Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
NMR Biomed ; : e5247, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183645

RESUMEN

This work proposes MP-Grasp4D (magnetization-prepared golden-angle radial sparse parallel 4D) MRI, a free-breathing, inversion recovery (IR)-prepared, time-resolved 4D MRI technique with improved T1-weighted contrast. MP-Grasp4D MRI acquisition incorporates IR preparation into a radial gradient echo sequence. MP-Grasp4D employs a golden-angle navi-stack-of-stars sampling scheme, where imaging data of rotating radial stacks and navigator stacks (acquired at a consistent rotation angle) are alternately acquired. The navigator stacks are used to estimate a temporal basis for low-rank subspace-constrained reconstruction. This allows for the simultaneous capture of both IR-induced contrast changes and respiratory motion. One temporal frame of the imaging volume in MP-Grasp4D MRI is reconstructed from a single stack and an adjacent navigator stack on average, resulting in a nominal temporal resolution of 0.16 seconds per volume. Images corresponding to the optimal inversion time (TI) can be retrospectively selected for providing the best image contrast. Reader studies were conducted to assess the performance of MP-Grasp4D MRI in liver imaging across 30 subjects in comparison with standard Grasp4D MRI without IR preparation. MP-Grasp4D MRI received significantly higher scores (P < 0.05) than Grasp4D in all assessment categories. There was a moderate to almost perfect agreement (kappa coefficient from 0.42 to 0.9) between the two readers for image quality assessment. When the scan time is reduced, MP-Grasp4D MRI preserves image contrast and quality, demonstrating additional acceleration capability. MP-Grasp4D MRI improves T1-weighted contrast for free-breathing time-resolved 4D MRI and eliminates the need for explicit motion compensation. This method is expected to be valuable in different MRI applications such as MR-guided radiotherapy.

2.
NMR Biomed ; : e5216, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39099162

RESUMEN

PURPOSE: To develop and validate a data acquisition scheme combined with a motion-resolved reconstruction and dictionary-matching-based parameter estimation to enable free-breathing isotropic resolution self-navigated whole-liver simultaneous water-specific T 1 $$ {\mathrm{T}}_1 $$ ( wT 1 $$ {\mathrm{wT}}_1 $$ ) and T 2 $$ {\mathrm{T}}_2 $$ ( wT 2 $$ {\mathrm{wT}}_2 $$ ) mapping for the characterization of diffuse and oncological liver diseases. METHODS: The proposed data acquisition consists of a magnetization preparation pulse and a two-echo gradient echo readout with a radial stack-of-stars trajectory, repeated with different preparations to achieve different T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ contrasts in a fixed acquisition time of 6 min. Regularized reconstruction was performed using self-navigation to account for motion during the free-breathing acquisition, followed by water-fat separation. Bloch simulations of the sequence were applied to optimize the sequence timing for B 1 $$ {B}_1 $$ insensitivity at 3 T, to correct for relaxation-induced blurring, and to map T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ using a dictionary. The proposed method was validated on a water-fat phantom with varying relaxation properties and in 10 volunteers against imaging and spectroscopy reference values. The performance and robustness of the proposed method were evaluated in five patients with abdominal pathologies. RESULTS: Simulations demonstrate good B 1 $$ {B}_1 $$ insensitivity of the proposed method in measuring T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ values. The proposed method produces co-registered wT 1 $$ {\mathrm{wT}}_1 $$ and wT 2 $$ {\mathrm{wT}}_2 $$ maps with a good agreement with reference methods (phantom: wT 1 = 1 . 02 wT 1,ref - 8 . 93 ms , R 2 = 0 . 991 $$ {\mathrm{wT}}_1=1.02\kern0.1em {\mathrm{wT}}_{1,\mathrm{ref}}-8.93\kern0.1em \mathrm{ms},{R}^2=0.991 $$ ; wT 2 = 1 . 03 wT 2,ref + 0 . 73 ms , R 2 = 0 . 995 $$ {\mathrm{wT}}_2=1.03\kern0.1em {\mathrm{wT}}_{2,\mathrm{ref}}+0.73\kern0.1em \mathrm{ms},{R}^2=0.995 $$ ). The proposed wT 1 $$ {\mathrm{wT}}_1 $$ and wT 2 $$ {\mathrm{wT}}_2 $$ mapping exhibits good repeatability and can be robustly performed in patients with pathologies. CONCLUSIONS: The proposed method allows whole-liver wT 1 $$ {\mathrm{wT}}_1 $$ and wT 2 $$ {\mathrm{wT}}_2 $$ quantification with high accuracy at isotropic resolution in a fixed acquisition time during free-breathing.

3.
Neuroimage ; 297: 120689, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880311

RESUMEN

A new MRI technique is presented for three-dimensional fast simultaneous whole brain mapping of myelin water fraction (MWF), T1, proton density (PD), R2*, magnetic susceptibility (QSM), and B1 transmit field (B1+). Phantom and human (N = 9) datasets were acquired using a dual-flip-angle blipped multi-gradient-echo (DFA-mGRE) sequence with a stack-of-stars (SOS) trajectory. Images were reconstructed using a subspace-based algorithm with a locally low-rank constraint. A novel joint-sparsity-constrained multicomponent T2*-T1 spectrum estimation (JMSE) algorithm is proposed to correct for the T1 saturation effect and B1+/B1- inhomogeneities in the quantification of MWF. A tissue-prior-based B1+ estimation algorithm was adapted for B1 correction in the mapping of T1 and PD. In the phantom study, measurements obtained at an acceleration factor (R) of 12 using prospectively under-sampled SOS showed good consistency (R2 > 0.997) with Cartesian reference for R2*/T1app/M0app. In the in vivo study, results of retrospectively under-sampled SOS with R = 6, 12, 18, showed good quality (structure similarity index measure > 0.95) compared with those of fully-sampled SOS. Besides, results of prospectively under-sampled SOS with R = 12 showed good consistency (intraclass correlation coefficient > 0.91) with Cartesian reference for T1/PD/B1+/MWF/QSM/R2*, and good reproducibility (coefficient of variation < 7.0 %) in the test-retest analysis for T1/PD/B1+/MWF/R2*. This study has demonstrated the feasibility of simultaneous whole brain multiparametric mapping with a two-minute scan using the DFA-mGRE SOS sequence, which may overcome a major obstacle for neurological applications of multiparametric MRI.


Asunto(s)
Encéfalo , Fantasmas de Imagen , Humanos , Masculino , Adulto , Encéfalo/diagnóstico por imagen , Algoritmos , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Imágenes de Resonancia Magnética Multiparamétrica/métodos
4.
Magn Reson Med ; 90(3): 1053-1068, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37203314

RESUMEN

PURPOSE: To propose a framework called live-view golden-angle radial sparse parallel (GRASP) MRI for low-latency and high-fidelity real-time volumetric MRI. METHODS: Live-view GRASP MRI has two stages. The first one is called an off-view stage and the second one is called a live-view stage. In the off-view stage, 3D k-space data and 2D navigators are acquired alternatively using a new navi-stack-of-stars sampling scheme. A 4D motion database is then generated that contains time-resolved MR images at a sub-second temporal resolution, and each image is linked to a 2D navigator. In the live-view stage, only 2D navigators are acquired. At each time point, a live-view 2D navigator is matched to all the off-view 2D navigators. A 3D image that is linked to the best-matched off-view 2D navigator is then selected for this time point. This framework places the typical acquisition and reconstruction burden of MRI in the off-view stage, enabling low-latency real-time 3D imaging in the live-view stage. The accuracy of live-view GRASP MRI and the robustness of 2D navigators for characterizing respiratory variations and/or body movements were assessed. RESULTS: Live-view GRASP MRI can efficiently generate real-time volumetric images that match well with the ground-truth references, with an imaging latency below 500 ms. Compared to 1D navigators, 2D navigators enable more reliable characterization of respiratory variations and/or body movements that may occur throughout the two imaging stages. CONCLUSION: Live-view GRASP MRI represents a novel, accurate, and robust framework for real-time volumetric imaging, which can potentially be applied for motion adaptive radiotherapy on MRI-Linac.


Asunto(s)
Imagen por Resonancia Magnética , Respiración , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Imagenología Tridimensional/métodos , Movimiento
5.
Cardiovasc Intervent Radiol ; 46(2): 274-279, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36609862

RESUMEN

PURPOSE: To evaluate workflow efficiency and diagnostic quality of a free-breathing 3D stack-of-stars gradient echo (Radial GRE) sequence compared to a breath-hold 3D Cartesian gradient echo (Cartesian GRE) sequence for needle position control in MR-guided liver interventions. MATERIALS AND METHODS: 12 MR-guided liver interventions were performed on a 1.5 T Siemens Aera and analyzed retrospectively. 15 series of the Radial GRE sequence were compared to 14 series of the Cartesian GRE sequence regarding the time interval between two consecutive live-scans for needle tracking (Tracking-2-Tracking-Time). The quality of both sequences was compared by the SNR within comparable slices in liver and tumor ROIs. The CNR was calculated by subtraction of the SNR values. Subjective image quality scores of three radiologists were assessed and inter-rater reliability was tested by Fleiss' kappa. Values are given as mean ± SD. P-values < 0.05 were considered as significant. RESULTS: The median Tracking-2-Tracking-Time was significantly shorter for the Radial GRE sequence, 185 ± 42 s vs. 212 ± 142 s (p = 0.04) and the median SNR of the liver and tumor ROIs were significantly higher in the Radial GRE sequence, 249 ± 92 vs. 109 ± 67 (p = 0.03) and 165 ± 74 vs. 77 ± 43 (p = 0.02). CNR between tumor and liver ROIs showed a tendency to be higher for the Radial GRE sequence without significance, 68 ± 48 vs. 49 ± 32 (p = 0.28). Mean subjective image quality was 3.33 ± 1.08 vs. 2.62 ± 0.95 comparing Radial and Cartesian GRE with a Fleiss' kappa of 0.39 representing fair inter-rater reliability. CONCLUSION: A free-breathing 3D stack-of-stars gradient echo sequence can simplify the workflow and reduce intervention time, while providing superior image quality. Under local anesthesia, it increases patient comfort and reduces potential risks for needle dislocations in MR-guided liver interventions by avoiding respiratory arrests for needle position control.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Humanos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Flujo de Trabajo , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Hígado/diagnóstico por imagen , Hígado/cirugía
6.
NMR Biomed ; 36(2): e4844, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36259951

RESUMEN

Intraframe motion blurring, as a major challenge in free-breathing dynamic MRI, can be reduced if high temporal resolution can be achieved. To address this challenge, this work proposes a highly accelerated 4D (3D + time) dynamic MRI framework with subsecond temporal resolution that does not require explicit motion compensation. The method combines standard stack-of-stars golden-angle radial sampling and tailored GRASP-Pro (Golden-angle RAdial Sparse Parallel imaging with imProved performance) reconstruction. Specifically, 4D dynamic MRI acquisition is performed continuously without motion gating or sorting. The k-space centers in stack-of-stars radial data are organized to guide estimation of a temporal basis, with which GRASP-Pro reconstruction is employed to enforce joint low-rank subspace and sparsity constraints. This new basis estimation strategy is the new feature proposed for subspace-based reconstruction in this work to achieve high temporal resolution (e.g., subsecond/3D volume). It does not require sequence modification to acquire additional navigation data, it is compatible with commercially available stack-of-stars sequences, and it does not need an intermediate reconstruction step. The proposed 4D dynamic MRI approach was tested in abdominal motion phantom, free-breathing abdominal MRI, and dynamic contrast-enhanced MRI (DCE-MRI). Our results have shown that GRASP-Pro reconstruction with the new basis estimation strategy enables highly-accelerated 4D dynamic imaging at subsecond temporal resolution (with five spokes or less for each dynamic frame per image slice) for both free-breathing non-DCE-MRI and DCE-MRI. In the abdominal phantom, better image quality with lower root mean square error and higher structural similarity index was achieved using GRASP-Pro compared with standard GRASP. With the ability to acquire each 3D image in less than 1 s, intraframe respiratory blurring can be intrinsically reduced for body applications with our approach, which eliminates the need for explicit motion detection and motion compensation.


Asunto(s)
Medios de Contraste , Respiración , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Abdomen
7.
Pediatr Radiol ; 53(7): 1285-1299, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36255456

RESUMEN

Longer examination time, need for anesthesia in smaller children and the inability of most children to hold their breath are major limitations of MRI in pediatric body imaging. Fortunately, with technical advances, many new and upcoming MRI sequences are overcoming these limitations. Advances in data acquisition and k-space sampling methods have enabled sequences with improved temporal and spatial resolution, and minimal artifacts. Sequences to minimize movement artifacts mainly utilize radial k-space filling, and examples include the stack-of-stars method for T1-weighted imaging and the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER)/BLADE method for T2-weighted imaging. Similarly, the sequences with improved temporal resolution and the ability to obtain multiple phases in a single breath-hold in dynamic imaging mainly use some form of partial k-space filling method. New sequences use a variable combination of data sampling methods like compressed sensing, golden-angle radial k-space filling, parallel imaging and partial k-space filling to achieve free-breathing, faster sequences that could be useful for pediatric abdominal and thoracic imaging. Simultaneous multi-slice method has improved diffusion-weighted imaging (DWI) with reduction in scan time and artifacts. In this review, we provide an overview of data sampling methods like parallel imaging, compressed sensing, radial k-space sampling, partial k-space sampling and simultaneous multi-slice. This is followed by newer available and upcoming sequences for T1-, T2- and DWI based on these other advances. We also discuss the Dixon method and newer approaches to reducing metal artifacts.


Asunto(s)
Medios de Contraste , Procesamiento de Imagen Asistido por Computador , Humanos , Niño , Procesamiento de Imagen Asistido por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Respiración , Artefactos , Imagenología Tridimensional , Aumento de la Imagen/métodos
8.
Magn Reson Imaging ; 97: 56-67, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36577458

RESUMEN

This work aimed to develop a modified stack-of-stars golden-angle radial sampling scheme with variable-density acceleration along the slice (kz) dimension (referred to as VD-stack-of-stars) and to test this new sampling trajectory with multi-coil compressed sensing reconstruction for rapid motion-robust 3D liver MRI. VD-stack-of-stars sampling implements additional variable-density undersampling along the kz dimension, so that slice resolution (or volumetric coverage) can be increased without prolonging scan time. The new sampling trajectory (with increased slice resolution) was compared with standard stack-of-stars sampling with fully sampled kz (with standard slice resolution) in both non-contrast-enhanced free-breathing liver MRI and dynamic contrast-enhanced MRI (DCE-MRI) of the liver in volunteers. For both sampling trajectories, respiratory motion was extracted from the acquired radial data, and images were reconstructed using motion-compensated (respiratory-resolved or respiratory-weighted) dynamic radial compressed sensing reconstruction techniques. Qualitative image quality assessment (visual assessment by experienced radiologists) and quantitative analysis (as a metric of image sharpness) were performed to compare images acquired using the new and standard stack-of-stars sampling trajectories. Compared to standard stack-of-stars sampling, both non-contrast-enhanced and DCE liver MR images acquired with VD-stack-of-stars sampling presented improved overall image quality, sharper liver edges and increased hepatic vessel clarity in all image planes. The results have suggested that the proposed VD-stack-of-stars sampling scheme can achieve improved performance (increased slice resolution or volumetric coverage with better image quality) over standard stack-of-stars sampling in free-breathing DCE-MRI without increasing scan time. The reformatted coronal and sagittal images with better slice resolution may provide added clinical value.


Asunto(s)
Aumento de la Imagen , Imagenología Tridimensional , Humanos , Imagenología Tridimensional/métodos , Aumento de la Imagen/métodos , Medios de Contraste , Imagen por Resonancia Magnética/métodos , Respiración , Artefactos
9.
Magn Reson Imaging ; 98: 7-16, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36563888

RESUMEN

PURPOSE: To evaluate a novel 2D simultaneous multi-slice (SMS) myocardial perfusion acquisition and compare directly to a published quantitative 3D stack-of-stars (SoS) acquisition. METHODS: A hybrid saturation recovery radial 2D SMS sequence following a single saturation was created for the quantification of myocardial blood flow (MBF). This sequence acquired three slices simultaneously and generated an arterial input function (AIF) using the first 24 rays. Validation was done in a novel way by alternating heartbeats between the hybrid 2D SMS and the 3D SoS acquisitions. Initial studies were done to study the effects of using only every other beat for the 2D SMS in two subjects, and for the 3D SoS in four subjects. The proposed alternating acquisitions were then performed in ten dog studies at rest, four dog studies at adenosine stress, and two human resting studies. Quantitative MBF analysis was performed for 2D SMS and 3D SoS separately, using a compartment model. RESULTS: Acquiring every-other-beat data resulted in 6 ± 5% ("ideal") and 11 ± 8% ("practical") perfusion changes for both 2D SMS and 3D SoS methods. For alternating acquisitions, 2D SMS and 3D SoS quantitative perfusion values were comparable for both the twelve rest studies (2D SMS: 0.69 ± 0.16 vs 3D: 0.69 ± 0.15 ml/g/min, p = 0.55) and the four stress studies (2D SMS: 1.28 ± 0.22 vs 3D: 1.30 ± 0.24 ml/g/min, p = 0.61). CONCLUSION: Every-other-beat acquisition changed estimated perfusion values relatively little for both sequences. The quantitative hybrid radial 2D SMS myocardial first-pass perfusion imaging sequence gave results similar to 3D perfusion when compared directly with an alternating beat acquisition.


Asunto(s)
Vasos Coronarios , Imagen de Perfusión Miocárdica , Humanos , Animales , Perros , Circulación Coronaria , Perfusión , Imagen de Perfusión Miocárdica/métodos , Algoritmos , Imagen por Resonancia Magnética/métodos
10.
Tomography ; 8(5): 2113-2128, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36136874

RESUMEN

Application of quantitative dynamic contrast-enhanced (DCE) MRI in mouse models of abdominal cancer is challenging due to the effects of RF inhomogeneity, image corruption from rapid respiratory motion and the need for high spatial and temporal resolutions. Here we demonstrate a DCE protocol optimized for such applications. The method consists of three acquisitions: (1) actual flip-angle B1 mapping, (2) variable flip-angle T1 mapping and (3) acquisition of the DCE series using a motion-robust radial strategy with k-space weighted image contrast (KWIC) reconstruction. All three acquisitions employ spoiled radial imaging with stack-of-stars sampling (SoS) and golden-angle increments between the views. This scheme is shown to minimize artifacts due to respiratory motion while simultaneously facilitating view-sharing image reconstruction for the dynamic series. The method is demonstrated in a genetically engineered mouse model of pancreatic ductal adenocarcinoma and yielded mean perfusion parameters of Ktrans = 0.23 ± 0.14 min-1 and ve = 0.31 ± 0.17 (n = 22) over a wide range of tumor sizes. The SoS-sampled DCE method is shown to produce artifact-free images with good SNR leading to robust estimation of DCE parameters.


Asunto(s)
Aumento de la Imagen , Interpretación de Imagen Asistida por Computador , Abdomen , Animales , Medios de Contraste , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Ratones
11.
Sensors (Basel) ; 22(9)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35590959

RESUMEN

Compared with hyperpolarized noble gas MRI, oxygen-enhanced lung imaging is a cost-effective approach to investigate lung function. In this study, we investigated the feasibility of free-breathing phase-resolved oxygen-enhanced pulmonary MRI based on a 3D stack-of-stars ultra-short echo time (UTE) sequence. We conducted both computer simulation and in vivo experiments and calculated percent signal enhancement maps of four different respiratory phases on four healthy volunteers from the end of expiration to the end of inspiration. The phantom experiment was implemented to verify simulation results. The respiratory phase was segmented based on the extracted respiratory signal and sliding window reconstruction, providing phase-resolved pulmonary MRI. Demons registration algorithm was applied to compensate for respiratory motion. The mean percent signal enhancement of the average phase increases from anterior to posterior region, matching previous literature. More details of pulmonary tissues were observed on post-oxygen inhalation images through the phase-resolved technique. Phase-resolved UTE pulmonary MRI shows the potential as a valuable method for oxygen-enhanced MRI that enables the investigation of lung ventilation on middle states of the respiratory cycle.


Asunto(s)
Imagenología Tridimensional , Oxígeno , Simulación por Computador , Humanos , Imagenología Tridimensional/métodos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Respiración
12.
J Magn Reson Imaging ; 56(1): 45-62, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35396897

RESUMEN

In recent years, golden-angle radial sampling has received substantial attention and interest in the magnetic resonance imaging (MRI) community, and it has become a popular sampling trajectory for both research and clinical use. However, although the number of relevant techniques and publications has grown rapidly, there is still a lack of a review paper that provides a comprehensive overview and summary of the basics of golden-angle rotation, the advantages and challenges/limitations of golden-angle radial sampling, and recommendations in using different types of golden-angle radial trajectories for MRI applications. Such a review paper is expected to be helpful both for clinicians who are interested in learning the potential benefits of golden-angle radial sampling and for MRI physicists who are interested in exploring this research direction. The main purpose of this review paper is thus to present an overview and summary about golden-angle radial MRI sampling. The review consists of three sections. The first section aims to answer basic questions such as: what is a golden angle; how is the golden angle calculated; why is golden-angle radial sampling useful, and what are its limitations. The second section aims to review more advanced trajectories of golden-angle radial sampling, including tiny golden-angle rotation, stack-of-stars golden-angle radial sampling, and three-dimensional (3D) kooshball golden-angle radial sampling. Their respective advantages and limitations and potential solutions to address these limitations are also discussed. Finally, the third section reviews MRI applications that can benefit from golden-angle radial sampling and provides recommendations to readers who are interested in implementing golden-angle radial trajectories in their MRI studies. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Artefactos , Medios de Contraste , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos
13.
MAGMA ; 35(3): 411-419, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34779971

RESUMEN

OBJECTIVE: Dysphagia or difficulty in swallowing is a potentially hazardous clinical problem that needs regular monitoring. Real-time 2D MRI of swallowing is a promising radiation-free alternative to the current clinical standard: videofluoroscopy. However, aspiration may be missed if it occurs outside this single imaged slice. We therefore aimed to image swallowing in 3D real time at 12 frames per second (fps). MATERIALS AND METHODS: At 3 T, three 3D real-time MRI acquisition approaches were compared to the 2D acquisition: an aligned stack-of-stars (SOS), and a rotated SOS with a golden-angle increment and with a tiny golden-angle increment. The optimal 3D acquisition was determined by computer simulations and phantom scans. Subsequently, five healthy volunteers were scanned and swallowing parameters were measured. RESULTS: Although the rotated SOS approaches resulted in better image quality in simulations, in practice, the aligned SOS performed best due to the limited number of slices. The four swallowing phases could be distinguished in 3D real-time MRI, even though the spatial blurring was stronger than in 2D. The swallowing parameters were similar between 2 and 3D. CONCLUSION: At a spatial resolution of 2-by-2-by-6 mm with seven slices, swallowing can be imaged in 3D real time at a frame rate of 12 fps.


Asunto(s)
Deglución , Imagenología Tridimensional , Simulación por Computador , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
14.
J Magn Reson Imaging ; 55(6): 1683-1693, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34730867

RESUMEN

BACKGROUND: Whole-body positron emission tomography/magnetic resonance imaging (WB-PET/MRI) is increasingly used in oncology. However, chest staging remains challenging. PURPOSE: To compare the diagnostic performance of a free-breathing 3D-T1-GRE stack-of-stars volume interpolated breath-hold examination (StarVIBE) with that of a 3D-T1-GRE volume interpolated breath-hold examination (VIBE) during WB-PET/MRI for chest staging. STUDY TYPE: Retrospective, cohort study. POPULATION: One hundred and twenty-three patients were referred for initial staging of solid cancer, 46 of whom had pulmonary nodules and 14 had pulmonary metastasis. FIELD STRENGTH/SEQUENCE: Free-breathing 3D-T1-GRE stack-of-stars (StarVIBE) and Cartesian 3D-T1-GRE VIBE at 3.0 T. ASSESSMENT: Image quality was assessed using a 4-point scale and using the signal-to-noise ratio (SNR) of lung parenchyma and contrast-to-noise ratio (CNR) of pulmonary nodules. Diagnostic performances of both sequences were determined by three independent radiologists for detection of pulmonary nodules, lymph node involvement, and bone metastases using chest CT, pathology, and follow-up as reference standards. STATISTICAL TESTS: Paired Student's t-test; chi-squared; Fisher's exact test. A P value <0.05 was considered statistically significant. RESULTS: StarVIBE quality was judged as better in 34% of cases and at least equivalent to VIBE in 89% of cases, with significantly higher quality scores (4 [4-4] vs. 3 [3-4], respectively). SNR and CNR values were significantly higher with StarVIBE (8 ± 1.3 and 9.7 ± 4.6, respectively) than with VIBE (1.8 ± 0.2 and 5.5 ± 3.3, respectively). Compared to VIBE, StarVIBE showed significantly higher sensitivity (73% [95% CI 62-82] vs. 44% [95% CI 33-55], respectively) and specificity (95% [95% CI 88-99] vs. 67% [95% CI 56-77]) for pulmonary nodules detection and significantly higher sensitivity (100% [95% CI 89-100] vs. 67% [95% CI 48-82], respectively) for detection of lymph node involvement. Sensitivities for bone metastases detection were not significantly different (100% [95% CI 88-100] vs. 82% [95% CI 63-94], P = 0.054). DATA CONCLUSION: Owing to improved SNR and CNR and spatial resolution, a free-breathing 3D stack-of-stars T1-GRE sequence improves chest staging in comparison with standard 3D-T1-GRE VIBE and may be integrated in WB-PET/MRI acquisitions for initial staging of solid cancer. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Contencion de la Respiración , Neoplasias Pulmonares , Estudios de Cohortes , Humanos , Imagenología Tridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones , Estudios Retrospectivos
15.
Eur J Radiol ; 143: 109915, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34461599

RESUMEN

CT is the imaging modality of choice for assessment of 3D bony morphology but incurs the penalty of ionizing radiation. Improving the ability of 3D MRI to provide high-resolution images of cortical bone with CT-like bone contrast has been a focus of recent research. The ability of 3D MRI to deliver cortical bone information with similar diagnostic performance to CT would complement assessment of soft tissues and medullary bone from a single MRI examination, simplifying evaluation and obviating radiation exposure from additional CT. This article presents an overview of current 3D MRI approaches for imaging cortical bone with CT-like bone contrast including ultrashort echo time, zero echo time, T1-weighted gradient recalled echo, susceptibility-weighted imaging and deep learning techniques. We also discuss clinical implementation of an optimized stack-of-stars 3D gradient recalled echo pulse sequence (3D-Bone) on commercially available MRI scanners for rendering 3D MRI with CT-like bone contrast in our institutional practice.


Asunto(s)
Huesos , Imagen por Resonancia Magnética , Humanos , Imagenología Tridimensional , Tomografía Computarizada por Rayos X
16.
NMR Biomed ; 34(11): e4589, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34291517

RESUMEN

Abnormal coronary endothelial function (CEF), manifesting as depressed vasoreactive responses to endothelial-specific stressors, occurs early in atherosclerosis, independently predicts cardiovascular events, and responds to cardioprotective interventions. CEF is spatially heterogeneous along a coronary artery in patients with atherosclerosis, and thus recently developed and tested non-invasive 2D MRI techniques to measure CEF may not capture the extent of changes in CEF in a given coronary artery. The purpose of this study was to develop and test the first volumetric coronary 3D MRI cine method for assessing CEF along the proximal and mid-coronary arteries with isotropic spatial resolution and in free-breathing. This approach, called 3D-Stars, combines a 6 min continuous, untriggered golden-angle stack-of-stars acquisition with a novel image-based respiratory self-gating method and cardiac and respiratory motion-resolved reconstruction. The proposed respiratory self-gating method agreed well with respiratory bellows and center-of-k-space methods. In healthy subjects, 3D-Stars vessel sharpness was non-significantly different from that by conventional 2D radial in proximal segments, albeit lower in mid-portions. Importantly, 3D-Stars detected normal vasodilatation of the right coronary artery in response to endothelial-dependent isometric handgrip stress in healthy subjects. Coronary artery cross-sectional areas measured using 3D-Stars were similar to those from 2D radial MRI when similar thresholding was used. In conclusion, 3D-Stars offers good image quality and shows feasibility for non-invasively studying vasoreactivity-related lumen area changes along the proximal coronary artery in 3D during free-breathing.


Asunto(s)
Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/fisiología , Endotelio Vascular/diagnóstico por imagen , Endotelio Vascular/fisiología , Imagenología Tridimensional , Imagen por Resonancia Cinemagnética , Respiración , Adulto , Diástole/fisiología , Estudios de Factibilidad , Femenino , Humanos , Masculino
17.
NMR Biomed ; 34(11): e4582, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34296793

RESUMEN

Ischemic events related to carotid disease are far more strongly associated with plaque instability than stenosis. 3D high-resolution diffusion-weighted (DW) imaging can provide quantitative diffusion measurements on carotid atherosclerosis and may improve detection of vulnerable intraplaque hemorrhage (IPH). The 3D DW-stack of stars (SOS) sequence was implemented with 3D SOS acquisition combined with DW preparation. After simulation of signals created from 3D DW-SOS, phantom studies were performed. Three healthy subjects and 20 patients with carotid disease were recruited. Apparent diffusion coefficient (ADC) values were statistically analyzed on three subgroups by using a two-group comparison Wilcoxon-Mann-Whitney U test with p values less than 0.05: symptomatic versus asymptomatic; IPH-positive versus IPH-negative; and IPH-positive symptomatic versus asymptomatic plaques to determine the relationship with plaque vulnerability. ADC values calculated by 3D DW-SOS provided values similar to those calculated from other techniques. Mean ADC of symptomatic plaque was significantly lower than asymptomatic plaque (0.68 ± 0.18 vs. 0.98 ± 0.16 x 10-3  mm2 /s, p < 0.001). ADC was also significantly lower in IPH-positive versus IPH-negative plaque (0.68 ± 0.13 vs. 1.04 ± 0.11 x 10-3  mm2 /s, p < 0.001). Additionally, ADC was significantly lower in symptomatic versus asymptomatic IPH-positive plaque (0.57 ± 0.09 vs. 0.75 ± 0.11 x 10-3  mm2 /s, p < 0.001). Our results provide strong evidence that ADC measurements from 3D DW-SOS correlate with the symptomatic status of extracranial internal carotid artery plaque. Further, ADC improved discrimination of symptomatic plaque in IPH. These data suggest that diffusion characteristics may improve detection of destabilized plaque leading to elevated stroke risk.


Asunto(s)
Estenosis Carotídea/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Hemorragia/diagnóstico por imagen , Imagenología Tridimensional , Simulación por Computador , Humanos , Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador
18.
Magn Reson Imaging ; 82: 24-30, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34153438

RESUMEN

PURPOSE: MRI of the lung parenchyma is still challenging due to cardiac and respiratory motion, and the low proton density and short T2*. Clinical feasible MRI methods for functional lung assessment are of great interest. It was the objective of this study to evaluate the potential of combining the ultra-short echo-time stack-of-stars approach with tiny golden angle (tyGASoS) profile ordering for self-gated free-breathing lung imaging. METHODS: Free-breathing tyGASoS data were acquired in 10 healthy volunteers (3 smoker (S), 7 non-smoker (NS)). Images in different respiratory phases were reconstructed applying an image-based self-gating technique. Resulting image quality and sharpness, and parenchyma visibility were qualitatively scored by three blinded independent reader, and the signal-to-noise ratio (SNR), proton fraction (fP) and fractional ventilation (FV) quantified. RESULT: The imaging protocol was well tolerated by all volunteers. Image quality was sufficient for subsequent quantitative analysis in all cases with good to excellent inter-reader reliability. Between expiration (EX) and inspiration (IN) significant differences (p < 0.001) were observed in SNR (EX: 3.73 ± 0.89, IN: 3.14 ± 0.74) and fP (EX: 0.27 ± 0.09, IN: 0.25 ± 0.08). A significant (p < 0.05) higher fP (EX/IN: 0.22 ± 0.07/0.21 ± 0.07 (NS), 0.33 ± 0.07/0.30 ± 0.06 (S)) was observed in the smoker group. No significant FV differences resulted between S and NS. CONCLUSION: The study proves the feasibility of free-breathing tyGASoS for multiphase lung imaging. Changes in fP may indicate an initial response in the smoker group and as such proves the sensitivity of the proposed technique. A major limitation in FV quantification rises from the large inter-subject variability of breathing patterns and amplitudes, requiring further consideration.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Pulmón/diagnóstico por imagen , Reproducibilidad de los Resultados , Respiración , Relación Señal-Ruido
19.
Artículo en Japonés | MEDLINE | ID: mdl-34148899

RESUMEN

Magnetic resonance angiography (MRA) using ultra-short TE (uTE) is known to be used for the evaluation of cerebral aneurysm after treatment such as clipping and coiling. However, conventional uTE sequences are not appropriate as an additional imaging sequence for 3D time-of-flight (TOF)-MRA because it is not possible to shorten scan time and acquire selective-volume imaging. To solve the problem, we focused on the combination of uTE sampling and 3D radial scan sequences. In this study, we examined the optimal imaging parameters of the proposed uTE-MRA. A simulated blood flow phantom with stents (Enterprise) and titanium clips (YASARGIL) was used for optimizing the TR, flip angle (FA), and radial percentage. The signal intensity in the simulated vessel was measured in each imaging condition, and the ratio of the presence or absence of a stent was evaluated as a relative in-stent signal (RIS). In addition, the diameter of the signal loss of the simulated artery was measured for each imaging condition, and signal loss length (SLL) of a clip was calculated from the average value. The RIS improved with increasing the FA and shortening the TR, but it did not change by changing the radial percentage. The SLL became smaller at the coil as the FA increased, but there was no significant difference between the intersection and the blade. There was also no significant difference between TR and radial percentage. The effective imaging conditions for uTE-MRA to improve the vascular description of the evaluation after treatment of cerebral aneurysms with metallic devices were those with large FA and short TR.


Asunto(s)
Embolización Terapéutica , Aneurisma Intracraneal , Angiografía Cerebral , Humanos , Imagenología Tridimensional , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/terapia , Angiografía por Resonancia Magnética , Fantasmas de Imagen , Stents
20.
Magn Reson Med ; 85(3): 1248-1257, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32936486

RESUMEN

PURPOSE: We introduce a MR imaging technique, balanced T1 relaxation-enhanced steady-state (bT1RESS), that provides the unique capability to efficiently impart a flexible amount of T1 weighting to a balanced steady-state free precession acquisition using periodically applied contrast-modifying RF pulses. Leveraging this capability to suppress the signal intensity of background tissues, we implemented a 3D noncontrast MR angiography technique that continuously acquires thin overlapping 3D volumes and tested it for evaluation of the peripheral arteries. METHODS: bT1RESS used a fast interrupted steady-state readout with a 45° cslab-selective ontrast-modifying RF pulse applied at 262 msec intervals. A series of 16.4-mm thick overlapping 3D volumes was acquired using a radial stack-of-stars k-space trajectory. The combination of slice oversampling, slab overlap, and averaging of edge slices was helpful to reduce venetian blind artifact. Spatial resolution was near isotropic with reconstructed slice thickness = 0.7 mm and in-plane resolution = 0.5 mm. RESULTS: Pilot studies in the peripheral arteries demonstrated improved vessel sharpness compared with cardiac-gated quiescent interval slice-selective noncontrast MR angiography. bT1RESS noncontrast MR angiography reliably identified stenotic and occlusive arterial disease in a small cohort of patients with peripheral artery disease. CONCLUSIONS: bT1RESS provides the basis for a simplified, completely "push button" approach for noncontrast MR angiography that obviates the need for contrast agents, electrocardiographic gating, scout imaging, breath holding, or tailoring of imaging parameters for the individual patient. Further work is needed for technical optimization and clinical validation.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Angiografía , Contencion de la Respiración , Corazón , Humanos , Imagenología Tridimensional , Angiografía por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA