RESUMEN
Introduction: There is growing recognition of the potential of cannabis to treat various medical conditions and symptoms, such as chronic pain, spasticity, and epilepsy. However, one of the biggest challenges is the assurance of a standardized cannabis product that contains a consistent amount of its main psychoactive substances delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), and which is compliant with predetermined specifications for these compounds. This is crucial not only to ensure consistent cannabis quality and dosage for patients but also to effectively translate research findings into clinical practice. Methods: This systematic literature review provides an overview of the effects of standardized cannabis products from Bedrocan, a leading Dutch producer of pharmaceutical-quality standardized medicinal cannabis. Results: Cannabis administration to healthy volunteers induces dose-dependent acute effects, such as rapidly rising THC and CBD blood concentrations, the subjective experience of high and anxiety, slower reaction time and impaired attention, learning and working memory. Patient studies suggest that treatment with medicinal cannabis reduces pain intensity across a broad range of chronic pain-related medical conditions. Medicinal cannabis showed a mild safety profile, with minor and transient side effects, such as feeling high, coughing and mental confusion. The strength of acute effects, the experience of side effects and the drop-out rate in patient studies may depend on cannabis dose, cannabis composition (CBD:THC ratio), and cannabis use history of participants. Conclusion: Safety and efficacy of standardized medicinal cannabis products should be further investigated in randomized clinical trials with sufficient sample size, with particular focus on cannabis dose and composition, age and differences between males and females.
RESUMEN
Drug consumption estimates are traditionally based on surveys or information from police seizures. Alternatively, residues of illicit drugs in untreated wastewater (influent) can be used to calculate mass loads and subsequently estimate drug consumption in the community throughout the week. For this purpose, wastewater is commonly sampled for seven consecutive days within the Sewage analysis CORe group Europe (SCORE), while other sampling schemes may be implemented in long-term studies outside this consortium. The current study demonstrates how sampling frequency of illicit drug residues in the influent of wastewater treatment plants (WWTPs) affects the derived weekly average. Thirty WWTPs were sampled over the course of 12 years and influents were analyzed for five drugs (metabolites): 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine, amphetamine, benzoylecgonine (a metabolite of cocaine), and 11-nor-9-Carboxy tetrahydrocannabinol (THC-COOH). Subsequently, small and large WWTPs were grouped with a threshold of 100,000 inhabitants. After data curation, standardized loads were calculated (mg/d per 1000 inhabitants). Weekly averages of loads of the drug residues were calculated based on six scenarios (sampling one to six weekdays) and compared to the weekly average in the control situation (sampling seven weekdays) in a Monte Carlo simulation. Results indicate that drug residues with more dynamic loads over a week require more frequent sampling. The analysis illustrates that a decreased sampling frequency (4 or 5 days per week) still leads to a representative weekly average for all drugs tested when a deviation up to a factor of 1.25 is deemed acceptable. However, knowledge on typical levels is necessary to define outliers. We therefore recommend to study dynamics in drug residue loads for WWTPs before reducing sampling frequency in long term monitoring programs.
Asunto(s)
Monitoreo del Ambiente , Drogas Ilícitas , Aguas Residuales , Contaminantes Químicos del Agua , Drogas Ilícitas/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Países Bajos , Eliminación de Residuos Líquidos , Detección de Abuso de Sustancias/métodos , Anfetamina/análisisRESUMEN
INTRODUCTION: Cannabis sativa L. (CSL) extract has pain-relieving potential due to its cannabinoid content, so the effects of two CSL extracts on alleviating neuropathic pain were investigated in vivo. Methods and groups: Male Wistar rats (n = 130) were divided into groups and received vincristine (0.1 mg/kg) and gabapentin (60 mg/kg) to induce and relieve neuropathic pain or CSL extracts (D and B). The mRNA and protein expression of the cannabinoid receptors type 1 and 2 (CB1R, CB2R) were evaluated in the cerebral cortex, hippocampus, and lymphocytes. Behavioural tests (Tail-Flick and von Frey) were performed on all animals. RESULTS: VK-induced neuropathic pain was accompanied by decreased CB1R protein level and CB2R mRNA expression in the cortex. Gabapentin relieved pain and increased CB1R protein levels in the hippocampus compared to the vincristine group. Hippocampus CB1R protein expression increased with the administration of extract D (10 mg/kg, 40 mg/kg) and extract B (7.5 mg/kg, 10 mg/kg) compared to VK group. In the cerebral cortex CSL decreased CB1R protein expression (10 mg/kg, 20 mg/kg, 40 mg/kg of extract B) and mRNA level (5 mg/kg, 7.5 mg/kg of extract B; 20 mg/kg of extract D) compared to the VK-group.CB2R protein expression increased in the hippocampus after treatment with extract B (7.5 mg/kg) compared to the VK-group. In the cerebral cortex extract B (10 mg/kg, 20 mg/kg) increased CB2R protein expression compared to VK-group. CONCLUSION: Alterations in cannabinoid receptor expression do not fully account for the observed behavioural changes in rats. Therefore, additional signalling pathways may contribute to the initiation and transmission of neuropathic pain. The Cannabis extracts tested demonstrated antinociceptive effects comparable to gabapentin, highlighting the antinociceptive properties of Cannabis extracts for human use.
Asunto(s)
Cannabis , Neuralgia , Extractos Vegetales , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Animales , Masculino , Ratas , Analgésicos/farmacología , Cannabis/química , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Gabapentina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratas Wistar , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/genética , Vincristina/farmacologíaRESUMEN
Hemp (Cannabis sativa L.) is an important source of fibre and seed oil and protein. By-products of industrial hemp fibre production, like hemp seeds and cakes, can be used as feed for all animal species as fat and protein source and the whole hemp plant (including stalk and leaves) might be a suitable fibre source for ruminants. However, a previous feeding experiment with leaf-flower-seed hemp silage, made from an industrial hemp variety, demonstrated detrimental effects on cow health parameters and a significant transfer of several cannabinoids, including the psychoactive tetrahydrocannabinol (∆9-THC), into cow's milk, posing a potential risk to the safety of consumers. Based on those observations, the present study tested the hypothesis that anaerobic fermentation, as during ensiling, increases the content of ∆9-THC in hemp. Therefore, silages of whole plants from the industrial hemp Cannabis sativa L. var. Ivory were prepared in a multifactorial design, with the four treatments 1) untreated control (CON), 2) addition of 10 mL per kg fresh weight homofermentative lactobacilli at 105 cfu/mL (LBAC), 3) addition of 10 mL per kg fresh weight homofermentative lactobacilli at 105 cfu/mL plus 30 g molasses (LBACmol) and 4) addition of propionic acid (10 mL/kg fresh weight) (PRO). Ultra high performance liquid chromatography coupled with tandem mass spectrometry with electrospray ionisation (UHPLC-MS/MS) was performed for analysis of cannabinoids in fresh hemp material and after 10 and 90 days of ensiling. The study revealed that ensiling decreased all acid forms of analysed cannabinoids in hemp at about 40-65% of the initial values after 90 days of storage, with the exception of cannabinolic acid (CBNA), and CBGA, the acidic form of cannabigerol (CBG). This decrease in most acidic forms was accompanied by an increase of the corresponding non-acidic forms of all cannabinoids, including the psychoactive ∆9-THC. Thus, although ensiling decreases the total cannabinoid content, psychoactive compounds like ∆9-THC can increase, enhancing the risk for animal health and a transfer of these substances into animal derived products.
Industrial hemp can be ensiled with different additives, despite its high buffering capacityUltra high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was used for analysis of cannabinoidsEnsiling decreased total cannabinoid content in industrial hemp, but increased individual compounds like ∆9-THC, likely through decarboxylation of the precursor ∆9-THCA.
RESUMEN
Chemotherapy-induced nausea and vomiting (CINV) is a debilitating side effect of cancer treatment, affecting many patients. Cannabinoid agonists, such as nabilone and Δ9-tetrahydrocannabinol (THC), the main psychoactive component of Cannabis sativa L., have shown efficacy as antiemetics. Here, we report the case of Michael Roberts (MR), who we believe is the first British patient reimbursed by the National Health Service (NHS) England for the cost of medicinal cannabis flowers to manage CINV. Medical data were obtained from NHS records and individual funding request (IFR) forms. Patient-reported outcome measures (PROMs) were collected using validated questionnaires as part of the standard of care at the specialized private clinics where the prescription of medicinal cannabis was initiated. The patient presented with rectosigmoid adenocarcinoma with lung metastases. He received FOLFIRI (folinic acid, fluorouracil, and irinotecan) chemotherapy and underwent an emergency Hartmann's procedure with subsequent second-line FOLFOX (folinic acid, fluorouracil, and oxaliplatin) chemotherapy and lung ablation. MR reported severe nausea and vomiting associated with the initial FOLFIRI treatment. Antiemetics metoclopramide and aprepitant demonstrated moderated efficacy. Antiemetics ondansetron, levomepromazine, and nabilone were associated with intolerable side effects. Inhalation of THC-predominant cannabis flowers in association with standard medication improved CINV, anxiety, sleep quality, appetite, overall mood, and quality of life. Our results add to the available evidence suggesting that medicinal cannabis flowers may offer valuable support in cancer palliative care integrated with standard-of-care oncology treatment. The successful individual funding request in this case demonstrates a pathway for other patients to gain access to these treatments, advocating for broader awareness and integration of cannabis-based medicinal products in national healthcare services.
RESUMEN
Cannabinoids can be detected in breath after cannabis use, but different breath matrices need to be explored as studies to date with filter-based devices that collect breath aerosols have not demonstrated that breath-based measurements can reliably identify recent cannabis use. Exhaled breath condensate (EBC) is an unexplored aqueous breath matrix that contains condensed volatile compounds and water vapor in addition to aerosols. EBC was collected from participants both before and at two time points (0.7 ± 0.2 h and 1.7 ± 0.3 h) after observed cannabis use. Eleven different cannabinoids were monitored with liquid chromatography tandem mass spectrometry. Five different cannabinoids, including Δ9-tetrahydrocannabinol (THC), were detected in EBC collected from cannabis users. THC was detected in some EBC samples before cannabis use, despite the requested abstinence period. THC was detected in all EBC samples collected at 0.7 h post use and decreased for all participants at 1.7 h. Non-THC cannabinoids were only detected after cannabis use. THC concentrations in EBC samples collected at 0.7 h showed no trend with sample metrics like mass or number of breaths. EBC sampling devices deserve further investigation with respect to modes of cannabis use (e.g, edibles), post use time points, and optimization of cannabinoid recovery.
Asunto(s)
Pruebas Respiratorias , Cannabinoides , Espiración , Humanos , Pruebas Respiratorias/métodos , Cannabinoides/análisis , Masculino , Adulto , Femenino , Espectrometría de Masas en Tándem/métodos , Adulto Joven , Cromatografía Liquida/métodos , Detección de Abuso de Sustancias/métodos , Fumar Marihuana/efectos adversos , Dronabinol/análisis , Cannabis/químicaRESUMEN
Introduction: Alcohol use disorder (AUD) is commonly associated with anxiety disorders and enhanced stress-sensitivity; symptoms that can worsen during withdrawal to perpetuate continued alcohol use. Alcohol increases neuroimmune activity in the brain. Our recent evidence indicates that alcohol directly modulates neuroimmune function in the central amygdala (CeA), a key brain region regulating anxiety and alcohol intake, to alter neurotransmitter signaling. We hypothesized that cannabinoids, such as cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC), which are thought to reduce neuroinflammation and anxiety, may have potential utility to alleviate alcohol withdrawal-induced stress-sensitivity and anxiety-like behaviors via modulation of CeA neuroimmune function. Methods: We tested the effects of CBD and CBD:THC (3:1 ratio) on anxiety-like behaviors and neuroimmune function in the CeA of mice undergoing acute (4-h) and short-term (24-h) withdrawal from chronic intermittent alcohol vapor exposure (CIE). We further examined the impact of CBD and CBD:THC on alcohol withdrawal behaviors in the presence of an additional stressor. Results: We found that CBD and 3:1 CBD:THC increased anxiety-like behaviors at 4-h withdrawal. At 24-h withdrawal, CBD alone reduced anxiety-like behaviors while CBD:THC had mixed effects, showing increased center time indicating reduced anxiety-like behaviors, but increased immobility time that may indicate increased anxiety-like behaviors. These mixed effects may be due to altered metabolism of CBD and THC during alcohol withdrawal. Immunohistochemical analysis showed decreased S100ß and Iba1 cell counts in the CeA at 4-h withdrawal, but not at 24-h withdrawal, with CBD and CBD:THC reversing alcohol withdrawal effects.. Discussion: These results suggest that the use of cannabinoids during alcohol withdrawal may lead to exacerbated anxiety depending on timing of use, which may be related to neuroimmune cell function in the CeA.
RESUMEN
Clinical and preclinical evidence has demonstrated an increased risk for neuropsychiatric disorders following prenatal cannabinoid exposure. However, given the phytochemical complexity of cannabis, there is a need to understand how specific components of cannabis may contribute to these neurodevelopmental risks later in life. To investigate this, a rat model of prenatal cannabinoid exposure was utilized to examine the impacts of specific cannabis constituents (Δ9-tetrahydrocannabinol [THC]; cannabidiol [CBD]) alone and in combination on future neuropsychiatric liability in male and female offspring. Prenatal THC and CBD exposure were associated with low birth weight. At adolescence, offspring displayed sex-specific behavioural changes in anxiety, temporal order and social cognition, and sensorimotor gating. These phenotypes were associated with sex and treatment-specific neuronal and gene transcriptional alterations in the prefrontal cortex, and ventral hippocampus, regions where the endocannabinoid system is implicated in affective and cognitive development. Electrophysiology and RT-qPCR analysis in these regions implicated dysregulation of the endocannabinoid system and balance of excitatory and inhibitory signalling in the developmental consequences of prenatal cannabinoids. These findings reveal critical insights into how specific cannabinoids can differentially impact the developing fetal brains of males and females to enhance subsequent neuropsychiatric risk.
Asunto(s)
Conducta Animal , Cannabidiol , Dronabinol , Hipocampo , Corteza Prefrontal , Efectos Tardíos de la Exposición Prenatal , Modelos Animales , Animales , Ratas , Dronabinol/toxicidad , Cannabidiol/toxicidad , Factores Sexuales , Corteza Prefrontal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Femenino , Embarazo , Conducta Animal/efectos de los fármacos , Ratas Wistar , Memoria/efectos de los fármacos , Ansiedad/inducido químicamente , Cognición/efectos de los fármacos , Conducta Impulsiva/efectos de los fármacos , Psicotrópicos/toxicidadRESUMEN
It appears that the THC dosage is the link between dysregulation of the hypothalamic pituitary adrenal (HPA) axis and suicidal thoughts and behaviors (STB). We proposed a new model to understand the underlying pathophysiological mechanism of STB based on the interaction of cortisol and THC dosage. From September 1, 2019, to January 1, 2024, we conducted a population-based, matched-pair, nested case-control study resulting from a three-wave complete longitudinal, multicenter cohort study on a sample of congress 60 clients. A total of 368 male continued cannabis users (CCu) were allocated to four categories, including low, moderate and high THC dosages and relapse, using optimal matching. Several HPA axis measures were analyzed in the saliva using liquid chromatography with tandem mass spectrometry (LC-MS-MS), and carboxylic acids levels in the urine were assessed via gas chromatography/mass spectrometry (GC-MS). We used structural equation modeling (SEM) to examine the relationship between the variables of interest and the model fit test, and used the Akaike information criterion (AIC) to compare the model fit and select the best-fitting model. Population attributable fractions (PAFs) and cumulative risk score were also calculated for the best-fitting pattern. The analysis showed that the likelihood of STB in individuals with a cortisol awakening response (CAR) and a blunted diurnal cortisol slope (DCS) and higher area under the curve (AUC) who reported heavy cannabis use was more than three times higher than the control group (OR 3.2, 95 % CI 2.4-4.1). These findings indicate the importance of the specific cortisol secretion pattern in the increased clinical expression of STB and may be an important factor for guiding preventive efforts in this area.
Asunto(s)
Ritmo Circadiano , Dronabinol , Hidrocortisona , Saliva , Ideación Suicida , Humanos , Masculino , Hidrocortisona/metabolismo , Adulto , Dronabinol/orina , Saliva/química , Saliva/metabolismo , Estudios de Casos y Controles , Ritmo Circadiano/fisiología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Adulto Joven , Estudios Longitudinales , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiopatología , Estudios de Cohortes , Abuso de MarihuanaRESUMEN
Adolescents commonly co-abuse many drugs including anabolic androgenic steroids either they are athletes or non-athletes. Stanozolol is the major anabolic used in recent years and was reported grouped with cannabis. The current study aimed at evaluating the biochemical and histopathological changes related to the hypertrophic effects of stanozolol and/or cannabis whether in condition of exercise practice or sedentary conditions. Adult male Wistar albino rats received either stanozolol (5 mg/kg, s.c), cannabis (10 mg/kg, i.p.), and a combination of both once daily for two months. Swimming exercise protocol was applied as a training model. Relative heart weight, oxidative stress biomarkers, cardiac tissue fibrotic markers were evaluated. Left ventricular morphometric analysis and collagen quantification was done. The combined treatment exhibited serious detrimental effects on the heart tissues. It increased heart tissue fibrotic markers (Masson's trichrome stain (p < 0.001), cardiac COL3 (p < 0.0001), and VEGF-A (p < 0.05)), lowered heart glutathione levels (p < 0.05) and dramatically elevated oxidative stress (increased malondialdehyde (p < 0.0001) and 8-OHDG (p < 0.0001)). Training was not ameliorating for the observed effects. Misuse of cannabis and stanozolol resulted in more hypertrophic consequences of the heart than either drug alone, which were at least largely assigned to oxidative stress, heart tissue fibrotic indicators, histological alterations, and morphometric changes.
Asunto(s)
Anabolizantes , Cardiomegalia Inducida por el Ejercicio , Fibrosis , Estrés Oxidativo , Ratas Wistar , Estanozolol , Animales , Estanozolol/toxicidad , Masculino , Estrés Oxidativo/efectos de los fármacos , Anabolizantes/toxicidad , Cardiomegalia Inducida por el Ejercicio/efectos de los fármacos , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/inducido químicamente , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/prevención & control , Remodelación Ventricular/efectos de los fármacos , Miocardio/patología , Miocardio/metabolismo , Doping en los Deportes , Biomarcadores/metabolismo , Natación , Condicionamiento Físico Animal/fisiología , Ratas , Modelos Animales de EnfermedadRESUMEN
In this overview, we seek to appraise recent experimental and observational studies investigating THC and its potential role as adjunctive therapy in various medical illnesses. Recent clinical trials are suggestive of the diverse pharmacologic potentials for THC but suffer from small sample sizes, short study duration, failure to address tolerance, little dose variation, ill-defined outcome measures, and failure to identify and/or evaluate confounds, all of which may constitute significant threats to the validity of most trials. However, the existing work underscores the potential therapeutic value of THC and, at the same time, calls attention to the critical need for better-designed protocols to fully explore and demonstrate safety and efficacy. In the most general sense, the present brief review illuminates some intriguing findings about THC, along with the basic threats to the validity of the research that supports those findings. The intent is to highlight existing generic weaknesses in the existing randomized controlled trial literature and, most importantly, provide guidance for improved clinical research.
RESUMEN
BACKGROUND: The survey of Copeia captured early 2022 patient-reported outcomes (PRO) in Germany under cannabis medicinal product (CAM) therapy, with particular attention to symptoms, symptom changes, indications, side effects, dosages, and cost bearers. GOAL: This study investigated the question of whether associations emerge from the results that could play a role in the indication and treatment monitoring of CAM in chronically ill patients. MATERIALS AND METHODS: A standardized questionnaire was administered online nationwide in dialogue form over a 15-week period to collect itemized symptoms and PRO. Recruitment was supported by pharmacies, prescribing physicians, and patient associations. Inclusion criteria included physician-prescribed CAM therapy. RESULTS AND DISCUSSION: Of 1582 participants, 1030 data sets (65%) could be completely analyzed. There was a heterogeneous patient population, whose common feature was disease chronicity. The frequency distribution of symptoms showed a homogeneous pattern for the respective indications, in which the most frequent six (pain 71%, sleep disturbance 64%, stress/tension 52%, inner restlessness 52%, depressive mood 44% and muscle tension 43%) seem to have a special significance. According to subjective assessment, quality of life improved significantly in 84% of all participating patients. CONCLUSION: A symptom matrix (SMX) composed of different symptoms seems to play a special role in CAM therapy to improve the quality of life of chronically ill patients, regardless of the underlying disease. The SMX could contribute to the identification of an indication and to targeted treatment monitoring.
Asunto(s)
Marihuana Medicinal , Medición de Resultados Informados por el Paciente , Calidad de Vida , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Crónica , Alemania , Marihuana Medicinal/uso terapéutico , Marihuana Medicinal/efectos adversos , Calidad de Vida/psicología , Encuestas y CuestionariosRESUMEN
Background: The popularity of delta-8 tetrahydrocannabinol (THC) and cannabidiol (CBD) products has seen a sharp increase in use during recent years. Despite the rise in use of these minor cannabinoids, there are little to no pre-clinical behavioral data on their effects, with most pre-clinical cannabis research focusing on the behavioral effects of delta-9 THC. The current experiments aimed to characterize the behavioral effects of delta-8 THC, CBD, and mixtures of these two drugs using a whole-body vapor exposure route of administration in male rats. Methods: Rats were exposed to vapor that contained different concentrations of delta-8 THC, CBD, or CBD/delta-8 THC mixtures during 10 min of exposure. Following 10 min of vapor exposure, locomotor behavior was monitored, or the warm-water tail withdrawal assay was conducted to measure the acute analgesic effects of the vapor exposure. Results: CBD and CBD/delta-8 THC mixtures resulted in a significant increase in locomotion across the entire session. Although delta-8 THC alone had no significant effect on locomotion across the session, the 10 mg concentration of delta-8 THC had a hyperlocomotion effect in the first 30 min of the session followed by a hypolocomotor effect later in the session. In the tail withdrawal assay, a 3/1 mixture of CBD/delta-8 THC resulted in an immediate analgesic effect compared to vehicle vapor. Finally, immediately following vapor exposure, all drugs had a hypothermic effect on body temperature compared to vehicle. Conclusion: This experiment is the first to characterize the behavioral effects of vaporized delta-8 THC, CBD, and CBD/delta-8 THC in male rats. While data were generally congruent with previous research investigating delta-9 THC, future studies should explore abuse liability and validate plasma blood concentrations of these drugs following administration through whole-body vapor exposure.
Asunto(s)
Cannabidiol , Cannabinoides , Alucinógenos , Ratas , Masculino , Animales , Cannabidiol/farmacología , Dronabinol/farmacología , Cannabinoides/farmacología , Alucinógenos/farmacología , AnalgésicosRESUMEN
INTRODUCTION: ∆-8 tetrahydrocannabinol (THC) is a psychoactive cannabinoid and structural isomer of ∆-9 THC that is technically legal under United States Federal law. Commercial ∆-8-THC products being sold are currently unregulated. This study aims to (1) describe the advertising and labeling of Δ-8 THC retail products; (2) compare the advertised amount of Δ-8 THC for each product to that found during independent laboratory analysis; and (3) evaluate the presence and amount of other cannabinoids in those products. METHODS: Twenty ∆-8 THC products were purchased from retail stores in Pittsburgh, PA, USA. Samples were analyzed to determine cannabinoid content using a validated UPLC-MS/MS method. Descriptive statistics were calculated for all variables. Spearman's rank order correlation was calculated for the labeled ∆-8 THC content compared to ∆-8 THC content found on our analysis. Differences in continuous variables were compared using ANOVA, Wilcoxon Rank Sum, or Kruskal-Wallis tests. RESULTS: ∆-8 THC was detected in 95% (N=19) of the sample products. A weakly positive correlation (Spearman's rho =0.40) was found between the advertised ∆-8 THC content and our analysis results. Factors associated with decreased difference in these variables included (1) solid matrix (chocolate, gummies) and (2) absence of a "lab-tested" label. Δ-9 THC was found in 35% (N=7) of the products, and CBD was found in one. CONCLUSION: A majority of the products analyzed contained ∆-8 THC in amounts that could cause intoxication. The range of ∆-8 THC content on independent analysis was wide and weakly correlated to the advertised content. ∆-8 THC, ∆-9 THC, and CBD were the only cannabinoids detected.
Asunto(s)
Cannabinoides , Cannabis , Humanos , Estados Unidos , Dronabinol , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodosRESUMEN
Adolescent exposure to Δ9-tetrahydrocannabinol (THC) has enduring effects on energy metabolism and immune function. Prior work showed that daily administration of a low-impact dose of THC (5 mg/kg, intraperitoneal) during adolescence alters transcription in adult microglia and disrupts their response to bacterial endotoxin or social stress. To explore the lasting impact of adolescent THC exposure on the brain's reaction to viral infection, we administered THC (5 mg/kg, intraperitoneal) in male and female mice once daily on postnatal day (PND) 30-43. When the mice reached adulthood (PND 70), we challenged them with the viral mimic, polyinosinic acid:polycytidylic acid [Poly(I:C)], and assessed sickness behavior (motor activity, body temperature) and whole brain gene transcription. Poly(I:C) caused an elevation in body temperature which was lessened by prior THC exposure in female but not male mice. Adolescent THC exposure did not affect the locomotor response to Poly(I:C) in either sex. Transcriptomic analyses showed that Poly(I:C) produced a substantial upregulation of immune-related genes in the brain, which was decreased by THC in females. Additionally, the viral mimic caused a male-selective downregulation in transcription of genes involved in neurodevelopment and synaptic transmission, which was abrogated by adolescent THC treatment. The results indicate that Poly(I:C) produces complex transcriptional alterations in the mouse brain, which are sexually dimorphic and differentially affected by early-life THC exposure. In particular, adolescent THC dampens the brain's antiviral response to Poly(I:C) in female mice and prevents the transcriptional downregulation of neuron-related genes caused by the viral mimic in male mice.
Asunto(s)
Dronabinol , Virosis , Animales , Ratones , Masculino , Femenino , Dronabinol/farmacología , Encéfalo , Transmisión Sináptica , NeuronasRESUMEN
Purpose Marijuana use has been increasing in the adolescent population. Our objective was to examine the prevalence of marijuana use among a sample of adolescents and young adults, determine an association with risk-taking behaviors, identify reported medical symptoms, and delineate common beliefs about marijuana use. Methods A questionnaire was administered to a sample of patients aged between 12 and 23 years old presenting to the emergency department of Penn State Hershey Medical Center, Hershey, Pennsylvania. Data were stratified by marijuana users and non-users, and further stratified by traditional (vape, pipe, edibles) and non-traditional (oils/concentrates, topical creams) use. Results The analysis was based on 200 questionnaires. Thirty-nine percent (n=78) reported marijuana use. Marijuana users were more likely to report previous sexual intercourse (79.5% vs. 32.8%; p=<0.0001), as well as the use of alcohol (50.0% vs. 10.7%; p=<0.0001), cigarettes (41% vs. 8.2%; p=<0.0001), prescription pain medications (20.5% vs. 4.1%; p=0.002), and cocaine (14.1% vs. 0.8%; p=0.0017). Users more likely reported texting while driving (41.0% vs. 13.1%; p=0.005) and experienced physical or electronic victimization due to bullying (43.6% vs. 19.7%; p=0.002). Users were more likely to report gastroesophageal reflux disease (GERD), attention deficit disorder (ADD), anxiety, and depression. The most common symptoms associated with marijuana use were anxiety (65.4%), headache (61.6%), nausea/vomiting (53.8%), cough (51.3%), and abdominal pain (47.4%). Sixty-nine percent of respondents believed marijuana was "safer than other drugs". Conclusion Based on our sample, we identified risk-taking behaviors, medical symptoms, and beliefs associated with marijuana use. Healthcare professionals may use these data to provide screening and anticipatory guidance to adolescents who use marijuana and consider marijuana use in their differential diagnosis.
RESUMEN
The assessment of human postmortem concentrations of Δ9-THC (THC) and its metabolites, 11-nor-9-carboxy-THC (THCCOOH) and 11-hydroxy-THC (11-OH-THC), is routinely performed in forensic toxicology laboratories. However, the literature on cannabinoids postmortem redistribution (PMR) is scarce and highlights their complex postmortem changes. This study aims to investigate the postmortem behavior of THC and its metabolites in order to provide practitioners with potential indicators of PMR. To do so, antemortem and postmortem cases positive for cannabinoids were compiled in a database. Its analysis shows significantly higher THC concentrations in postmortem blood than in antemortem blood. Antemortem and postmortem blood also present significantly different profiles for their THC to THCCOOH ratios. Whereas antemortem blood generally shows THCCOOH concentrations higher or equal to THC, several postmortem cases show the opposite, with THC concentrations higher than THCCOOH. While occurrence of postmortem redistribution (PMR) is difficult to measure directly, an evaluation was performed using the central to peripheral (C/P) blood concentrations ratio as a proxy. With a C/P significantly lower than 1.0 for THC and significantly higher than 1.0 for THCCOOH, the PMR hypothesis is supported for both compounds, with redistribution towards peripheral blood for THC and towards central blood for THCCOOH. On the other hand, 11-OH-THC does not show a C/P significantly different than 1.0, suggesting the absence of PMR. Influence of body mass index, conservation state and postmortem interval on C/P was statistically analyzed and no significant impact was observed. To compare and contrast C/P observed in the database with those published in the literature, a meta-analysis was performed using a median of median (MM) model. THC PMR towards peripheral blood is supported by a global estimate of 0.81 (CI95%: 0.51 to 1.2). Redistribution towards femoral blood appears to be stronger than towards iliac blood; indeed, the median estimate of C/P decreases to 0.64 (CI95%: 0.40 to 1.1) when studies with iliac blood were removed from the meta-analysis. THCCOOH PMR towards central blood is supported by a C/P median estimate of 1.3 (CI95%: 0.97 to 1.6). THC PMR can be suspected when these indicators are observed (i) high THC blood concentration (>50 ng/mL), (ii) THC C/P lower than 1.0 (iii) blood THC/THCCOOH concentration ratios greater than 1.0 and (iv) non-detectability of THCCOOH in urine. In postmortem samples, many factors may contribute to the overestimation of THC concentration, therefore a careful interpretation is required, relying on both central and peripheral blood samples.
Asunto(s)
Líquidos Corporales , Cannabinoides , Humanos , Dronabinol , Autopsia , Cambios Post Mortem , Toxicología ForenseRESUMEN
Introduction: Basic pharmacokinetic (PK) and pharmacodynamic models of the phytocannabinoids Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are critical for developing translational models of exposure and toxicity. The neonatal period is a particularly important time to study the effects of cannabinoids, yet there are few studies of cannabinoid PKs by different routes such as direct injection or breast milk ingestion. To study this question, we have developed a translationally relevant rodent model of perinatal cannabinoid administration by measuring plasma levels of THC and CBD after different routes and preparations of these drugs. Materials and Methods: Adult animals and pups were injected with THC or CBD either intraperitoneally or subcutaneously, and plasma was analyzed by liquid chromatography-tandem mass spectrometry to measure cannabinoid levels collected at specified intervals. We also tested the effect of preparation of the drug using an oil-based vehicle (sesame oil) and an aqueous vehicle (Tween). Finally, we measured the plasma levels of cannabinoids in neonatal pups that were transmitted through breast milk after intraperitoneal injection to nursing dams. Results: We observed differences in the PK profiles of cannabinoids in adults and neonatal pups that were dependent on the route of administration and type of vehicle. Cannabinoids prepared in aqueous vehicle, injected intraperitoneally, resulted in a high peak in plasma concentration, which rapidly decreased. In contrast, subcutaneous injections using sesame oil as a vehicle resulted in a slow rise and low plateau in plasma concentration. Intraperitoneal injections with sesame oil as a vehicle resulted in a slower rise compared with aqueous vehicle, but an earlier and higher peak compared with subcutaneous injection. Finally, the levels of THC and CBD that were similar to direct subcutaneous injections were measured in the plasma of pups nursing from intraperitoneally injected dams. Conclusions: The route of administration and the preparation of the drug have important and significant effects on the PK profiles of THC and CBD in rats. These results can be used to create different clinically relevant exposure paradigms in pups and adults, such as short high-dose exposure or a low-chronic exposure, each of which might have significant and varying effects on development.
RESUMEN
BACKGROUND: Marijuana is legal in many Western countries and Thailand. In Taiwan, Marijuana remains a category-2 narcotic; however, some legislative candidates recently advocated legalization of medical marijuana. This study surveyed a large sample of Taiwanese to gain a better understanding of the public's knowledge and attitudes towards legalizing marijuana. METHODS: This cross-sectional mixed-methods study included demographic data and responses to a survey questionnaire, "Knowledge and Attitudes of Legalizing Marijuana" (KALM). The survey included 15 statements about four categories: public health, social impact, medical applications of THC (Δ9-tetrahydrocannabinol), and legal and tax consequences; and two yes/no questions about medical use and legalization of marijuana. Knowledge was scored as disagree = 0, no knowledge = 2, or agree = 4; attitude was scored from 0 = very unimportant to 4 = very important. Responses to an open-ended question asking for additional comments/concerns were analysed with content analysis. The survey was conducted from February 15 to March 1, 2023. RESULTS: Data were analysed from 38,502 respondents, aged 15 to > 56 years. Most were female (67.1%) and parents (76.4%). Scores were higher for respondents who were parents, religious, ≥ 36 years of age, had a high-income status, no history of substance abuse, knowledge of medical marijuana, and did not support legalization of marijuana. Medical personnel had greater knowledge of marijuana, but their attitude indicated they viewed legalization as less important. In the open-ended question, many respondents requested more information about marijuana be provided to the public before considering legalization. CONCLUSIONS: Taiwanese respondents considered legalization of marijuana a significant concern, especially as it relates to impacts on public health.
Asunto(s)
Cannabis , Fumar Marihuana , Marihuana Medicinal , Humanos , Femenino , Masculino , Taiwán , Estudios TransversalesRESUMEN
Environmental exposure to lead (Pb) and cannabis use are two of the largest public health issues facing modern society in the United States and around the world. Exposure to Pb in early life has been unequivocally shown to have negative impacts on development, and recent research is mounting showing that it may also predispose individuals for risk of developing substance use disorders (SUD). At the same time, societal and legal attitudes towards cannabis (the main psychoactive component of which is delta-9-tetrahydrocannabinol) have been shifting, and many American states have legalized the recreational use of cannabis. It is also the 3rd most widely used drug of abuse in the US, and rates of cannabis use disorder are on the rise. Here we establish a link between early life Pb exposure and later THC-related behavior in C57BL6/J mice, as has been demonstrated for other drugs of abuse. The study seeks to answer whether Pb exposure affects physiological/behavioral THC sensitivity (as measured by the cannabinoid-induced tetrad). It was hypothesized that Pb exposure would decrease THC sensitivity and that sex-dependent effects of Pb-exposure and THC would be observed. Interestingly, results showed that THC sensitivity was increased by Pb exposure, but only in female mice. Future research will fully explore the implications of these findings, namely how these effects impact THC self-administration and the mechanism(s) by which developmental Pb exposure produces these effects.