Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 696
Filtrar
1.
J Appl Microbiol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960398

RESUMEN

AIM: Bacterial exopolysaccharide (EPS) possesses numerous properties beneficial for the growth of microbes and plants under hostile conditions. The study aimed to develop a bioformulation with bacterial EPS to enhance the bioinoculant's shelf-life and functional efficacy under salinity stress. METHODS AND RESULTS: High EPS-producing and salt-tolerant bacterial strain (SD2) exhibiting auxin-production, phosphate-solubilization, and biofilm-forming ability was selected. EPS-based bioformulation of SD2 improved the growth of three legumes under salt stress, from which pigeonpea was selected for further experiments. SD2 improved the growth and lowered the accumulation of stress markers in plants under salt stress. Bioformulations with varying EPS concentrations (1% and 2%) were stored for 6 months at 4°C, 30°C, and 37°C to assess their shelf-life and functional efficacy. The shelf life and efficacy of EPS-based bioformulation was sustained at higher temperature, enhancing pigeonpea growth under stress after six months of storage in both control and natural conditions. However, the efficacy of non-EPS-based bioformulation declined following four months of storage. The bioformulation modulated bacterial abundance in the plant's rhizosphere under stress conditions. CONCLUSIONS AND IMPACT STATEMENT: The study brings forth a new strategy for developing next-generation bioformulations with higher shelf-life and efficacy for salinity stress management in pigeonpea under saline conditions.

2.
Environ Res ; : 119566, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971355

RESUMEN

Cultivating productive paddy crops on salty soil to maximise production is a challenging approach to meeting the world's growing food demand. Thus, determining salinity tolerance rates in specific paddy cultivars is urgently needed. In this study, the salt tolerance traits of selected paddy cultivars, ADT45 and ADT39, were investigated by analysing germination, metabolites (pigments and biomolecules), and enzymatic (Superoxide dismutase (SOD), Catalase (CAT), and Peroxidase (POD) adaptation strategies as salt-stress tolerance mechanisms. This study found that salinity-induced reactive oxygen species (ROS) were efficiently detoxified by the antioxidant enzymes Superoxide dismutase (SOD), Catalase (CAT), and Peroxidase (POD) in ADT45 paddy varieties, followed by ADT39. Salinity stress had a significant impact on pigments and essential biomolecules in ADT45 and ADT39 paddy cultivars, including total chlorophyll, anthocyanin, carotenoids, ascorbic acid, hydrogen peroxide (H2O2), malondialdehyde, and proline. ADT45 demonstrated a significant relationship between H2O2 and antioxidant enzyme levels, followed by ADT39 paddy but not IR64. Morphological, physiological, and biochemical analyses revealed that ADT45, followed by ADT39, is a potential salt-tolerant rice cultivar.

3.
BMC Genomics ; 25(1): 586, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862901

RESUMEN

BACKGROUND: Histone post-translational modifications (PTMs) are epigenetic marks that can be induced by environmental stress and elicit heritable patterns of gene expression. To investigate this process in an ecological context, we characterized the influence of salinity stress on histone PTMs within the gills, kidney, and testes of Mozambique tilapia (Oreochromis mossambicus). A total of 221 histone PTMs were quantified in each tissue sample and compared between freshwater-adapted fish exposed to salinity treatments that varied in intensity and duration. RESULTS: Four salinity-responsive histone PTMs were identified in this study. When freshwater-adapted fish were exposed to seawater for two hours, the relative abundance of H1K16ub significantly increased in the gills. Long-term salinity stress elicited changes in both the gills and testes. When freshwater-adapted fish were exposed to a pulse of severe salinity stress, where salinity gradually increased from freshwater to a maximum of 82.5 g/kg, the relative abundance of H1S1ac significantly decreased in the gills. Under the same conditions, the relative abundance of both H3K14ac and H3K18ub decreased significantly in the testes of Mozambique tilapia. CONCLUSIONS: This study demonstrates that salinity stress can alter histone PTMs in the gills and gonads of Mozambique tilapia, which, respectively, signify a potential for histone PTMs to be involved in salinity acclimation and adaptation in euryhaline fishes. These results thereby add to a growing body of evidence that epigenetic mechanisms may be involved in such processes.


Asunto(s)
Branquias , Gónadas , Histonas , Salinidad , Tilapia , Animales , Tilapia/genética , Tilapia/metabolismo , Branquias/metabolismo , Histonas/metabolismo , Masculino , Gónadas/metabolismo , Gónadas/efectos de los fármacos , Código de Histonas , Procesamiento Proteico-Postraduccional , Testículo/metabolismo , Testículo/efectos de los fármacos , Estrés Salino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
4.
Sci Rep ; 14(1): 13657, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871942

RESUMEN

This work aimed to design a synthetic salt-inducible promoter using a cis-engineering approach. The designed promoter (PS) comprises a minimal promoter sequence for basal-level expression and upstream cis-regulatory elements (CREs) from promoters of salinity-stress-induced genes. The copy number, spacer lengths, and locations of CREs were manually determined based on their occurrence within native promoters. The initial activity profile of the synthesized PS promoter in transiently transformed N. tabacum leaves shows a seven-fold, five-fold, and four-fold increase in reporter GUS activity under salt, drought, and abscisic acid stress, respectively, at the 24-h interval, compared to the constitutive CaMV35S promoter. Analysis of gus expression in stable Arabidopsis transformants showed that the PS promoter induces over a two-fold increase in expression under drought or abscisic acid stress and a five-fold increase under salt stress at 24- and 48-h intervals, compared to the CaMV35S promoter. The promoter PS exhibits higher and more sustained activity under salt, drought, and abscisic acid stress compared to the constitutive CaMV35S.


Asunto(s)
Ácido Abscísico , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Arabidopsis/genética , Ácido Abscísico/farmacología , Plantas Modificadas Genéticamente/genética , Sequías , Nicotiana/genética , Estrés Fisiológico/genética , Cloruro de Sodio/farmacología , Ingeniería Genética/métodos , Estrés Salino/genética
5.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891808

RESUMEN

AP2/ERF transcription factor genes play an important role in regulating the responses of plants to various abiotic stresses, such as cold, drought, high salinity, and high temperature. However, less is known about the function of oil palm AP2/ERF genes. We previously obtained 172 AP2/ERF genes of oil palm and found that the expression of EgAP2.25 was significantly up-regulated under salinity, cold, or drought stress conditions. In the present study, the sequence characterization and expression analysis for EgAP2.25 were conducted, showing that it was transiently over-expressed in Nicotiana tabacum L. The results indicated that transgenic tobacco plants over-expressing EgAP2.25 could have a stronger tolerance to salinity stress than wild-type tobacco plants. Compared with wild-type plants, the over-expression lines showed a significantly higher germination rate, better plant growth, and less chlorophyll damage. In addition, the improved salinity tolerance of EgAP2.25 transgenic plants was mainly attributed to higher antioxidant enzyme activities, increased proline and soluble sugar content, reduced H2O2 production, and lower MDA accumulation. Furthermore, several stress-related marker genes, including NtSOD, NtPOD, NtCAT, NtERD10B, NtDREB2B, NtERD10C, and NtP5CS, were significantly up-regulated in EgAP2.25 transgenic tobacco plants subjected to salinity stress. Overall, over-expression of the EgAP2.25 gene significantly enhanced salinity stress tolerance in transgenic tobacco plants. This study lays a foundation for further exploration of the regulatory mechanism of the EgAP2.25 gene in conferring salinity tolerance in oil palm.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana , Proteínas de Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Nicotiana/genética , Nicotiana/fisiología , Nicotiana/metabolismo , Plantas Modificadas Genéticamente/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerancia a la Sal/genética , Estrés Salino/genética , Estrés Fisiológico/genética , Arecaceae/genética , Arecaceae/metabolismo , Germinación/genética
6.
Front Plant Sci ; 15: 1336571, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38916034

RESUMEN

The tolerance to salinity stress is an intricate phenomenon at cellular and whole plant level that requires the knowledge of contributing physiological and biochemical processes and the genetic control of participating traits. In this context, present study was conducted with objective to evaluate the physiological, biochemical, and genetic responses of different wheat genotypes including bread wheat (BW) and synthetic hexaploids (SHs) under saline and control environment. The experiment was conducted in two factorial arrangement in randomized complete block design (RCBD), with genotypes as one factor and treatments as another factor. A significant decline in physiological traits (chlorophyll, photosynthesis, stomatal conductance, transpiration, and cell membrane stability) was observed in all genotypes due to salt stress; however, this decline was higher in BW genotypes as compared to four SH genotypes. In addition, the biochemical traits including enzymes [superoxide dismutase, catalase, and peroxidase (POD)] activity, proline, and glycine betaine (GB) illustrated significant increase along with increase in the expression of corresponding genes (TaCAT1, TaSOD, TaPRX2A, TaP5CS, and TaBADH-A1) due to salt stress in SHs as compared to BW. Correspondingly, highly overexpressed genes, TaHKT1;4, TaNHX1, and TaAKT1 caused a significant decline in Na+/K+ in SH as compared to BW genotypes under salt stress. Moreover, correlation analysis, principal component analysis (PCA), and heatmap analysis have further confirmed that the association and expression of physiological and biochemical traits varied significantly with salinity stress and type of genotype. Overall, the physiological, biochemical, and genetic evaluation proved SHs as the most useful stock for transferring salinity tolerance to other superior BW cultivars via the right breeding program.

7.
BMC Plant Biol ; 24(1): 611, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926637

RESUMEN

Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the negative effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1) and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control) and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), anthocyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e. glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na+ ions and concomitantly decreased the K+ and Ca2+ absorption in canola plants. Overall, the foliar treatments of SA were quite effective in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2 (Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ameliorating the negative effects of high salinity in canola plants.


Asunto(s)
Brassica napus , Ácido Salicílico , Estrés Salino , Brassica napus/efectos de los fármacos , Brassica napus/crecimiento & desarrollo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Estrés Salino/efectos de los fármacos , Clorofila/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Cloruro de Sodio/farmacología , Antioxidantes/metabolismo
8.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928514

RESUMEN

Macrobrachium rosenbergii is an essential species for freshwater economic aquaculture in China, but in the larval process, their salinity requirement is high, which leads to salinity stress in the water. In order to elucidate the mechanisms regulating the response of M. rosenbergii to acute low-salinity exposure, we conducted a comprehensive study of the response of M. rosenbergii exposed to different salinities' (0‱, 6‱, and 12‱) data for 120 h. The activities of catalase, superoxide dismutase, and glutathione peroxidase were found to be significantly inhibited in the hepatopancreas and muscle following low-salinity exposure, resulting in oxidative damage and immune deficits in M. rosenbergii. Differential gene enrichment in transcriptomics indicated that low-salinity stress induced metabolic differences and immune and inflammatory dysfunction in M. rosenbergii. The differential expressions of MIH, JHEH, and EcR genes indicated the inhibition of growth, development, and molting ability of M. rosenbergii. At the proteomic level, low salinity induced metabolic differences and affected biological and cellular regulation, as well as the immune response. Tyramine, trans-1,2-Cyclohexanediol, sorbitol, acetylcholine chloride, and chloroquine were screened by metabolomics as differential metabolic markers. In addition, combined multi-omics analysis revealed that metabolite chloroquine was highly correlated with low-salt stress.


Asunto(s)
Larva , Palaemonidae , Estrés Salino , Animales , Palaemonidae/genética , Palaemonidae/metabolismo , Palaemonidae/crecimiento & desarrollo , Larva/metabolismo , Transcriptoma , Proteómica/métodos , Salinidad , Perfilación de la Expresión Génica , Metabolómica/métodos , Estrés Oxidativo , Multiómica
9.
Chemosphere ; : 142688, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942243

RESUMEN

To explore the intrinsic influence of different salinity content on aniline biodegradation system in high temperature condition of 35±1 °C, six groups at various salinity concentration (0.0%-5.0%) were applied. The results showed that the salinity exerted insignificant impact on aniline removal performance. The low-level salinity (0.5%-1.5%) stimulated the nitrogen metabolism performance. The G5-2.5% had excellent adaptability to salinity while the nitrogen removal capacity of G6-5.0% was almost lost. Moreover, high throughput sequencing analysis revealed that the g__norank_f__NS9_marine_group, g__Thauera and g__unclassified_f__Rhodobacteraceae proliferated wildly and established positive correlation each other in low salinity systems. The g__SM1A02 occupying the dominant position in G5 ensured the nitrification performance. In contrast, the Rhodococcus possessing great survival advantage in tremendous osmotic pressure competed with most functional genus, triggering the collapse of nitrogen metabolism capacity in G6. This work provided valuable guidance for the aniline wastewater treatment under salinity stress in high temperature condition.

10.
Plants (Basel) ; 13(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38931028

RESUMEN

Salinity stress poses a significant threat to crop productivity worldwide, necessitating effective mitigation strategies. This study investigated the phytochemical composition and potential of grape seed extract (GSE) to mitigate salinity stress effects on faba bean plants. GC-MS analysis revealed several bioactive components in GSE, predominantly fatty acids. GSE was rich in essential nutrients and possessed a high antioxidant capacity. After 14 days of germination, GSE was applied as a foliar spray at different concentrations (0, 2, 4, 6, and 8 g/L) to mitigate the negative effects of salt stress (150 mM NaCl) on faba bean plants. Foliar application of 2-8 g/L GSE significantly enhanced growth parameters such as shoot length, root length, fresh weight, and dry weight of salt-stressed bean plants compared to the control. The Fv/Fm ratio, indicating photosynthetic activity, also improved with GSE treatment under salinity stress compared to the control. GSE effectively alleviated the oxidative stress induced by salinity, reducing malondialdehyde, hydrogen peroxide, praline, and glycine betaine levels. Total soluble proteins, amino acids, and sugars were enhanced in GSE-treated, salt-stressed plants. GSE treatment under salinity stress modulated the total antioxidant capacity, antioxidant responses, and enzyme activities such as peroxidase, ascorbate peroxidase, and polyphenol oxidase compared to salt-stressed plants. Gene expression analysis revealed GSE (6 g/L) upregulated photosynthesis (chlorophyll a/b-binding protein of LHCII type 1-like (Lhcb1) and ribulose bisphosphate carboxylase large chain-like (RbcL)) and carbohydrate metabolism (cell wall invertase I (CWINV1) genes) while downregulating stress response genes (ornithine aminotransferase (OAT) and ethylene-responsive transcription factor 1 (ERF1)) in salt-stressed bean plants. The study demonstrates GSE's usefulness in mitigating salinity stress effects on bean plants by modulating growth, physiology, and gene expression patterns, highlighting its potential as a natural approach to enhance salt tolerance.

11.
Plants (Basel) ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732384

RESUMEN

Hordeum vulgare genes NUD (HvNUD) and WIN1 (HvWIN1) play a regulatory role in cuticle organization. Because the cuticle is a key evolutionary acquisition of plants for protection against environmental factors, a knockout (KO) of each gene may alter their ability to adapt to unfavorable conditions. A potential pleiotropic effect of HvNUD or HvWIN1 gene mutations can be assessed under salt stress. Initial developmental stages are the most sensitive in living organisms; therefore, we evaluated salt tolerance of nud KO and win1 KO barley lines at the seedling stage. Air-dried barley grains of the KO lines and of a wild-type (WT) line were germinated in NaCl solutions (50, 100, or 150 mM). Over 30 physiological and morphological parameters of seedlings were assessed. Potential pleiotropic effects of the HvNUD gene KO under salt stress included the stimulation of root growth (which was lower under control conditions) and root necrosis. The pleiotropic effects of the HvWIN1 gene KO under the stressful conditions manifested themselves as maintenance of longer root length as compared to the other lines; stable variation of most of morphological parameters; lack of correlation between root lengths before and after exposure to NaCl solutions, as well as between shoot lengths; and the appearance of twins. Salt tolerance of the analyzed barley lines could be ranked as follows: nud KO > win1 KO ≈ WT, where nud KO lines were the most salt-tolerant. A comparison of effects of salinity and ionizing radiation on nud KO and win1 KO barley lines indicated differences in tolerance of the lines to these stressors.

12.
Plants (Basel) ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732394

RESUMEN

Soil salinity hampers durum wheat plant growth and development at various stages. The detrimental effects of salinity on plant cellular and physiological processes necessitate strategies to alleviate its negative impact and improve overall crop yield. This study investigates the efficacy of plant growth-promoting rhizobacteria (PGPR) bacteria inoculation in mitigating salinity stress on two durum wheat genotypes with contrasting degrees of salinity tolerance (Tamaroi, salt-sensitive and Line 5004, salt-tolerant) under greenhouse and field conditions. For this purpose, two halotolerant-PGPR strains, Pseudomonas jordanii strain G34 and Oceanobacillus jordanicus strain GSFE11, were utilized for the inoculation. For the greenhouse experiment, the two selected genotypes were subjected to salinity at the flag leaf stage with continuous irrigation with a Hoagland solution supplemented with 50 mM NaCl. Field experiments were conducted across two locations with contrasting salinity levels over two growing seasons. At the end of both experiments, various parameters including total weight, spike weight, grain weight, spike number, spikelet number, grains per spike and thousand kernel weight were measured. The halotolerant PGPRs, P. jordanii strain G34 and O. jordanicus strain GSFE11, proved effective in alleviating salinity-induced adverse effects and enhancing growth under greenhouse and field conditions. However, bacterial inoculation significantly improved growth in the salt-sensitive genotype and such effects were not observed in the tolerant genotype, emphasizing genotype-specific responses. Notably, inoculation with O. jordanicus increased Na+ and Ca2+ uptake in the salt-tolerant "Line 5004" without hindering growth, suggesting one of its potential mechanisms for salt tolerance. This research demonstrates the potential of halotolerant-PGPR inoculation in enhancing durum wheat production in saline environments, but also underscores the importance of understanding genotype-specific responses for tailored interventions.

13.
Biol Futur ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739202

RESUMEN

To find out the possibilities of growing white sandalwood in sub-tropical regions of India where farmers facing the problem of water deficit and salinity stress, a RBD experiment was conducted. Sandalwood grown alone and with five selected hosts (Alternanthera sp., Neem, Shisham, Dek and Agarwood) on the basis of prior study under water deficit, salinity stress and combined water deficit and salinity stress. Sandalwood plants were harvested after 180 days of imposing stress treatments. Morphological traits (plant height, collar diameter, shoot fresh and dry biomass) showed significant reduction under water deficit and salinity stress, which were further aggravated under combined water deficit and salinity stress. Studied plant water traits, ionic balance and gas exchange attributes were also reduced by these stresses. While among studied host, Shisham and Dek identified as the best host species under water deficit, salinity and interactive stress by maintaining ion homeostasis, osmotic adjustments and plant water regulation. Results depicted that sandalwood plants cultivated alone were not able to survive under salinity and combined stress conditions and showed poor growth under water deficit and control conditions. Different indices were also calculated based on morpho-physiological and ionic traits and also indicated that sandalwood grown with Dalbergia sissoo and Melia dubia showed higher drought, salt and stress tolerance potential, which made sandalwood adaptable under these stresses. Therefore, the present study signifies the importance of host especially D. sissoo and M. dubia which might be excellent long-term host species for sandalwood cultivation under sub-tropical conditions to thrive under changing environments.

14.
Water Res ; 258: 121738, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38749184

RESUMEN

Antibiotic residues in aquaculture environment pose persistent threats to ecology and human health, exacerbated by salt-alkali mariculture wastewater. Yet, little is known about antibiotic removal in tidal flow constructed wetlands (TFCWs) under salinity stress, especially considering TFCW constitution, configuration, and influent water characteristics. Here, the removal performance and mechanism of different TFCWs for sulfonamide antibiotics (SAs: sulfadiazine, sulfamethazine, sulfamonomethoxine, and sulfamethoxazole) and trimethoprim (TMP) from mariculture wastewater (with low, medium, and high salinity) were evaluated alongside comparisons of environmental factors and microbial responses. Results showed substantial reduction in alkalinity (from 8.25-8.26 to 7.65-8.18), salinity (from 3.67-11.30 ppt to 3.20-10.79 ppt), and SAs concentrations (from 7.79-15.46 mg/L to 0.25-10.00 mg/L) for mariculture wastewater using TFCWs. Zeolite and yellow flag configurations exhibited superior performance in SAs removal from mariculture wastewater. Furthermore, the salt-alkali neutralization and oxygen transport capabilities of zeolite, along with the salt-alkali tolerance and biofilm formation characteristics of yellow flag, promoted the development of a biofilm in the rhizosphere dominated by oxidative stress tolerance and facultative anaerobic traits, thereby improving the TFCW microenvironment. Consequently, aerobic (Sulfuritalea and Enterobacter) and salt-tolerant (Pseudomonas) functional bacteria involved in antibiotic degradation were selectively enriched in the zeolite- and yellow flag-TFCWs, contributing to the effective biodegradation of SAs (achieving removal efficiency of 92-97 %). Besides, the high salt-alkali levels of mariculture wastewater and the strong oxygen-enriched capacity of the TFCWs not only enhanced the aerobic oxidation reaction of SAs, but also bidirectionally inhibited the substrate adsorption and anaerobic reduction process of TMP. These findings address a critical gap by investigating the efficacy of TFCWs in removing antibiotics from mariculture wastewater under various salinity conditions, providing essential insights for optimizing wetland design and improving wastewater management in mariculture environments.


Asunto(s)
Antibacterianos , Eliminación de Residuos Líquidos , Aguas Residuales , Humedales , Aguas Residuales/química , Salinidad , Contaminantes Químicos del Agua , Acuicultura , Estrés Salino , Purificación del Agua
15.
BMC Plant Biol ; 24(1): 363, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724910

RESUMEN

Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.


Asunto(s)
Acetatos , Antioxidantes , Brassica napus , Ciclopentanos , Giberelinas , Oxilipinas , Reguladores del Crecimiento de las Plantas , Suelo , Ciclopentanos/farmacología , Oxilipinas/farmacología , Brassica napus/crecimiento & desarrollo , Brassica napus/efectos de los fármacos , Brassica napus/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacología , Antioxidantes/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Acetatos/farmacología , Suelo/química , Clorofila/metabolismo , Estrés Salino/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Nutrientes/metabolismo
16.
Chemosphere ; 360: 142431, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797209

RESUMEN

Globally, agricultural productivity is facing a serious problem due to soil salinity which often causes osmotic, ionic, and redox imbalances in plants. Applying halotolerant rhizobacterial inoculants having multifarious growth-regulating traits is thought to be an effective and advantageous approach to overcome salinity stress. Here, salt-tolerant (tolerating 300 mM NaCl), exopolysaccharide (EPS) producing Rhizobium azibense SR-26 (accession no. MG063740) was assessed for salt alleviation potential by inoculating Phaseolus vulgaris (L.) plants raised under varying NaCl regimes. The metabolically active cells of strain SR-26 produced a significant amount of phytohormones (indole-3-acetic acid, gibberellic acid, and cytokinin), ACC deaminase, ammonia, and siderophore under salt stress. Increasing NaCl concentration variably affected the EPS produced by SR-26. The P-solubilization activity of the SR-26 strain was positively impacted by NaCl, as demonstrated by OD shift in NaCl-treated/untreated NBRIP medium. The detrimental effect of NaCl on plants was lowered by inoculation of halotolerant strain SR-26. Following soil inoculation, R. azibense significantly (p ≤ 0.05) enhanced seed germination (10%), root (19%) shoot (23%) biomass, leaf area (18%), total chlorophyll (21%), and carotenoid content (32%) of P. vulgaris raised in soil added with 40 mM NaCl concentration. Furthermore, strain SR-26 modulated the relative leaf water content (RLWC), proline, total soluble protein (TSP), and sugar (TSS) of salt-exposed plants. Moreover, R. azibense inoculation lowered the concentrations of oxidative stress biomarkers; MDA (29%), H2O2 content (24%), electrolyte leakage (31%), membrane stability (36%) and Na+ ion uptake (28%) when applied to 40 mM NaCl-treated plants. Further, R. azibense increases the salt tolerance mechanism of P. vulgaris by upregulating the antioxidant defensive responses. Summarily, it is reasonable to propose that EPS-synthesizing halotolerant R. azibense SR-26 should be applied as the most cost-effective option for increasing the yields of legume crops specifically P. vulgaris in salinity-challenged soil systems.


Asunto(s)
Antioxidantes , Phaseolus , Reguladores del Crecimiento de las Plantas , Polisacáridos Bacterianos , Rhizobium , Tolerancia a la Sal , Phaseolus/efectos de los fármacos , Phaseolus/fisiología , Phaseolus/crecimiento & desarrollo , Rhizobium/fisiología , Polisacáridos Bacterianos/metabolismo , Antioxidantes/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Microbiología del Suelo , Homeostasis , Salinidad , Cloruro de Sodio/farmacología , Iones
17.
Environ Res ; 255: 119162, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762003

RESUMEN

In order to evaluate the impact of salinity gradients on the aniline biodegradation system, six reactors at salinity concentrations (0%-5%) were established. The results presented the salinity except for 5% imposed negligible effects on aniline degradation performance. Nitrification had prominent resistance to salinity (0%-1.5%) while were significantly restrained when salinity increased. The total nitrogen (TN) removal efficiency of Z4 (1.5%) was 20.5% higher than Z1 (0%) during the stable operation phase. Moreover, high throughput sequencing analysis showed that halophilic bacterium, such as Halomonas, Rhodococcus, remained greater survival advantages in high salinity system. The substantial enrichment of Flavobacterium, Dokdonella, Paracoccus observed in Z4 ensured its excellent nitrogen removal performance. The close cooperation among dominant functional bacteria was strengthened when salt content was below 1.5% while exceeding 1.5% led to the collapse of metabolic capacity through integrating the toxicity of aniline and high osmotic pressure.


Asunto(s)
Compuestos de Anilina , Biodegradación Ambiental , Contaminantes Químicos del Agua , Compuestos de Anilina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Estrés Salino , Bacterias/metabolismo , Bacterias/genética , Reactores Biológicos/microbiología , Salinidad
18.
FEMS Microbes ; 5: xtae012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770063

RESUMEN

To meet the food and feed demands of the growing population, global food production needs to double by 2050. Climate change-induced challenges to food crops, especially soil salinization, remain a major threat to food production. We hypothesize that endophytic fungi isolated from salt-adapted host plants can confer salinity stress tolerance to salt-sensitive crops. Therefore, we isolated fungal endophytes from shrubs along the shores of saline alkaline Lake Magadi and evaluated their ability to induce salinity stress tolerance in tomato seeds and seedlings. Of 60 endophytic fungal isolates, 95% and 5% were from Ascomycetes and Basidiomycetes phyla, respectively. The highest number of isolates (48.3%) were from the roots. Amylase, protease and cellulase were produced by 25, 30 and 27 isolates, respectively; and 32 isolates solubilized phosphate. Only eight isolates grew at 1.5 M NaCl. Four fungal endophytes (Cephalotrichum cylindricum, Fusarium equiseti, Fusarium falciforme and Aspergilus puniceus) were tested under greenhouse conditions for their ability to induce salinity tolerance in tomato seedlings. All four endophytes successfully colonized tomato seedlings and grew in 1.5 M NaCl. The germination of endophyte-inoculated seeds was enhanced by 23%, whereas seedlings showed increased chlorophyll and biomass content and decreased hydrogen peroxide content under salinity stress, compared with controls. The results suggest that the the four isolates can potentially be used to mitigate salinity stress in tomato plants in salt-affected soils.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38808966

RESUMEN

Fishmeal substitution with sustainable feed sources is highly essential towards sustainable production. This study aimed to investigate the effects of substituting fishmeal (FM) with Daphnia magna biomass meal (DBM) or zooplankton biomass meal (ZBM) on growth performance, liver and intestinal histology, gut bacterial abundance and stress tolerance of Nile tilapia, Oreochromis niloticus, fry. Nile tilapia fry (0.23 ± 0.04 g) were randomly assigned to five groups of three replicates. The control diet comprised 300 g/kg FM, and the FM was substituted with DBM or ZBM at levels of 25% and 50% (DBM-25, DBM-50, ZBM-25 and ZBM-50 respectively) in the other experimental diets. The experiment lasted 56 days in 1.5 m3 concrete tanks. The results revealed that weight gain and feed conversion ratio (FCR) significantly (p ≤ 0.035 and 0.025 respectively) improved with a polynomial response with a peak at 25% ZBM and a linear increase with DBM up to 50% of FM. Histometric indices of the distal intestine showed improvements (p ≤ 0.001) in villus height, villus width, crypt depth and muscle thickness of fish fed DBM or ZBM compared to the control. In the meantime, there were no histological abnormalities in the liver sections. The replacement of FM with DBM or ZBM could modulated gut bacterial abundance, including total bacterial count, Escherichia coli, Bacillus subtilis, and Lactobacillus sp. The fish-fed DBM or ZBM-containing diets had higher (p ≤ 0.05) tolerances to salinity stress than the control group. In conclusion, DBM or ZBM could replace FM up to 50% and 25%, respectively with improved fish growth performance, FCR, gut histology and tolerance to salinity stress.

20.
BMC Plant Biol ; 24(1): 432, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773389

RESUMEN

The VIM (belonged to E3 ubiquitin ligase) gene family is crucial for plant growth, development, and stress responses, yet their role in salt stress remains unclear. We analyzed phylogenetic relationships, chromosomal localization, conserved motifs, gene structure, cis-acting elements, and gene expression patterns of the VIM gene family in four cotton varieties. Our findings reveal 29, 29, 17, and 14 members in Gossypium hirsutum (G.hirsutum), Gossypium barbadense (G.barbadense), Gossypium arboreum (G.arboreum), and Gossypium raimondii (G. raimondii), respectively, indicating the maturity and evolution of this gene family. motifs among GhVIMs genes were observed, along with the presence of stress-responsive, hormone-responsive, and growth-related elements in their promoter regions. Gene expression analysis showed varying patterns and tissue specificity of GhVIMs genes under abiotic stress. Silencing GhVIM28 via virus-induced gene silencing revealed its role as a salt-tolerant negative regulator. This work reveals a mechanism by which the VIM gene family in response to salt stress in cotton, identifying a potential negative regulator, GhVIM28, which could be targeted for enhancing salt tolerance in cotton. The objective of this study was to explore the evolutionary relationship of the VIM gene family and its potential function in salt stress tolerance, and provide important genetic resources for salt tolerance breeding of cotton.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Salino , Gossypium/genética , Gossypium/fisiología , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Genes de Plantas , Tolerancia a la Sal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA