Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Curr Res Toxicol ; 7: 100176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975063

RESUMEN

Human-derived three-dimensional (3D) in vitro models are advanced human cell-based model for their complexity, relevance and application in toxicity testing. Intracellular accumulation of methylglyoxal (MGO), the most potent glycating agent in humans, mainly generated as a by-product of glycolysis, is associated with age-related diseases including neurodegenerative disorders. In our study, 3D human stem-cell-derived neuronal spheroids were set up and applied to evaluate cytotoxic effects after short-term (5 to 48 h) treatments with different MGO concentrations, including low levels, taking into consideration several biochemical endpoints. In MGO-treated neurospheroids, reduced cell growth proliferation and decreased cell viability occurred early from 5-10 µM, and their compactness diminished starting from 100 µM, apparently without affecting spheroid size. MGO markedly caused loss of the neuronal markers MAP-2 and NSE from 10-50 µM, decreased the detoxifying Glo1 enzyme from 50 µM, and activated NF-kB by nuclear translocation. The cytochemical evaluation of the 3D sections showed the presence of necrotic cells with loss of nuclei. Apoptotic cells were observed from 50 µM MGO after 48 h, and from 100 µM after 24 h. MGO (50-10 µM) also induced modifications of the cell-cell and cell-ECM interactions. These effects worsened at the higher concentrations (300-500 µM). In 3D neuronal spheroids, MGO tested concentrations comparable to human samples levels measured in MGO-associated diseases, altered neuronal key signalling endpoints relevant for the pathogenesis of neurodegenerative diseases and aging. The findings also demonstrated that the use of 3D neuronal spheroids of human origin can be useful in a strategy in vitro for testing MGO and other dicarbonyls evaluation.

2.
Biol Psychiatry Glob Open Sci ; 4(2): 100290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38420187

RESUMEN

Background: Mutations in MECP2 predominantly cause Rett syndrome and can be modeled in vitro using human stem cell-derived neurons. Patients with Rett syndrome have signs of cortical hyperexcitability, such as seizures. Human stem cell-derived MECP2 null excitatory neurons have smaller soma size and reduced synaptic connectivity but are also hyperexcitable due to higher input resistance. Paradoxically, networks of MECP2 null neurons show a decrease in the frequency of network bursts consistent with a hypoconnectivity phenotype. Here, we examine this issue. Methods: We reanalyzed multielectrode array data from 3 isogenic MECP2 cell line pairs recorded over 6 weeks (n = 144). We used a custom burst detection algorithm to analyze network events and isolated a phenomenon that we termed reverberating super bursts (RSBs). To probe potential mechanisms of RSBs, we conducted pharmacological manipulations using bicuculline, EGTA-AM, and DMSO on 1 cell line (n = 34). Results: RSBs, often misidentified as single long-duration bursts, consisted of a large-amplitude initial burst followed by several high-frequency, low-amplitude minibursts. Our analysis revealed that MECP2 null networks exhibited increased frequency of RSBs, which produced increased bursts compared with isogenic controls. Bicuculline or DMSO treatment did not affect RSBs. EGTA-AM selectively eliminated RSBs and rescued network burst dynamics. Conclusions: During early development, MECP2 null neurons are hyperexcitable and produce hyperexcitable networks. This may predispose them to the emergence of hypersynchronic states that potentially translate into seizures. Network hyperexcitability depends on asynchronous neurotransmitter release that is likely driven by presynaptic Ca2+ and can be rescued by EGTA-AM to restore typical network dynamics.

3.
J Neurovirol ; 30(1): 39-51, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38172412

RESUMEN

Sarbecoviruses such as SARS and SARS-CoV-2 have been responsible for two major outbreaks in humans, the latter resulting in a global pandemic. While sarbecoviruses primarily cause an acute respiratory infection, they have been shown to infect the nervous system. However, mechanisms of sarbecovirus neuroinvasion and neuropathogenesis remain unclear. In this study, we examined the infectivity and trans-synaptic transmission potential of the sarbecoviruses SARS and SARS-CoV-2 in human stem cell-derived neural model systems. We demonstrated limited ability of sarbecoviruses to infect and replicate in human stem cell-derived neurons. Furthermore, we demonstrated an inability of sarbecoviruses to transmit between synaptically connected human stem cell-derived neurons. Finally, we determined an absence of SARS-CoV-2 infection in olfactory neurons in experimentally infected ferrets. Collectively, this study indicates that sarbecoviruses exhibit low potential to infect human stem cell-derived neurons, lack an ability to infect ferret olfactory neurons, and lack an inbuilt molecular mechanism to utilise retrograde axonal trafficking and trans-synaptic transmission to spread within the human nervous system.


Asunto(s)
Axones , COVID-19 , Hurones , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Animales , COVID-19/virología , COVID-19/transmisión , Axones/virología , Hurones/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Neuronas/virología , Replicación Viral , Chlorocebus aethiops , Células-Madre Neurales/virología , Células Vero
4.
Neurobiol Dis ; 190: 106386, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110041

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a neurometabolic disorder caused by ALDH5A1 mutations presenting with autism and epilepsy. SSADHD leads to impaired GABA metabolism and results in accumulation of GABA and γ-hydroxybutyrate (GHB), which alter neurotransmission and are thought to lead to neurobehavioral symptoms. However, why increased inhibitory neurotransmitters lead to seizures remains unclear. We used induced pluripotent stem cells from SSADHD patients (one female and two male) and differentiated them into GABAergic and glutamatergic neurons. SSADHD iGABA neurons show altered GABA metabolism and concomitant changes in expression of genes associated with inhibitory neurotransmission. In contrast, glutamatergic neurons display increased spontaneous activity and upregulation of mitochondrial genes. CRISPR correction of the pathogenic variants or SSADHD mRNA expression rescue various metabolic and functional abnormalities in human neurons. Our findings uncover a previously unknown role for SSADHD in excitatory human neurons and provide unique insights into the cellular and molecular basis of SSADHD and potential therapeutic interventions.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Células Madre Pluripotentes Inducidas , Humanos , Masculino , Femenino , Células Madre Pluripotentes Inducidas/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Succionato-Semialdehído Deshidrogenasa/genética
5.
Acta Neuropathol ; 147(1): 1, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019311

RESUMEN

The G4C2 repeat expansion in the C9orf72 gene is the most common genetic cause of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Many studies suggest that dipeptide repeat proteins produced from this repeat are toxic, yet, the contribution of repeat RNA toxicity is under investigated and even less is known regarding the pathogenicity of antisense repeat RNA. Recently, two clinical trials targeting G4C2 (sense) repeat RNA via antisense oligonucleotide failed despite a robust decrease in sense-encoded dipeptide repeat proteins demonstrating target engagement. Here, in this brief report, we show that G2C4 antisense, but not G4C2 sense, repeat RNA is sufficient to induce TDP-43 dysfunction in induced pluripotent stem cell (iPSC) derived neurons (iPSNs). Unexpectedly, only G2C4, but not G4C2 sense strand targeting, ASOs mitigate deficits in TDP-43 function in authentic C9orf72 ALS/FTD patient iPSNs. Collectively, our data suggest that the G2C4 antisense repeat RNA may be an important therapeutic target and provide insights into a possible explanation for the recent G4C2 ASO clinical trial failure.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Humanos , Oligonucleótidos Antisentido/farmacología , Demencia Frontotemporal/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas de Unión al ADN/genética , ARN sin Sentido , Dipéptidos , Neuronas
7.
Adv Sci (Weinh) ; 10(33): e2301828, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37863819

RESUMEN

In situ physiological signals of in vitro neural disease models are essential for studying pathogenesis and drug screening. Currently, an increasing number of in vitro neural disease models are established using human-induced pluripotent stem cell (hiPSC) derived neurons (hiPSC-DNs) to overcome interspecific gene expression differences. Microelectrode arrays (MEAs) can be readily interfaced with two-dimensional (2D), and more recently, three-dimensional (3D) neural stem cell-derived in vitro models of the human brain to monitor their physiological activity in real time. Therefore, MEAs are emerging and useful tools to model neurological disorders and disease in vitro using human iPSCs. This is enabling a real-time window into neuronal signaling at the network scale from patient derived. This paper provides a comprehensive review of MEA's role in analyzing neural disease models established by hiPSC-DNs. It covers the significance of MEA fabrication, surface structure and modification schemes for hiPSC-DNs culturing and signal detection. Additionally, this review discusses advances in the development and use of MEA technology to study in vitro neural disease models, including epilepsy, autism spectrum developmental disorder (ASD), and others established using hiPSC-DNs. The paper also highlights the application of MEAs combined with hiPSC-DNs in detecting in vitro neurotoxic substances. Finally, the future development and outlook of multifunctional and integrated devices for in vitro medical diagnostics and treatment are discussed.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades del Sistema Nervioso , Células-Madre Neurales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Microelectrodos , Neuronas/metabolismo
8.
Methods Mol Biol ; 2683: 275-289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37300783

RESUMEN

Impairment of long-term potentiation (LTP) is a common feature of many preclinical models of neurological disorders. Modeling LTP on human induced pluripotent stem cells (hiPSC) enables the investigation of this critical plasticity process in disease-specific genetic backgrounds. Here, we describe a method to chemically induce LTP across entire networks of hiPSC-derived neurons on multi-electrode arrays (MEAs) and investigate effects on neuronal network activity and associated molecular changes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , Electrodos , Plasticidad Neuronal
9.
Stem Cell Reports ; 18(5): 1090-1106, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37163979

RESUMEN

Mitochondrial dysfunction involving mitochondria-associated ER membrane (MAM) dysregulation is implicated in the pathogenesis of late-onset neurodegenerative diseases, but understanding is limited for rare early-onset conditions. Loss of the MAM-resident protein WFS1 causes Wolfram syndrome (WS), a rare early-onset neurodegenerative disease that has been linked to mitochondrial abnormalities. Here we demonstrate mitochondrial dysfunction in human induced pluripotent stem cell-derived neuronal cells of WS patients. VDAC1 is identified to interact with WFS1, whereas loss of this interaction in WS cells could compromise mitochondrial function. Restoring WFS1 levels in WS cells reinstates WFS1-VDAC1 interaction, which correlates with an increase in MAMs and mitochondrial network that could positively affect mitochondrial function. Genetic rescue by WFS1 overexpression or pharmacological agents modulating mitochondrial function improves the viability and bioenergetics of WS neurons. Our data implicate a role of WFS1 in regulating mitochondrial functionality and highlight a therapeutic intervention for WS and related rare diseases with mitochondrial defects.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Síndrome de Wolfram , Humanos , Síndrome de Wolfram/genética , Síndrome de Wolfram/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Mitocondrias/metabolismo , Mutación
10.
Cell Rep ; 42(5): 112372, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37086404

RESUMEN

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Asunto(s)
NAD , Mononucleótido de Nicotinamida , Humanos , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Neuronas/metabolismo , Mitocondrias/metabolismo , Autofagia , Niacinamida/metabolismo
11.
Front Neurosci ; 16: 951964, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267241

RESUMEN

Comprehensive electrophysiological characterizations of human induced pluripotent stem cell (hiPSC)-derived neuronal networks are essential to determine to what extent these in vitro models recapitulate the functional features of in vivo neuronal circuits. High-density micro-electrode arrays (HD-MEAs) offer non-invasive recording with the best spatial and temporal resolution possible to date. For 3 months, we tracked the morphology and activity features of developing networks derived from a transgenic hiPSC line in which neurogenesis is inducible by neurogenic transcription factor overexpression. Our morphological data revealed large-scale structural changes from homogeneously distributed neurons in the first month to the formation of neuronal clusters over time. This led to a constant shift in position of neuronal cells and clusters on HD-MEAs and corresponding changes in spatial distribution of the network activity maps. Network activity appeared as scarce action potentials (APs), evolved as local bursts with longer duration and changed to network-wide synchronized bursts with higher frequencies but shorter duration over time, resembling the emerging burst features found in the developing human brain. Instantaneous firing rate data indicated that the fraction of fast spiking neurons (150-600 Hz) increases sharply after 63 days post induction (dpi). Inhibition of glutamatergic synapses erased burst features from network activity profiles and confirmed the presence of mature excitatory neurotransmission. The application of GABAergic receptor antagonists profoundly changed the bursting profile of the network at 120 dpi. This indicated a GABAergic switch from excitatory to inhibitory neurotransmission during circuit development and maturation. Our results suggested that an emerging GABAergic system at older culture ages is involved in regulating spontaneous network bursts. In conclusion, our data showed that long-term and continuous microscopy and electrophysiology readouts are crucial for a meaningful characterization of morphological and functional maturation in stem cell-derived human networks. Most importantly, assessing the level and duration of functional maturation is key to subject these human neuronal circuits on HD-MEAs for basic and biomedical applications.

12.
ACS Nano ; 14(10): 13091-13102, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33058673

RESUMEN

Brain-on-a-chip (BoC) concepts should consider three-dimensional (3D) scaffolds to mimic the 3D nature of the human brain not accessible by conventional planar cell culturing. Furthermore, the essential key to adequately address drug development for human pathophysiological diseases of the nervous system, such as Parkinson's or Alzheimer's, is to employ human induced pluripotent stem cell (iPSC)-derived neurons instead of neurons from animal models. To address both issues, we present electrophysiologically mature human iPSC-derived neurons cultured in BoC applicable microscaffolds prepared by direct laser writing. 3D nanoprinted tailor-made elevated cavities interconnected by freestanding microchannels were used to create defined neuronal networks-as a proof of concept-with two-dimensional topology. The neuronal outgrowth in these nonplanar structures was investigated, among others, in terms of neurite length, size of continuous networks, and branching behavior using z-stacks prepared by confocal microscopy and cross-sectional scanning electron microscopy images prepared by focused ion beam milling. Functionality of the human iPSC-derived neurons was demonstrated with patch clamp measurements in both current- and voltage-clamp mode. Action potentials and spontaneous excitatory postsynaptic currents-fundamental prerequisites for proper network signaling-prove full integrity of these artificial neuronal networks. Considering the network formation occurring within only a few days and the versatile nature of direct laser writing to create even more complex scaffolds for 3D network topologies, we believe that our study offers additional approaches in human disease research to mimic the complex interconnectivity of the human brain in BoC studies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Encéfalo , Estudios Transversales , Humanos , Dispositivos Laboratorio en un Chip , Neuronas
13.
Biosens Bioelectron ; 168: 112553, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32877779

RESUMEN

Epilepsies are a group of neurological disorders characterised by recurrent epileptic seizures. Seizures, defined as abnormal transient discharges of neuronal activity, can affect the entire brain circuitry or remain more focal in the specific brain regions and neuronal networks. Human pluripotent stem cell (hPSC)-derived neurons are a promising option for modelling epilepsies, but as such, they do not model groups of connected neuronal networks or focal seizures. Our solution is a Modular Platform for Epilepsy Modelling In Vitro (MEMO), a lab-on-chip device, in which three hPSC-derived networks are separated by a novel microfluidic cell culture device that allows controlled network-to-network axonal connections through microtunnels. In this study, we show that the neuronal networks formed a functional circuitry that was successfully cultured in MEMO for up to 98 days. The spontaneous neuronal network activities were monitored with an integrated custom-made microelectrode array (MEA). The networks developed spontaneous burst activity that was synchronous both within and between the axonally connected networks, i.e. mimicking both local and circuitry functionality of the brain. A convulsant, kainic acid, increased bursts only in the specifically treated networks. The activity reduction by an anticonvulsant, phenytoin, was also localised to treated networks. Therefore, modelling focal seizures in human neuronal networks is now possible with the developed chip.


Asunto(s)
Técnicas Biosensibles , Epilepsia , Encéfalo , Humanos , Dispositivos Laboratorio en un Chip , Red Nerviosa , Neuronas , Convulsiones
14.
RNA Biol ; 17(12): 1741-1753, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32597303

RESUMEN

RNA-seq is the standard method for profiling gene expression in many biological systems. Due to the wide dynamic range and complex nature of the transcriptome, RNA-seq provides an incomplete characterization, especially of lowly expressed genes and transcripts. Targeted RNA sequencing (RNA CaptureSeq) focuses sequencing on genes of interest, providing exquisite sensitivity for transcript detection and quantification. However, uses of CaptureSeq have focused on bulk samples and its performance on very small populations of cells is unknown. Here we show CaptureSeq greatly enhances transcriptomic profiling of target genes in ultra-low-input samples and provides equivalent performance to that on bulk samples. We validate the performance of CaptureSeq using multiple probe sets on samples of iPSC-derived cortical neurons. We demonstrate up to 275-fold enrichment for target genes, the detection of 10% additional genes and a greater than 5-fold increase in identified gene isoforms. Analysis of spike-in controls demonstrated CaptureSeq improved both detection sensitivity and expression quantification. Comparison to the CORTECON database of cerebral cortex development revealed CaptureSeq enhanced the identification of sample differentiation stage. CaptureSeq provides sensitive, reliable and quantitative expression measurements on hundreds-to-thousands of target genes from ultra-low-input samples and has the potential to greatly enhance transcriptomic profiling when samples are limiting.


Asunto(s)
Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN , Transcriptoma , Diferenciación Celular/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neuronas/citología , Neuronas/metabolismo , Análisis de Secuencia de ARN/métodos , Factores de Transcripción/metabolismo
15.
Bioengineering (Basel) ; 7(2)2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32455868

RESUMEN

Though patch clamping at room temperature is a widely disseminated standard procedure in the electrophysiological community, it does not represent the biological system in mammals at around 37 °C. In order to better mimic the natural environment in electrophysiological studies, we present a custom-built, temperature-controlled patch clamp platform for upright microscopes, which can easily be adapted to any upright patch clamp setup independently, whether commercially available or home built. Our setup can both cool and heat the platform having only small temperature variations of less than 0.5 °C. We demonstrate our setup with patch clamp measurements at 36 °C on Jurkat T lymphocytes and human induced pluripotent stem cell-derived neurons. Passive membrane parameters and characteristic electrophysiological properties, such as the gating properties of voltage-gated ion channels and the firing of action potentials, are compared to measurements at room temperature. We observe that many processes that are not explicitly considered as temperature dependent show changes with temperature. Thus, we believe in the need of a temperature control in patch clamp measurements if improved physiological conditions are required. Furthermore, we advise researchers to only compare electrophysiological results directly that have been measured at similar temperatures since small variations in cellular properties might be caused by temperature alterations.

16.
Neurotoxicology ; 79: 40-47, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32320710

RESUMEN

Ionizing radiation (IR) is increasingly used for diagnostics and therapy of severe brain diseases. However, IR also has adverse effects on the healthy brain tissue, particularly on the neuronal network. This is true for adults but even more pronounced in the developing brain of unborn and pediatric patients. Epidemiological studies on children receiving radiotherapy showed an increased risk for cognitive decline ranging from mild deficits in academic functioning to severe late effects in intellectual ability and language as a consequence of altered neuronal development and connectivity. To provide a comprehensive approach for the analysis of radiation-induced alterations in human neuronal functionality, we developed an in vitro assay by combining microelectrode array (MEA) analyses and human embryonic stem cell (hESC) derived three-dimensional neurospheres (NS). In our proof of principle study, we irradiated hESC with 1 Gy X-rays and let them spontaneously differentiate into neurons within NS. After the onset of neuronal activity, we recorded and analyzed the activity pattern of the developing neuronal networks. The network activity in NS derived from irradiated hESC was significantly reduced, whereas no differences in molecular endpoints such as cell proliferation and transcript or protein expression analyses were found. Thus, the combination of MEA analysis with a 3D model for neuronal functionality revealed radiation sequela that otherwise would not have been detected. We therefore strongly suggest combining traditional biomolecular methods with the new functional assay presented in this work to improve the risk assessment for IR-induced effects on the developing brain.


Asunto(s)
Células Madre Embrionarias Humanas/efectos de la radiación , Red Nerviosa/efectos de la radiación , Células-Madre Neurales/efectos de la radiación , Neurogénesis/efectos de la radiación , Potenciales de Acción/efectos de los fármacos , Técnicas de Cultivo de Célula/instrumentación , Proliferación Celular/efectos de la radiación , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Células Madre Embrionarias Humanas/metabolismo , Humanos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Red Nerviosa/metabolismo , Células-Madre Neurales/metabolismo , Fenotipo , Prueba de Estudio Conceptual , Esferoides Celulares
17.
Viruses ; 12(4)2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218146

RESUMEN

Rabies is a zoonotic neurological infection caused by lyssavirus that continues to result in devastating loss of human life. Many aspects of rabies pathogenesis in human neurons are not well understood. Lack of appropriate ex-vivo models for studying rabies infection in human neurons has contributed to this knowledge gap. In this study, we utilize advances in stem cell technology to characterize rabies infection in human stem cell-derived neurons. We show key cellular features of rabies infection in our human neural cultures, including upregulation of inflammatory chemokines, lack of neuronal apoptosis, and axonal transmission of viruses in neuronal networks. In addition, we highlight specific differences in cellular pathogenesis between laboratory-adapted and field strain lyssavirus. This study therefore defines the first stem cell-derived ex-vivo model system to study rabies pathogenesis in human neurons. This new model system demonstrates the potential for enabling an increased understanding of molecular mechanisms in human rabies, which could lead to improved control methods.


Asunto(s)
Lyssavirus/fisiología , Neuronas/virología , Células Madre/citología , Células Madre/metabolismo , Animales , Apoptosis , Axones/metabolismo , Axones/virología , Biomarcadores , Calcio/metabolismo , Supervivencia Celular , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inmunohistoquímica , Ratones , Imagen Molecular , Virus de la Rabia/fisiología , Infecciones por Rhabdoviridae/virología
18.
Stem Cell Res ; 41: 101642, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31707211

RESUMEN

The α7 nicotinic acetylcholine receptor has been extensively researched as a target for treatment of cognitive impairment in Alzheimer's disease and schizophrenia. Investigation of the α7 receptor is commonly performed in animals but it is critical to increase the biologically relevance of the model systems to fully capture the physiological role of the α7 receptor in humans. For example most humans, in contrast to animals, express the hybrid gene CHRFAM7A, the product of which modulates α7 receptor activity. In the present study, we used human induced pluripotent stem cell (hiPSC) derived neurons to establish a humanized α7 model. We established a cryobank of neural stem cells (NSCs) that could reproducibly be matured into neurons expressing neuronal markers and CHRNA7 and CHRFAM7A. The neurons responded to NMDA, GABA, and acetylcholine and exhibited synchronized spontaneous calcium oscillations. Gene expression studies and application of a range of α7 positive allosteric modulators (PNU-120595, TQS, JNJ-39393406 and AF58801) together with the α7 agonist PNU-282987 during measurement of intracellular calcium levels demonstrated the presence of functional α7 receptors in matured hiPSC-derived neuronal cultures. Pharmacological α7 activation also resulted in intracellular signaling as measured by ERK 1/2 phosphorylation and c-Fos protein expression. Moreover, PNU-120596 increased the frequency of the spontaneous calcium oscillations demonstrating implication of α7 receptors in human synaptic networks activity. Overall, we show that hiPSC derived neurons are an advanced in vitro model for studying human α7 receptor pharmacology and the involvement of this receptor in cellular processes as intracellular signaling and synaptic transmission.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Transmisión Sináptica , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Isoxazoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Red Nerviosa/citología , Neuronas/citología , Compuestos de Fenilurea/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas
19.
J Alzheimers Dis ; 72(3): 885-899, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31640098

RESUMEN

Despite numerous efforts and studies over the last three decades, Alzheimer's disease (AD) remains a disorder not fully understood and incurable so far. Development of induced pluripotent stem cell (iPSC) technology to obtain terminally differentiated neurons from adult somatic cells revolutionized the study of AD, providing a powerful tool for modelling the disease and for screening candidate drugs. Indeed, iPSC reprogramming allowed generation of neurons from both sporadic and familial AD patients with the promise to recapitulate the early pathological mechanisms in vitro and to identify novel targets. Interestingly, NPS 2143, a negative allosteric modulator of the calcium sensing receptor, has been indicated as a possible therapeutic for AD. In the present study, we assessed the potential of our iPSC-based familial AD cellular model as a platform for drug testing. We found that iPSC-derived neurons respond to treatment with γ-secretase inhibitor, modifying the physiological amyloid-ß protein precursor (AßPP) processing and amyloid-ß (Aß) secretion. Moreover, we demonstrated the expression of calcium sensing receptor (CaSR) protein in human neurons derived from healthy and familial AD subjects. Finally, we showed that calcilytic NPS 2143 induced a changing of Aß and sAßPPα secreted into conditioned media and modulation of CaSR and PSEN1 expression at the plasma membrane of AD neurons. Overall, our findings suggest that NPS 2143 affects important AD processes in a relevant in vitro system of familial AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Naftalenos/farmacología , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Presenilina-1/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Mutación/efectos de los fármacos , Mutación/fisiología , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/antagonistas & inhibidores , Presenilina-1/genética
20.
Front Cell Neurosci ; 13: 296, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31338022

RESUMEN

The inter-cellular propagation of tau aggregates in several neurodegenerative diseases involves, in part, recurring cycles of extracellular tau uptake, initiation of endogenous tau aggregation, and extracellular release of at least part of this protein complex. However, human brain tau extracts from diverse tauopathies exhibit variant or "strain" specificity in inducing inter-cellular propagation in both cell and animal models. It is unclear if these distinctive properties are affected by disease-specific differences in aggregated tau conformation and structure. We have used a combined structural and cell biological approach to study if two frontotemporal dementia (FTD)-associated pathologic mutations, V337M and N279K, affect the aggregation, conformation and cellular internalization of the tau four-repeat domain (K18) fragment. In both heparin-induced and native-state aggregation experiments, each FTD variant formed soluble and fibrillar aggregates with remarkable morphological and immunological distinctions from the wild type (WT) aggregates. Exogenously applied oligomers of the FTD tau-K18 variants (V337M and N279K) were significantly more efficiently taken up by SH-SY5Y neuroblastoma cells than WT tau-K18, suggesting mutation-induced changes in cellular internalization. However, shared internalization mechanisms were observed: endocytosed oligomers were distributed in the cytoplasm and nucleus of SH-SY5Y cells and the neurites and soma of human induced pluripotent stem cell-derived neurons, where they co-localized with endogenous tau and the nuclear protein nucleolin. Altogether, evidence of conformational and aggregation differences between WT and disease-mutated tau K18 is demonstrated, which may explain their distinct cellular internalization potencies. These findings may account for critical aspects of the molecular pathogenesis of tauopathies involving WT and mutated tau.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA