Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Theor Appl Genet ; 137(10): 234, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325170

RESUMEN

Sweetpotato, Ipomoea batatas (L.) Lam. (2n = 6x = 90), is among the world's most important food crops and is North Carolina's most important vegetable crop. The recent introduction of Meloidogyne enterolobii poses a significant economic threat to North Carolina's sweetpotato industry and breeding resistance into new varieties has become a high priority for the US sweetpotato industry. Previous studies have shown that 'Tanzania', a released African landrace, is resistant to M. enterolobii. We screened the biparental sweetpotato mapping population, 'Tanzania' x 'Beauregard', for resistance to M. enterolobii by inoculating 246 full-sibs with 10,000 eggs each under greenhouse conditions. 'Tanzania', the female parent, was highly resistant, while 'Beauregard' was highly susceptible. Our bioassays exhibited strong skewing toward resistance for three measures of resistance: reproductive factor, eggs per gram of root tissue, and root gall severity ratings. A 1:1 segregation for resistance suggested a major gene conferred M. enterolobii resistance. Using a random-effect multiple interval mapping model, we identified a single major QTL, herein designated as qIbMe-4.1, on linkage group 4 that explained 70% of variation in resistance to M. enterolobii. This study provides a new understanding of the genetic basis of M. enterolobii resistance in sweetpotato and represents a major step towards the identification of selectable markers for nematode resistance breeding.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Ipomoea batatas , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Tylenchoidea , Ipomoea batatas/genética , Ipomoea batatas/parasitología , Animales , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Raíces de Plantas/parasitología , Raíces de Plantas/genética , Fenotipo , Marcadores Genéticos
2.
J Nematol ; 56(1): 20240024, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39143958

RESUMEN

Oregon leads the United States in nursery production of shade trees and is third in deciduous and broadleaf evergreen shrub production. Plant-parasitic nematodes have been implicated in problems with the growth of plants in nurseries and are also of phytosanitary risk. A greenhouse experiment was conducted to evaluate the host status of four trees (Quercus alba, Quercus garryana, Acer campestre, Thuja occidentalis) and two shrubs (Buxus sempervirens, Rhododendron catawbiense) to Meloidogyne incognita, Meloidogyne hapla, and Pratylenchus neglectus. Each plant/nematode treatment was replicated five times, and the experiment was conducted twice. Plants were inoculated with 3,000 eggs of M. incognita or M. hapla and 2,500 individuals of P. neglectus two weeks after planting. After three months, the plants were harvested, and the total density of nematodes in soil and roots for P. neglectus and the total density of second-stage juveniles (J2) in soil and eggs on roots for M. hapla and M. incognita were determined. The final nematode population (Pf) and reproductive factor (RF = Pf/initial population density) were calculated. For M. incognita and M. hapla, all of the ornamental trees and shrubs would be considered as fair to good hosts with RF values > 1. Meloidogyne incognita had the highest Pf (5,234 total J2 and eggs/pot) and RF value (28.4) on A. campestre. For P. neglectus, all of the ornamental trees and shrubs were fair to good hosts, except for B. sempervirens. Buxus sermpervirens was not a host for P. neglectus, with an RF value of almost 0. This is the first report of Q. alba, Q. garryana, and A. campestre as hosts for M. incognita, M. hapla, and P. penetrans. This is also the first report of T. occidentalis and R. catawbiense as hosts for P. penetrans and the non-host status of B. sermpervirens for P. penetrans.

3.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39169468

RESUMEN

AIMS: The objective of this study was to elucidate the role and mechanism of changes in the rhizosphere microbiome following Arthrobotrys oligospora treatment in the biological control of root-knot nematodes and identify the key fungal and bacterial species that collaborate with A. oligospora to biocontrol root-knot nematodes. METHODS AND RESULTS: We conducted a pot experiment to investigate the impact of A. oligospora treatment on the biocontrol efficiency of A. oligospora against Meloidogyne incognita infecting tomatoes. We analyzed the rhizosphere bacteria and fungi communities of tomato by high-throughput sequencing of the 16S rRNA gene fragment and the internal transcribed spacer (ITS). The results indicated that the application of A. oligospora resulted in a 53.6% reduction in the disease index of M. incognita infecting tomato plants. The bacterial diversity of rhizosphere soil declined in the A. oligospora-treated group, while fungal diversity increased. The A. oligospora treatment enriched the tomato rhizosphere with Acidobacteriota, Firmicutes, Bradyrhizobium, Sphingomonadales, Glomeromycota, and Purpureocillium. These organisms are involved in the utilization of rhizosphere organic matter, nitrogen, and glycerolipids, or play the role of ectomycorrhiza or directly kill nematodes. The networks of bacterial and fungal co-occurrence exhibited a greater degree of stability and complexity in the A. oligospora treatment group. CONCLUSIONS: This study demonstrated the key fungal and bacterial species that collaborate with the A. oligospora in controlling the root-knot nematode and elaborated the potential mechanisms involved. The findings offer valuable insights and inspiration for the advancement of bionematicide based on nematode-trapping fungi.


Asunto(s)
Enfermedades de las Plantas , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/microbiología , Solanum lycopersicum/parasitología , Animales , Tylenchoidea/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Control Biológico de Vectores , Microbiota , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Ascomicetos/fisiología , Ascomicetos/genética , Hongos/fisiología , Hongos/genética
4.
Sci Rep ; 14(1): 17774, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090171

RESUMEN

This study investigates the efficacy of Trichoderma spp. and Bacillus spp., as well as their gamma radiation-induced mutants, as potential biological control agents against Meloidogyne javanica (Mj) in tomato plants. The research encompasses in vitro assays, greenhouse trials, and molecular identification methodologies to comprehensively evaluate the biocontrol potential of these agents. In vitro assessments reveal significant nematicidal activity, with Bacillus spp. demonstrating notable effectiveness in inhibiting nematode egg hatching (16-45%) and inducing second-stage juvenile (J2) mortality (30-46%). Greenhouse trials further confirm the efficacy of mutant isolates, particularly when combined with chitosan, in reducing nematode-induced damage to tomato plants. The combination of mutant isolates with chitosan reduces the reproduction factor (RF) of root-knot nematodes by 94%. By optimizing soil infection conditions with nematodes and modifying the application of the effective compound, the RF of nematodes decreases by 65-76%. Molecular identification identifies B. velezensis and T. harzianum as promising candidates, exhibiting significant nematicidal activity. Overall, the study underscores the potential of combined biocontrol approaches for nematode management in agricultural settings. However, further research is essential to evaluate practical applications and long-term efficacy. These findings contribute to the development of sustainable alternatives to chemical nematicides, with potential implications for agricultural practices and crop protection strategies.


Asunto(s)
Bacillus , Rayos gamma , Control Biológico de Vectores , Enfermedades de las Plantas , Solanum lycopersicum , Tylenchoidea , Animales , Tylenchoidea/fisiología , Bacillus/genética , Bacillus/fisiología , Solanum lycopersicum/parasitología , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Control Biológico de Vectores/métodos , Mutación , Hypocreales/genética , Antinematodos/farmacología , Agentes de Control Biológico/farmacología , Quitosano/farmacología
5.
Int Microbiol ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39122800

RESUMEN

Dry bean (Phaseolus vulgaris L.) is an important commercialized field crop in South Africa for aiding in food security as a cheap protein source. However, it is highly susceptible to root-knot nematodes (RKN), Meloidogyne species. Use of indigenous nematophagous fungi as bio-control agents (BCA) of Meloidogyne nematodes is a promising research focus area. This is because indigenous fungal species are naturally part of the ecosystem and therefore compatible with other biological processes unlike most synthetic chemicals. The objective of the study was to identify indigenous nematophagous fungal BCA and establish their potential efficacy in reducing M. enterolobii population densities on dry bean with and without incorporation of compost. Screened indigenous fungal species included Aspergillus terreus, Talaromyces minioluteus, T. sayulitensis, Trichoderma ghanense, and T. viride. There were observed significant parasitism differences (P ≤ 0.05) among the BCA, with T. ghanense showing the highest egg parasitism (86%), followed by T. minioluteus (72%) and T. sayulitensis (70%). On the other hand, the highest J2 parasitism was observed on T. minioluteus (95%), followed by A. terreus and T. viride (63%). A similar trend was observed under in vivo conditions, with higher efficacy with compost incorporation. This provides a highly encouraging alternative and ecologically complementary Meloidogyne management in dry bean production.

6.
Mol Plant ; 17(10): 1504-1519, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39148293

RESUMEN

Root-knot nematodes (RKNs) are plant pests that infect the roots of host plants. Bacillus thuringiensis (Bt) nematicidal proteins exhibited toxicity to nematodes. However, the application of nematicidal proteins for plant protection is hampered by the lack of effective delivery systems in transgenic plants. In this study, we discovered the accumulation of leucoplasts (root plastids) in galls and RKN-induced giant cells. RKN infection causes the degradation of leucoplasts into small vesicle-like structures, which are responsible for delivering proteins to RKNs, as observed through confocal microscopy and immunoelectron microscopy. We showed that different-sized proteins from leucoplasts could be taken up by Meloidogyne incognita female. To further explore the potential applications of leucoplasts, we introduced the Bt crystal protein Cry5Ba2 into tobacco and tomato leucoplasts by fusing it with a transit peptide. The transgenic plants showed significant resistance to RKNs. Intriguingly, RKN females preferentially took up Cry5Ba2 protein when delivered through plastids rather than the cytosol. The decrease in progeny was positively correlated with the delivery efficiency of the nematicidal protein. In conclusion, this study offers new insights into the feeding behavior of RKNs and their ability to ingest leucoplast proteins, and demonstrates that root leucoplasts can be used for delivering nematicidal proteins, thereby offering a promising approach for nematode control.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Proteínas Hemolisinas , Raíces de Plantas , Plantas Modificadas Genéticamente , Plastidios , Solanum lycopersicum , Tylenchoidea , Animales , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Tylenchoidea/efectos de los fármacos , Tylenchoidea/fisiología , Solanum lycopersicum/parasitología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Femenino , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/genética , Toxinas de Bacillus thuringiensis/metabolismo , Plastidios/metabolismo , Endotoxinas/metabolismo , Endotoxinas/genética , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/parasitología , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Enfermedades de las Plantas/parasitología , Antinematodos/farmacología , Antinematodos/metabolismo
7.
Plants (Basel) ; 13(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999570

RESUMEN

Leaf parsley growth and productivity are often affected by pathogen infection. Root-knot nematodes of the genus Meloiogyne are common pathogens reported on leaf parsley. The response of leaf parsley to Meloidogyne species in tropical and subtropical regions is quite known, while in temperate regions, comparable information is still scarce. In this study, we evaluated the host status and response of three flat-leaf (Laica, Laura, Gigante d'Italia) and three curly-leaf (Grüne Perle, Orfeo, Sombre) parsley cultivars to Meloidogyne species from temperate regions, i.e., M. hapla, M. chitwoodi, and M. fallax, as well as to the southern root-knot nematode M. incognita. Evaluation was based on measuring plant biomass and nematode reproduction nine weeks after nematode inoculation. Our results showed that all four Meloidogyne species did not cause the reduction in leaf parsley growth under the given experimental conditions. Regarding the host status of leaf parsley cultivars for Meloidogyne, results were variable. All six parsley cultivars were found to be good hosts for M. hapla. Regarding M. chitwoodi, the host status could not be clarified properly; however, each cultivar allowed nematode reproduction at least in one experiment. For M. fallax, flat-leaf parsley turned out to be less susceptible than curly-leaf parsley; and for M. incognita, Orfeo, Laura, and Laica were classified as good hosts, Grüne Perle and Sombre as poor hosts, and Gigante d'Italia as a non-host. Amongst all tested cultivars, Gigante d'Italia was found to be the least susceptible cultivar due to its poor host status for M. chitwoodi and non-host status for M. fallax and M. incognita. Infection with M. hapla, M. chitwoodi, and M. incognita, but not with M. fallax, resulted in distinct gall formation on the roots of all six leaf parsley cultivars.

8.
Pest Manag Sci ; 80(10): 5400-5411, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38943354

RESUMEN

BACKGROUND: Root-knot nematodes (RKNs), Meloidogyne spp., are one of the most destructive polyphagous plant-parasitic nematodes. They pose a serious threat to global food security and are difficult to control. Entomopathogenic nematodes (EPNs) show promise in controlling RKNs. However, it remains unclear whether the volatile organic compounds (VOCs) emitted from EPN-infected cadavers can control RKNs. RESULTS: We investigated the fumigation activity of VOCs released from cadavers infected by five different species of EPNs on RKNs in Petri dishes, and found that VOCs released from Steinernema feltiae (SN strain) and S. carpocapsae (All strain) infected cadavers had a significant lethal effect on second-stage juveniles (J2s) of Meloidogyne incognita. The VOCs released from the cadavers infected with S. feltiae were analyzed using SPME-GC/MS. Dimethyl disulfide (DMDS), tetradecane, pentadecane, and butylated hydroxytoluene (BHT), were selected for a validation experiment with pure compounds. The DMDS compound had significant nematicidal activity and repelled J2s. DMDS also inhibited egg hatching and the invasion of tomato roots by J2s. In a pot experiment, the addition of S. feltiae-infected cadavers and cadavers wrapped with a 400-mesh nylon net also significantly reduced the population of RKNs in tomato roots after 7 days. The number of root knots and eggs was reduced by 58% and 74.34%, respectively, compared to the control. CONCLUSION: These results suggested that the VOCs emitted by the EPN-infected cadavers affected various developmental stages of M. incognita and thus have the potential to be used in controlling RKNs through multiple methods. © 2024 Society of Chemical Industry.


Asunto(s)
Control Biológico de Vectores , Tylenchoidea , Compuestos Orgánicos Volátiles , Animales , Compuestos Orgánicos Volátiles/farmacología , Tylenchoidea/fisiología , Tylenchoidea/efectos de los fármacos , Rabdítidos/fisiología , Raíces de Plantas/parasitología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control
9.
Phytopathology ; 114(6): 1244-1252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38916562

RESUMEN

Three novel trifluoromethylated compounds were designed and synthesized by reacting trifluoroacetimidoyl chloride derivatives with acetamidine hydrochloride or thiourea in the presence of potassium carbonate or sodium hydrogen carbonate as a base. In vitro and in vivo assays demonstrated the efficacy of the tested compounds in controlling root-knot nematode disease on pistachio rootstocks caused by Meloidogyne incognita. Bis-trifluoromethylated derivatives, namely N,N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (compound A1), showed high efficacy as novel and promising nematicides, achieving up to 78.28% control at a concentration of 0.042 mg/liter. This effect is attributed to four methyl and two trifluoromethyl groups. In the pre-inoculation application of compound A1, all three concentrations (0.033, 0.037, and 0.042 mg/liter, and Velum) exhibited a higher level of control, with 83.79, 87.46, and 80.73% control, respectively. In the microplot trials, compound A1 effectively reduced population levels of M. incognita and enhanced plant growth at a concentration of 0.037 mg/liter. This suggests that compound A1 has the potential to inhibit hedgehog protein and could be utilized to prevent the progression of root-knot disease. Furthermore, the molecular docking results revealed that compounds A1 and A3 interact with specific amino acid residues (Gln60, Asp530, Glu70, Arg520, and Thr510) located in the active site of hedgehog protein. Based on the experimental findings of this study, compound A1 shows promise as a lead compound for future investigations.


Asunto(s)
Antinematodos , Simulación del Acoplamiento Molecular , Pistacia , Enfermedades de las Plantas , Raíces de Plantas , Tylenchoidea , Animales , Tylenchoidea/efectos de los fármacos , Antinematodos/farmacología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/parasitología , Pistacia/química
10.
Planta ; 260(2): 36, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922545

RESUMEN

MAIN CONCLUSION: Integrated management strategies, including novel nematicides and resilient cultivars, offer sustainable solutions to combat root-knot nematodes, crucial for safeguarding global agriculture against persistent threats. Root-knot nematodes (RKN) pose a significant threat to a diverse range of host plants, with their obligatory endoparasitic nature leading to substantial agricultural losses. RKN spend much of their lives inside or in contact by secreting plant cell wall-modifying enzymes resulting in the giant cell development for establishing host-parasite relationships. Additionally, inflicting physical harm to host plants, RKN also contributes to disease complexes creation with fungi and bacteria. This review comprehensively explores the origin, history, distribution, and physiological races of RKN, emphasizing their economic impact on plants through gall formation. Management strategies, ranging from cultural and physical to biological and chemical controls, along with resistance mechanisms and marker-assisted selection, are explored. While recognizing the limitations of traditional nematicides, recent breakthroughs in non-fumigant alternatives like fluensulfone, spirotetramat, and fluopyram offer promising avenues for sustainable RKN management. Despite the success of resistance mechanisms like the Mi gene, challenges persist, prompting the need for integrative approaches to tackle Mi-virulent isolates. In conclusion, the review stresses the importance of innovative and resilient control measures for sustainable agriculture, emphasizing ongoing research to address evolving challenges posed by RKN. The integration of botanicals, resistant cultivars, and biological controls, alongside advancements in non-fumigant nematicides, contributes novel insights to the field, laying the ground work for future research directions to ensure the long-term sustainability of agriculture in the face of persistent RKN threats.


Asunto(s)
Agricultura , Enfermedades de las Plantas , Raíces de Plantas , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/parasitología , Agricultura/métodos , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Interacciones Huésped-Parásitos , Resistencia a la Enfermedad , Productos Agrícolas/parasitología , Antinematodos/farmacología
11.
BMC Plant Biol ; 24(1): 469, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811862

RESUMEN

BACKGROUND: Green nanoparticles are considered to be an effective strategy for improving phytochemicals and raising productivity in soil infected by root-knot nematodes. This work aims to understand the characteristics of certain nanomaterials, including non-iron (nFe), green non-iron (GnFe), and green magnetic nanobiochar (GMnB), and the effect of adding them at 3 and 6 mg kg- 1 on phytochemicals and tomato (Solanum lycopersicum) plant growth in soils infected by root-knot nematodes. RESULTS: Spectroscopic characterization of nanomaterials showed that nFe, GnFe, and GMnB contained functional groups (e.g., Fe-O, S-H, C-H, OH, and C = C) and possessed a large surface area. Application of GMB at 6 mg kg- 1 was the most efficient treatment for increasing the phytochemicals of the tomato plant, with a rise of 123.2% in total phenolic, 194.7% in total flavonoids, 89.7% in total carbohydrate, 185.2% in total free amino acids, and 165.1% in total tannin compared to the untreated soil. Tomato plant growth and attributes increased with increasing levels of soil nano-amendment in this investigation. The addition of GnFe3 and GnFe6 increased the reduction of root galls of root-knot nematodes by 22.44% and 17.76% compared with nFe3 and nFe6, respectively. The inclusion of the examined soil nano-amendments increased phytochemicals and reduced the total number of root-knot nematodes on tomato plants at varying rates, which played a significant role in enhancing tomato growth. CONCLUSIONS: In conclusion, treating tomato plants with GnFe or GMnB can be used as a promising green nanomaterial to eliminate root-knot nematodes and increase tomato yield in sandy clay loam soil.


Asunto(s)
Fitoquímicos , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitología , Solanum lycopersicum/crecimiento & desarrollo , Animales , Fitoquímicos/química , Tylenchoidea/fisiología , Tylenchoidea/efectos de los fármacos , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Nanopartículas Magnéticas de Óxido de Hierro/química , Resistencia a la Enfermedad , Raíces de Plantas/parasitología , Suelo/parasitología , Suelo/química
12.
Front Plant Sci ; 15: 1377453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745927

RESUMEN

Root-knot nematodes (Meloidogyne spp., RKN) are among the most destructive endoparasitic nematodes worldwide, often leading to a reduction of crop growth and yield. Insights into the dynamics of host-RKN interactions, especially in varied biotic and abiotic environments, could be pivotal in devising novel RKN mitigation measures. Plant growth-promoting bacteria (PGPB) involves different plant growth-enhancing activities such as biofertilization, pathogen suppression, and induction of systemic resistance. We summarized the up-to-date knowledge on the role of PGPB and abiotic factors such as soil pH, texture, structure, moisture, etc. in modulating RKN-host interactions. RKN are directly or indirectly affected by different PGPB, abiotic factors interplay in the interactions, and host responses to RKN infection. We highlighted the tripartite (host-RKN-PGPB) phenomenon with respect to (i) PGPB direct and indirect effect on RKN-host interactions; (ii) host influence in the selection and enrichment of PGPB in the rhizosphere; (iii) how soil microbes enhance RKN parasitism; (iv) influence of host in RKN-PGPB interactions, and (v) the role of abiotic factors in modulating the tripartite interactions. Furthermore, we discussed how different agricultural practices alter the interactions. Finally, we emphasized the importance of incorporating the knowledge of tripartite interactions in the integrated RKN management strategies.

13.
Plant Cell Environ ; 47(8): 2811-2820, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38679939

RESUMEN

Plant-parasitic nematodes, specifically cyst nematodes (CNs) and root-knot nematodes (RKNs), pose significant threats to global agriculture, leading to substantial crop losses. Both CNs and RKNs induce permanent feeding sites in the root of their host plants, which then serve as their only source of nutrients throughout their lifecycle. Plants deploy reactive oxygen species (ROS) as a primary defense mechanism against nematode invasion. Notably, both CNs and RKNs have evolved sophisticated strategies to manipulate the host's redox environment to their advantage, with each employing distinct tactics to combat ROS. In this review, we have focused on the role of ROS and its scavenging network in interactions between host plants and CNs and RKNs. Overall, this review emphasizes the complex interplay between plant defense mechanism, redox signalling and nematode survival tactics, suggesting potential avenues for developing innovative nematode management strategies in agriculture.


Asunto(s)
Interacciones Huésped-Parásitos , Oxidación-Reducción , Enfermedades de las Plantas , Plantas , Especies Reactivas de Oxígeno , Transducción de Señal , Animales , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de las Plantas/parasitología , Plantas/metabolismo , Plantas/parasitología , Nematodos/fisiología
14.
Biology (Basel) ; 13(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38666879

RESUMEN

Pumpkins (Cucurbita moschata), valued for their nutritional, medicinal, and economic significance, face threats from Meloidogyne incognita, a critical plant-parasitic nematode. This study extensively examines the impact of M. incognita on the growth, physiological, and biochemical responses of C. moschata. We demonstrate that M. incognita infection leads to significant growth impairment in C. moschata, evidenced by reduced plant height and biomass, along with the significant development of nematode-induced galls. Concurrently, a pronounced oxidative stress response was observed, characterized by elevated levels of hydrogen peroxide and a significant increase in antioxidant defense mechanisms, including the upregulation of key antioxidative enzymes (superoxide dismutase, glutathione reductase, catalase, and peroxidase) and the accumulation of glutathione. These responses highlight a dynamic interaction between the plant and the nematode, wherein C. moschata activates a robust antioxidant defense to mitigate the oxidative stress induced by nematode infection. Despite these defenses, the persistence of growth impairment underscores the challenge posed by M. incognita to the agricultural production of C. moschata. Our findings contribute to the understanding of plant-nematode interactions, paving the way for the development of strategies aimed at enhancing resistance in Cucurbitaceae crops against nematode pests, thus supporting sustainable agricultural practices.

15.
Arch Microbiol ; 206(4): 160, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483595

RESUMEN

Root-knot nematodes (RKN) are one of the most harmful soil-borne plant pathogens in the world. Actinobacteria are known phytopathogen control agents. The aim of this study was to select soil actinobacteria with control potential against the RKN (Meloidogyne javanica) in tomato plants and to determine mechanisms of action. Ten isolates were tested and a significant reduction was observed in the number of M. javanica eggs, and galls 46 days after infestation with the nematode. The results could be explained by the combination of different mechanisms including parasitism and induction of plant defense response. The M. javanica eggs were parasited by all isolates tested. Some isolates reduced the penetration of juveniles into the roots. Other isolates using the split-root method were able to induce systemic defenses in tomato plants. The 4L isolate was selected for analysis of the expression of the plant defense genes TomLoxA, ACCO, PR1, and RBOH1. In plants treated with 4L isolate and M. javanica, there was a significant increase in the number of TomLoxA and ACCO gene transcripts. In plants treated only with M. javanica, only the expression of the RBOH1 and PR1 genes was induced in the first hours after infection. The isolates were identified using 16S rRNA gene sequencing as Streptomyces sp. (1A, 3F, 4L, 6O, 8S, 9T, and 10U), Kribbella sp. (5N), Kitasatospora sp. (2AE), and Lentzea sp. (7P). The efficacy of isolates from the Kitasatospora, Kribbella, and Lentzea genera was reported for the first time, and the efficacy of Streptomyces genus isolates for controlling M. javanica was confirmed. All the isolates tested in this study were efficient against RKN. This study provides the opportunity to investigate bacterial genera that have not yet been explored in the control of M. javanica in tomatoes and other crops.


Asunto(s)
Actinobacteria , Actinomycetales , Solanum lycopersicum , Tylenchoidea , Animales , Enfermedades de las Plantas/prevención & control , Tylenchoidea/genética , Actinobacteria/genética , ARN Ribosómico 16S/genética , Bacterias/genética , Actinomycetales/genética , Suelo
16.
Mycorrhiza ; 34(1-2): 145-158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38441668

RESUMEN

Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance and/or resistance to pests such as the root-knot nematode Meloidogyne incognita. However, the ameliorative effects may depend on AMF species. The aim of this work was therefore to evaluate whether four AMF species differentially affect plant performance in response to M. incognita infection. Tomato plants grown in greenhouse conditions were inoculated with four different AMF isolates (Claroideoglomus claroideum, Funneliformis mosseae, Gigaspora margarita, and Rhizophagus intraradices) and infected with 100 second stage juveniles of M. incognita at two different times: simultaneously or 2 weeks after the inoculation with AMF. After 60 days, the number of galls, egg masses, and reproduction factor of the nematodes were assessed along with plant biomass, phosphorus (P), and nitrogen concentrations in roots and shoots and root colonization by AMF. Only the simultaneous nematode inoculation without AMF caused a large reduction in plant shoot biomass, while all AMF species were able to ameliorate this effect and improve plant P uptake. The AMF isolates responded differently to the interaction with nematodes, either increasing the frequency of vesicles (C. claroideum) or reducing the number of arbuscules (F. mosseae and Gi. margarita). AMF inoculation did not decrease galls; however, it reduced the number of egg masses per gall in nematode simultaneous inoculation, except for C. claroideum. This work shows the importance of biotic stress alleviation associated with an improvement in P uptake and mediated by four different AMF species, irrespective of their fungal root colonization levels and specific interactions with the parasite.


Asunto(s)
Glomeromycota , Micorrizas , Solanum lycopersicum , Tylenchoidea , Animales , Micorrizas/fisiología , Raíces de Plantas/microbiología , Glomeromycota/fisiología , Plantas
17.
Methods Mol Biol ; 2756: 103-169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427294

RESUMEN

The use of nonhost, tolerant, or resistant plants, to manage plant parasitic nematodes (PPNs), is an appealing, economic, and environmentally friendly agronomic practice, which is effective when precise information on the identification of PPN species and their virulence to target host crops is available. This chapter describes suggested protocols to evaluate the reaction of the most important crops and fruit trees to infestation by the most damaging PPN with sedentary endoparasitic habits, with the aim of assessing resistance and tolerance traits, sources of resistance in progenies from breeding programs, the reaction to nematodes of newly released cultivars, and the virulence of the most noxious PPNs. These protocols consist of classical screening techniques not involving biochemical and molecular analyses. PPN species and genera considered in this chapter include (i) the most important species of root-knot nematodes Meloidogyne spp., including also M. chitwoodi, M. enterolobii, and M. graminicola, and (ii) the cyst-forming nematodes of the genera Globodera and Heterodera, such as the potato cyst nematodes (PCNs) Globodera rostochiensis and G. pallida, and also Heterodera avenae group, H. ciceri, H. glycines, and H. schachtii. Schemes are given to identify virulence groups for most of these nematodes.


Asunto(s)
Fitomejoramiento , Tylenchoidea , Animales , Virulencia , Productos Agrícolas
18.
Methods Mol Biol ; 2756: 317-326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427302

RESUMEN

Meloidogyne species, as infective second-stage juveniles (J2s) larvae, are parasites able to attack host of relevant agronomic interest such as tomato plants. The identification of gene expression markers, useful to investigate the levels of root-knot nematode infection in the roots, is a fundamental tool in plant-pathogen interaction. The laboratory methods for analyzing the differential expression of pathogenesis-related (PR) genes constitute powerful tools for detecting the induced systemic acquired resistance defense response to M. incognita in infected plants and can be extended to all pathogen infection markers to obtain an early and sustainable control.


Asunto(s)
Solanum lycopersicum , Tylenchoidea , Animales , Solanum lycopersicum/genética , Tylenchoidea/genética , Raíces de Plantas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Susceptibilidad a Enfermedades/metabolismo
19.
Methods Mol Biol ; 2756: 291-304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427300

RESUMEN

Full compatible interactions between crop plants and endoparasitic sedentary nematodes (ESNs) lead to severe infestation of the roots and plant growth impairing, as well as to the increase of nematode population in the soil that is a threat for the next planting crop. In the absence of activators, basic plant defense is overcome by nematode secretion of effectors that suppress defense gene expression, inhibit ROS generation and the oxidative burst used by plants to hamper nematode feeding site settlement and limit its development and reproduction. Activators can be exogenously added as a preventive measure to prime plants and strengthen their defense against ESNs. Activators can be an array of antioxidant compounds or biocontrol agents, such as mutualist microorganisms living in the rhizosphere (biocontrol fungi (BCF), arbuscular mycorrhizal fungi (AMF), plant growth-promoting bacteria (PGPB), etc.). In this chapter, methods are described for usage of both salicylic acid (SA) and its methylated form (Met-SA), and BCF/AMF as elicitors of resistance of vegetable crops against root-knot nematodes (RKNs). The rhizosphere-living BCF/AMF were recovered from commercial formulates pre-incubated in suitable growth media and provided exclusively as soil drench of potted plants. The plant hormones SA and Met-SA were provided to plants as soil drench, foliar spray, and root dip. It is indicated that activators' dosages and plant age are crucial factors in determining the success of a pre-treatment to reduce nematode infection. Therefore, dosages should be expressed as amounts of activators per g of plant weight at treatment. Thresholds exist above which dosages start to work; overdoses were found to be toxic to plants and useless as activators.


Asunto(s)
Micorrizas , Nematodos , Animales , Agentes de Control Biológico/metabolismo , Enfermedades de las Plantas/genética , Raíces de Plantas/metabolismo , Nematodos/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Micorrizas/metabolismo , Productos Agrícolas/metabolismo , Suelo
20.
Plant Environ Interact ; 5(1): e10133, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38323129

RESUMEN

Arabidopsis thaliana is a suitable host for phytoparasitic nematodes of the genus Meloidogyne. Successful nematode infection leads to the formation of root galls. We tested for natural genetic variation and inoculation density effects on nematode reproductive success in the interaction between A. thaliana and Meloidogyne javanica. We inoculated different Arabidopsis genotypes with two sources of nematodes at two different doses, using a mild protocol for inoculum preparation. We counted root galls and egg masses 2 months after inoculation. We obtained a high number of successful nematode infections. Infection success differed among Arabidopsis genotypes in interaction with the nematode source. Overall, infection success and reproductive success of nematodes were lower at a higher inoculum dose of nematodes. Our results indicate that natural genetic variation in both host plants and nematodes, as well as short- and long-term negative density effects, shape nematode reproductive success.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA