RESUMEN
The vaccinia virus (VACV) has been used for prophylactic immunization against smallpox for many decades. However, the VACV-based vaccine had been highly reactogenic. Therefore, after the eradication of smallpox, the World Health Organization in 1980 recommended that vaccination against this infection be discontinued. As a result, there has been a rise in the occurrence of orthopoxvirus infections in humans in recent years, with the most severe being the 2022 monkeypox epidemic that reached all continents. Thus, it is crucial to address the pressing matter of developing safe and highly immunogenic vaccines for new generations to combat orthopoxvirus infections. In a previous study, we created a LAD strain by modifying the LIVP (L) VACV strain, which is used as a first-generation smallpox vaccine in Russia. This modification involved introducing mutations in the A34R gene to enhance extracellular virion production and deleting the A35R gene to counteract the antibody response to the viral infection. In this study, a strain LADA was created with an additional deletion in the DNA of the LAD strain ati gene. This ati gene directs the production of a major non-virion immunogen. The findings indicate that the LADA VACV variant exhibits lower levels of reactogenicity in BALB/c mice during intranasal infection, as compared to the original L strain. Following intradermal immunization with a 105 PFU dose, both the LAD and LADA strains were found to induce a significantly enhanced cellular immune response in mice when compared to the L strain. At the same time, the highest level of virus-specific IFN-γ producing cells for the LAD variant was detected on the 7th day post-immunization (dpi), whereas for LADA, it was observed on 14 dpi. The LAD and LADA strains induced significantly elevated levels of VACV-specific IgG compared to the original L strain, particularly between 28 and 56 dpi. The vaccinated mice were intranasally infected with the cowpox virus at a dose of 460 LD50 to assess the protective immunity at 62 dpi. The LADA virus conferred complete protection to mice, with the LAD strain providing 70% protection and the parent strain L offering protection to only 60% of the animals.
RESUMEN
Microorganisms offer a tremendous potential as cell factories, and they are indeed been used by humans since the previous centuries for biotransformations. Among them, yeasts combine the advantage of a unicellular state with a eukaryotic organization. Moreover, in the era of biorefineries, their biodiversity can offer solutions to specific process constraints. Zygosaccharomyces bailii, an ascomycete budding yeast, is widely known for its peculiar tolerance to different stresses, among which are organic acids. Moreover, the recent reclassification of the species, including diverse hybrids, is further expanding both fundamental and applied interests. It is therefore reasonable that despite the possibility to apply with this yeast some of the molecular tools and protocols routinely used to manipulate Saccharomyces cerevisiae, adjustments and optimizations are necessary. Here we describe in detail the methods for determining chromosome number, size, and aneuploidy, transformation, classical target gene disruption or gene integration, and designing of episomal expression plasmids helpful for engineering the yeast Z. bailii .
Asunto(s)
Saccharomycetales , Zygosaccharomyces , Ácidos , Humanos , Saccharomyces cerevisiae , Saccharomycetales/genética , Zygosaccharomyces/genética , Zygosaccharomyces/metabolismoRESUMEN
Protoplast transformation for the introduction of recombinant DNA into Aspergillus nidulans is technically demanding and dependant on the availability and batch variability of commercial enzyme preparations. Given the success of Agrobacterium tumefaciens-mediated transformation (ATMT) in diverse pathogenic fungi, we have adapted this method to facilitate transformation of A. nidulans. Using suitably engineered binary vectors, gene-targeted ATMT of A. nidulans non-homologous end-joining (NHEJ) mutant conidia has been carried out for the first time by complementation of a nutritional requirement (uridine/uracil auxotrophy). Site-specific integration in the ΔnkuA host genome occurred at high efficiency. Unlike other transformation techniques, however, cross-feeding of certain nutritional requirements from the bacterium to the fungus was found to occur, thus limiting the choice of auxotrophies available for ATMT. In complementation tests and also for comparative purposes, integration of recombinant cassettes at a specific locus could provide a means to reduce the influence of position effects (chromatin structure) on transgene expression. In this regard, targeted disruption of the wA locus permitted visual identification of transformants carrying site-specific integration events by conidial colour (white), even when auxotrophy selection was compromised due to cross-feeding. The protocol described offers an attractive alternative to the protoplast procedure for obtaining locus-targeted A. nidulans transformants.
RESUMEN
Targeted gene deletion is a useful tool for understanding the function of a gene and its protein product. We have developed an efficient and robust gene deletion approach in yeast that employs oligonucleotide-based gene synthesis. This approach requires a deletion cassette composed of three modules: a central 1397-bp KanMX4 selection marker module and two 366-bp gene-specific flanking modules. The invariable KanMX4 module can be used in combination with different pairs of flanking modules targeting different genes. The two flanking modules consist of both sequences unique to each cassette (chromosomal homologous regions and barcodes) and those common to all deletion constructs (artificial linkers and restriction enzyme sites). Oligonucleotides for each module and junction regions are designed using the BatchBlock2Oligo program and are synthesized on a 96-well basis. The oligonucleotides are ligated into a single deletion cassette by ligase chain reaction, which is then amplified through two rounds of nested PCR to obtain sufficient quantities for yeast transformation. After removal of the artificial linkers, the deletion cassettes are transformed into wild-type diploid fission yeast SP286 cells. Verification of correct clone and gene deletion is achieved by performing check PCR and tetrad analysis. This method with proven effectiveness, as evidenced by a high success rate of gene deletion, can be potentially applicable to create systematic gene deletion libraries in a variety of yeast species.
Asunto(s)
Eliminación de Gen , Schizosaccharomyces/genética , Secuencia de Bases , Marcación de Gen , Genes Fúngicos , Mutagénesis Insercional , Oligonucleótidos/genética , Transformación GenéticaRESUMEN
Alterations of neuronal activity due to changes in GABAA receptors (GABAA R) mediating tonic inhibition influence different hippocampal functions. Gabra5-null mice and α5 subunit((H105R)) knock-in mice exhibit signs of hippocampal dysfunction, but are capable of improved performance in several learning and memory tasks. Accordingly, alleviating abnormal GABAergic tonic inhibition in the hippocampal formation by selective α5-GABAA R modulators represents a possible therapeutic approach for several intellectual deficit disorders. Adult neurogenesis in the dentate gyrus is an important facet of hippocampal plasticity; it is regulated by tonic GABAergic transmission, as shown by deficits in proliferation, migration and dendritic development of adult-born neurons in Gabra4-null mice. Here, we investigated the contribution of α5-GABAA Rs to granule cell development, using retroviral vectors expressing eGFP for labeling precursor cells in the subgranular zone. Global α5-GABAA R knockout (α5-KO) mice showed no alterations in migration and morphological development of eGFP-positive granule cells. However, upregulation of α1 subunit-immunoreactivity was observed in the hippocampal formation and cerebral cortex. In contrast, partial gene inactivation in α5-heterozygous (α5-het) mice, as well as single-cell deletion of Gabra5 in newborn granule cells from α5-floxed mice, caused severe alterations of migration and dendrite development. In α5-het mice, retrovirally mediated overexpression of Cdk5 resulted in normal migration and dendritic branching, suggesting that Cdk5 cooperates with α5-GABAA Rs to regulate neuronal development. These results show that minor imbalance of α5-GABAA R-mediated transmission may have major consequences for neuronal plasticity; and call for caution upon chronic therapeutic use of negative allosteric modulators acting at these receptors.