with IRR, which was increased 6.00 times. Correlation analysis indicated that Free-P was the primary contributor to the anti-oxidation attributes of peanut oil. The results can provide valuable insights for optimizing peanut oil processing technologies.

9.
J Hazard Mater ; 480: 136362, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39486328

RESUMEN

Owing to the high lipophilicity of polychlorinated biphenyls (PCB), they easily accumulate in dairy products. Although usually present at very low levels, they pose a serious threat to human health. Therefore, developing a sensitive and reliable method for detecting PCB in dairy products is crucial. Herein, Herein, a metal-organic framework (MOF) material named with bimetallic nodes and double ligands was prepared as a precursor using a one-pot hydrothermal method. Defective porous urchin-like ZnO/NiO, derived from these MOF-based precursors (ZnNi-MOF-NH2) as a sacrificial template, was synthesized via pyrolysis to remove heat-sensitive ligands. To the best of our knowledge, this urchin-like nanostructured ZnO/NiO hybrid was utilized as a solid-phase microextraction (SPME) coating for the first time. Headspace SPME (HS-SPME) was developed for non-contact extraction of PCB in milk prior to gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. Under optimal conditions, the HS-SPME-GC-MS/MS method exhibited a wide linear range (0.01-1000 ng·L-1), low limits of detection (0.003-0.025 ng·L-1), and high enrichment factors (5714-9906). Additionally, the performance of the ZnO/NiO SPME fiber coating showed no noticeable decrease after 175 uses. The method was applied to trace PCB analysis in milk samples, yielding recoveries of 70.3-114.1 %. The ZnO/NiO derived from MOF-based material provides a promising candidate for SPME coatings to extract PCB and other analogs.

10.
J Am Coll Radiol ; 21(11S): S464-S489, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39488355

RESUMEN

Urothelial cancer is the second most common cancer, and cause of cancer death, related to the genitourinary tract. The goals of imaging for pretreatment staging of urothelial cancer are to evaluate for both local and distant spread of the cancer and assessing for synchronous sites of urothelial cancer in the upper tracts and bladder. For pretreatment staging of urothelial carcinoma, patients can be stratified into one of three groups: 1) nonmuscle invasive bladder cancer; 2) muscle invasive bladder cancer; and 3) upper urinary tract urothelial carcinoma. This document is a review of the current literature for urothelial cancer and resulting recommendations for pretreatment staging imaging. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.


Asunto(s)
Estadificación de Neoplasias , Sociedades Médicas , Humanos , Estados Unidos , Medicina Basada en la Evidencia , Carcinoma de Células Transicionales/diagnóstico por imagen , Carcinoma de Células Transicionales/patología , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/patología , Neoplasias Urológicas/diagnóstico por imagen , Neoplasias Urológicas/patología , Invasividad Neoplásica
11.
J Food Sci ; 2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39495581

RESUMEN

Spent coffee grounds (SCG) are the waste byproducts of coffee brewing. While SCG can be valorized to produce functional biopolymers due to their valuable structural components, the lignocellulosic structure of SCG is resistant to degradation because of the tightly bound lignin. Therefore, a pretreatment step is required before pulping with peracetic acid (PAA), an eco-friendlier alternative to traditional pulping methods, to facilitate the extraction of these desired cellulosic materials. Formic acid:acetic acid:deionized water (FA:AA:W = 30:50:20) or 60% (v/v) ethanol pretreatments were applied to SCG to compare the characteristics of the resulting cellulosic materials after PAA pulping. Lignocellulose analysis showed that the lignin content (7.06%) of ethanol pretreated SCG was significantly lower (p < 0.05), and the cellulose content (29.52%) was significantly higher (p < 0.05) than the untreated SCG (15.50% and 11.50%, respectively), indicating that an adequate amount of lignin was removed to obtain the cellulosic materials after the pretreatment process. Morphological and structural changes in the lignin and hemicellulose were observed in all the pretreated SCG, which further confirmed that these components were degraded with pretreatments and pulping. Ethanol pretreated SCG showed the most optimal results based on the greatest lignin decrease seen from its lignocellulose composition, appearance, and structure. This study exemplified a conversion process to extract cellulosic materials from SCG more efficiently to utilize for cellulose-based products and verify its potential to be valorized as a waste byproduct. PRACTICAL APPLICATION: Coffee companies can provide the spent coffee grounds (SCG) they produce to develop cellulose-based materials to make biodegradable packaging products rather than throwing them out or burning them. Using SCG for producing cellulose-based materials can help promote sustainability and reduce food waste worldwide. SCG can be utilized as an alternative source based on their abundance and desired biopolymeric properties, providing innovative solutions to industries and increasing consumer awareness of this cause.

12.
J Chromatogr A ; 1737: 465463, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39490196

RESUMEN

To investigate the ocean contamination caused by polycyclic aromatic hydrocarbons (PAHs), UiO-67/perfluorooctanoic acid (UiO-67/PFOA) was synthesized through solvent-assisted ligand incorporation method. The UiO-67/PFOA was then served as an adsorbent in headspace solid-phase microextraction (HS-SPME) technology for collecting and concentrating trace PAHs. The addition of the PFOA improved the hydrophobicity and stability of the UiO-67/PFOA coating, and the C-F functional group in UiO-67/PFOA could form the pseudo hydrogen bonding with the CH on the benzene ring of PAHs, which endowed the UiO-67/PFOA with 1.60-4.63 times enrichment performance for PAHs than UiO-67. Under optimal conditions, the wide linear ranges of PAHs (0.01-20 ng·mL-1) with good coefficients of determination (R2 ≥ 0.9950) and low limits of detection (LODs, 0.003-0.008 ng·mL-1) were obtained. The recoveries of five PAHs from spiked seawater and seabed sediment by the developed method ranged from 81.14 % to 116.0 % with satisfactory results. This work provided a good adsorbent for the enrichment of trace PAHs in complicated environments and a new approach for the subsequent synthesis of adsorbents with good enrichment performance.

13.
Bioresour Technol ; : 131702, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39490599

RESUMEN

Acetic acid (HAc) pretreatment has been widely used for the production of xylo-oligosaccharides (XOS), requiring harsh reaction conditions because XOS are intermediates during the xylan degradation process. This complexity makes the pretreatment process difficult to regulate. In this study, a pH-controlled HAc pretreatment using sodium hydroxide (NaOH) was proposed to enhance the yield of XOS and to reduce its degree of polymerization (DP) from corncobs (CC). By employing this method (0.3 M-2.7), 49.7 % of XOS with DP 2-6 was obtained, alongside a notable increase in the fraction of XOS with DP 2-4 (10.1 g/L). This performance significantly surpassed that of the HAc alone (0.3 M). Moreover, the glucose yield from CC via pH-controlled HAc pretreatment was as high as 93.1 % after 72-h enzymatic hydrolysis. These results suggested that the pH-controlled HAc pretreatment could be a promising strategy for the coproduction of low-DP XOS and fermentable sugars.

14.
Int J Biol Macromol ; : 136859, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39490854

RESUMEN

The effective promotion of delignification (67.6 %) and xylan removal (44.8 %) from bamboo residues using a 2-phenoxyethanol/sodium hydroxide solution (P/A) system is demonstrated, while simultaneously enriching oligosaccharides contents of the pre-hydrolysate to 10.2 g/L. Increasing the P/A ratio from 0:1 to 4:1 improves the enzymatic digestibility of the substrates from 55.7 % to 70.1 % at 100 °C and from 73.8 % to 83.7 % at 120 °C. Furthermore, partial correlation analysis demonstrates that the physiochemical properties, including delignification, xylan removal, and crystallinity, show a significant positive correlation with enzymatic hydrolysis efficiency. Higher temperatures and P/A ratios during alkaline biphasic pretreatment promote the shrinkage of plant cells and delignification, with temperature being a particularly significant driver. These findings provide valuable insights into the alkaline and biphasic pretreatment of biomass and facilitate the optimization of the bio-refining system.

15.
J Funct Biomater ; 15(10)2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39452586

RESUMEN

The aim of the study was to perform treatment of juniper wood to obtain wood material with a density and mechanical properties comparable to bone, thus producing a potential material for use in osteosynthesis bone implants. In the first step, partial delignification of wood sample was obtained by Kraft cooking. The second step was extraction with ethanol, ethanol-water mixture, saline, and water to prevent the release of soluble compounds and increase biocompatibility. In the last step, the thermal densification at 100 °C for 24 h was implemented. The results obtained in the dry state are equivalent to the properties of bone. The swelling of chemically pre-treated densified wood was reduced compared to chemically untreated densified wood. Samples showed no cytotoxicity by in vitro cell assays. The results of the study showed that it is possible to obtain noncytotoxic wood samples with mechanical properties equivalent to bones by partial delignification, extraction, and densification. However, further research is needed to ensure the material's shape stability, water resistance, and reduced swelling.

16.
Talanta ; 282: 127076, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39442265

RESUMEN

Nanoplastics present a significant hazard to both the environment and human health. However, the development of rapid and sensitive analysis techniques for nanoplastics is limited by their small size, lack of specificity, and low concentrations. In this study, a surface-enhanced Raman scattering (SERS) chessboard substrate was introduced as a multi-channel platform for the pre-concentration and detection of nanoplastics, achieved by polydomain aggregating silver nanoparticles (PASN) on a hydrophilic and a punched hydrophobic PVDF combined filter membrane. Through a straightforward suction filtration process, nanoplastics were captured by the PASN gap in a single step for subsequent SERS detection, while excess moisture was promptly eliminated from the filter membrane. The PASN-based SERS chessboard substrate, benefiting from the enhanced electromagnetic (EM) field, effectively discriminated polystyrene (PS) nanoplastics ranging in size from 30 nm to 1000 nm. Furthermore, this substrate demonstrated favorable repeatability (RSD of 8.6 %), high sensitivity with a detection limit of 0.001 mg/mL for 100 nm of PS nanoplastics, and broad linear detection ranges spanning from 0.001 to 0.5 mg/mL (R2 = 0.9916). Additionally, the SERS chessboard substrate enabled quantitative analysis of nanoplastics spiked in tap and lake water samples. Notably, the entire pre-concentration and detection procedure required only 3 µL of sample and could be completed within 1 min. With the accessibility of portable detection instruments and the ability to prepare substrates on demand, the PASN-based SERS chessboard substrate is anticipated to facilitate the establishment of a comprehensive global nanoplastics map.

17.
Int J Biol Macromol ; : 135925, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39414533

RESUMEN

In a quest to find eco-friendly materials from renewable resources, researchers have focused on cellulose materials, which is the primary reinforcing component of plant cell walls. Nanocellulose is at the forefront of research due to its wide range of sources, biocompatibility, large surface area and tunable surface chemistry. It has gained considerable attention in various industries as a nano-reinforcement for polymer matrices due to its hierarchical structure (medical and healthcare, oil and gas, packaging, paper, board, composites, printed and flexible electronics, 3D printing, aerogels). In this paper, we have reviewed the recent advances in nanocellulose production, physical properties, structural characterization, surface modification strategies, pretreatment methods, applications, limitations and future directions. This review emphasizes the quantification of nanocellulose extraction and applications of the most prevalent areas of nanocellulose research. In view of its increasing and broader applications, the demand for nanocellulose is expected to increase in the future.

18.
Heliyon ; 10(19): e38776, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39421386

RESUMEN

Utilising agricultural byproducts specifically fruit wastes for bioethanol production offers a promising approach to sustainable energy production and waste mitigation. This approach focuses on assessing the biochemical composition of fruit wastes, particularly their sugar content, as a key aspect of bioethanol production. This study evaluates the potential of pineapple, mango, pawpaw and watermelon fruit wastes for bioethanol production, highlighting the substantial organic waste generated during fruit processing stages such as peeling and pulping. Various techniques, including enzymatic hydrolysis, fermentation, and distillation, are reviewed to optimise bioethanol yields while addressing challenges such as seasonal availability, substrate variability and process optimisation. Besides, the environmental benefits of bioethanol derived from fruit wastes, such as reduced environmental pollution, decreased reliance on fossil fuels, and promotion of sustainable agricultural practices, are emphasised. The study deployed a comprehensive literature review using keywords, specific research questions, and a search strategy that included academic databases, library catalogues, and Google Scholar. Search results were systematically screened and selected based on their relevance to the topic.

19.
J Hazard Mater ; 480: 136143, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39423649

RESUMEN

The biodegradation of polystyrene (PS), a type of plastic with aromatic rings in its polymer chain, is a critical environmental goal worldwide. Microbial degradation of PS has been reported, but the underlying mechanisms are poorly understood. Here, we constructed a microcosm wetland containing PS plastic. We isolated six highly efficient PS plastic-degrading bacterial strains and created a microbial consortium (MCs) consisting of these strains. After a 30-day incubation period, MCs-treated PS exhibited hallmarks of degradation, including -CO- formation, reduced hydrophobicity, surface porosity, and 20 % weight loss. The efficiency of PS degradation was enhanced by using a combination of physical-chemical pretreatment and biological methods, increasing the microbial degradation rate by 20 %. Antioxidant 2246 (C23H32O2) was detected in the culture supernatant via GC-MS. Metatranscriptomic sequencing analysis provided insight into the possible metabolic pathway of PS degradation by the composite bacteria. We identified 31 highly expressed genes encoding proteins that function in carbon metabolism pathways and 34 unique proteases which catalyze the cleavage of long polymer chains. The resulting small molecules are absorbed and further degraded intracellularly by enzymes such as coenzyme synthase, hydratase, transferase, carboxylase, and dehydrogenase. These findings lay the foundation for the efficient and sustainable degradation of PS.

20.
Electrophoresis ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373619

RESUMEN

Osteopontin (OPN) in milk plays an important role in intestinal and brain development in early infancy, and great attention has been focused on OPN isolation to add extra OPN in infant formula. However, large-scale OPN isolation is limited by the low efficiency of sample pretreatment. Herein, we utilized preparative reciprocating free-flow isoelectric focusing (RFFIEF) to showcase the enrichment of low-abundance OPN in bovine milk, which contained an extremely high concentration of unwanted proteins. The reciprocating IEF format and the design of the multi-channel collector allowed us to enrich OPN in 1 L milk within 6 h. We removed 97.5% of unwanted proteins and obtained an enrichment factor of 11. Thus, our RFFIEF method can be applied to the preparative pretreatment of the large-scale milk sample and potentially improve the efficiency of downstream OPN purification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA