Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90.483
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38694539

RESUMEN

Objective: This study aimed to investigate the usefulness of endoscopic ultrasound-guided tissue acquisition (EUS-TA) for diagnosing focal liver lesions in patients with a history of multiple primary malignant neoplasms. Methods: Among patients who underwent EUS-TA for focal liver lesions between 2016 and 2022, those with a history of multiple malignant neoplasms were included. A histologically confirmed malignant tumor within the past 5 years before EUS-TA was defined as a history of malignant neoplasm. The primary outcomes were diagnostic ability and adverse events of EUS-TA. Results: This study included 16 patients (median age, 73 [33-90] years), the median tumor size was 32 (6-51) mm, 14 had a history of double malignant neoplasms, whereas two had triple malignant neoplasms. Malignant neoplasms were detected histologically or cytologically in all cases. Immunohistochemistry was performed in 75% (12/16), and the final diagnosis of EUS-TA was metastatic liver tumor in 12 patients, and primary malignant liver tumor in four patients. The primary site could be identified in 11 of 12 metastatic tumor cases. The diagnostic yield of EUS-TA was 100% (16/16) for differentiating benign and malignant tumors and 94% (15/16) for confirming the histological type including the primary site of metastatic lesions. No adverse events were associated with the procedure. Conclusion: EUS-TA is a useful diagnostic modality for focal liver lesions in patients with a history of multiple malignant neoplasms, allowing for the differential diagnosis of primary and metastatic tumors and identification of the primary site of metastatic lesions.

2.
J Biomed Opt ; 30(Suppl 1): S13705, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39310036

RESUMEN

Significance: Intraoperative molecular imaging (IMI) enables the detection and visualization of cancer tissue using targeted radioactive or fluorescent tracers. While IMI research has rapidly expanded, including the recent Food and Drug Administration approval of a targeted fluorophore, the limits of detection have not been well-defined. Aim: The ability of widely available handheld intraoperative tools (Neoprobe and SPY-PHI) to measure gamma decay and fluorescence intensity from IMI tracers was assessed while varying characteristics of both the signal source and the intervening tissue or gelatin phantoms. Approach: Gamma decay signal and fluorescence from tracer-bearing tumors (TBTs) and modifiable tumor-like inclusions (TLIs) were measured through increasing thicknesses of porcine tissue and gelatin in custom 3D-printed molds. TBTs buried beneath porcine tissue were used to simulate IMI-guided tumor resection. Results: Gamma decay from TBTs and TLIs was detected through significantly thicker tissue and gelatin than fluorescence, with at least 5% of the maximum signal observed through up to 5 and 0.5 cm, respectively, depending on the overlying tissue type or gelatin. Conclusions: We developed novel systems that can be fine-tuned to simulate variable tumor characteristics and tissue environments. These were used to evaluate the detection of fluorescent and gamma signals from IMI tracers and simulate IMI surgery.


Asunto(s)
Radioisótopos de Indio , Indoles , Imagen Molecular , Fantasmas de Imagen , Porcinos , Animales , Imagen Molecular/métodos , Imagen Molecular/instrumentación , Indoles/química , Colorantes Fluorescentes/química , Gelatina/química , Neoplasias/diagnóstico por imagen , Neoplasias/cirugía , Imagen Óptica/métodos , Imagen Óptica/instrumentación , Bencenosulfonatos
3.
Bioact Mater ; 43: 32-47, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39318637

RESUMEN

To obtain high-performance tissue-adhesive hydrogel embodying excellent mechanical integrity, a supramolecular hydrogel patch is fabricated through in situ copolymerization of a liquid-liquid phase separation precursor composed of self-complementary 2-2-ureido-4-pyrimidone-based monomer and acrylic acid coupled with subsequent corporation of bioactive epigallocatechin gallate. Remarkably, the prepared supramolecular hydrogel leverages hierarchical multi-strength hydrogen-bonds hinged strategy assisted by alkyl-based hydrophobic pockets, broadening the distribution of binding strength of physical junctions, striking a canonical balance between superb mechanical performance and robust adhesive capacity. Ultimately, the fabricated supramolecular hydrogel patch stands out as a high stretchability (1500 %), an excellent tensile strength (2.6 MPa), a superhigh toughness (12.6 MJ m-3), an instant and robust tissue adhesion strength (263.2 kPa for porcine skin), the considerable endurance under cyclic loading and reversible adhesion, a superior burst pressure tolerance (108 kPa) to those of commercially-available tissue sealants, and outstanding anti-swelling behavior. The resultant supramolecular hydrogel patch demonstrates the rapid hemorrhage control within 60 s in liver injury and efficient wound closure and healing effects with alleviated inflammation and reduced scarring in full-thickness skin incision, confirming its medical translation as a promising self-rescue tissue-adhesive patch for hemorrhage prevention and sutureless wound closure.

4.
Bioact Mater ; 43: 1-31, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39318636

RESUMEN

This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.

5.
Methods Mol Biol ; 2857: 9-14, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39348051

RESUMEN

Telomeres in most somatic cells shorten with each cell division, and critically short telomeres lead to cellular dysfunction, cell cycle arrest, and senescence. Thus, telomere shortening is an important hallmark of human cellular senescence. Quantitative fluorescence in situ hybridization (Q-FISH) using formalin-fixed paraffin-embedded (FFPE) tissue sections allows the estimation of telomere lengths in individual cells in histological sections. In our Q-FISH method, fluorescently labelled peptide nucleic acid (PNA) probes are hybridized to telomeric and centromeric sequences in FFPE human tissue sections, and relative telomere lengths (telomere signal intensities relative to centromere signal intensities) are measured. This chapter describes our Q-FISH protocols for assessing relative telomere lengths in FFPE human tissue sections.


Asunto(s)
Hibridación Fluorescente in Situ , Adhesión en Parafina , Ácidos Nucleicos de Péptidos , Telómero , Humanos , Hibridación Fluorescente in Situ/métodos , Telómero/genética , Telómero/metabolismo , Ácidos Nucleicos de Péptidos/metabolismo , Ácidos Nucleicos de Péptidos/genética , Adhesión en Parafina/métodos , Fijación del Tejido/métodos , Homeostasis del Telómero , Centrómero/metabolismo , Centrómero/genética
6.
J Orthop ; 59: 22-26, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39355450

RESUMEN

Three-dimensional (3D) printing is a form of technology in which 3D physical models are created. It has been used in a variety of surgical specialities ranging from cranio-maxillo-facial to orthopaedic surgery and is currently an area of much interest within the medical profession. Within the field of orthopaedic surgery, 3D printing has several clinical applications including surgical education, surgical planning, manufacture of patient-specific prostheses/patient specific instruments and bone tissue engineering. This article reviews the current practices of 3D printing in orthopaedic surgery in both clinical and pre-clinical settings along with discussing its potential future applications.

7.
Methods Mol Biol ; 2855: 133-145, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39354305

RESUMEN

Endocannabinoids (ECBs) are lipid-derived endogenous molecules with important physiological roles such as regulation of energy balance, immunity, or neural development. Quantitation of ECBs helps better understand their physiological role and modulation of biological processes. This chapter presents the simultaneous quantification of 14 ECBs and related molecules in the brain, liver, and muscle, as well as white and brown adipose tissue using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The dynamic range of the method has been tuned to cover the endogenous concentrations of these analytes given the fact that they are endogenously present at different orders of magnitude. Specifically, three groups are established: 0.5-5000 ng/mL for 2-oleoyl- and 2-linoleoylglycerol and arachidonic acid, 0.05-500 ng/mL for 2-arachidonoylglycerol, and 0.0005-0.5 ng/mL for anandamide, palmitoyl-, palmitoleoyl-, stearoyl-, oleoyl-, linoleoyl-, alpha-linolenoyl-, dihomo-gamma-linolenoyl-, docosahexaenoyl-, and pentadecanoylethanolamide.


Asunto(s)
Endocannabinoides , Espectrometría de Masas en Tándem , Endocannabinoides/análisis , Endocannabinoides/metabolismo , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Animales , Encéfalo/metabolismo , Hígado/metabolismo , Hígado/química , Ratones , Cromatografía Líquida con Espectrometría de Masas
8.
Methods Mol Biol ; 2855: 523-535, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39354325

RESUMEN

Mass spectrometry imaging (MSI) allows for label-free spatial molecular interrogation of tissues. With advances in the field over recent years, the spatial resolution at which MSI data can be recorded has reached the single-cell level. This makes MSI complementary to other single-cell omics technologies. As metabolism is a highly dynamic process, capturing the metabolic turnover adds a valuable layer of information. Here, we describe how to set up in situ stable isotope tracing followed by MSI-enabled spatial metabolomics to perform dynamic metabolomics at the single-cell level.


Asunto(s)
Marcaje Isotópico , Metabolómica , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Metabolómica/métodos , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Animales , Humanos , Imagen Molecular/métodos
9.
Biomaterials ; 312: 122718, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39084097

RESUMEN

Functional hydrogels are used for numerous biomedical applications such as tissue engineering, wound dressings, lubricants, contact lenses and advanced drug delivery systems. Most of them are based on synthetic or natural polymers forming a three-dimensional network that contains aqueous media. Among synthetic polymers, poly(meth)acrylates, polyethyleneglycols, poly(vinylalcohols), poly(vinylpyrrolidones), PLGA and poly(urethanes) are of high relevance, whereas natural polymers are mainly polysaccharides such as hyaluronic acid, alginate or chitosan and proteins such as albumin, collagen or elastin. In contrast to most synthetic polymers, natural polymers are biodegradable. Both synthetic and natural polymers are often chemically modified in order to improve or induce favorable properties and functions like high mechanical strength, stiffness, elasticity, high porosity, adhesive properties, in situ gelling properties, high water binding capacity or drug release controlling properties. Within this review we provide an overview about the broad spectrum of biomedical applications of functional hydrogels, summarize innovative approaches, discuss the concept of relevant functional hydrogels that are in clinical trials and highlight advanced products as examples for successful developments.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Hidrogeles/química , Humanos , Ingeniería de Tejidos/métodos , Ensayos Clínicos como Asunto , Animales , Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química
10.
Biomaterials ; 312: 122711, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39088911

RESUMEN

The unsuitable deformation stimulus, harsh urine environment, and lack of a regenerative microenvironment (RME) prevent scaffold-based urethral repair and ultimately lead to irreversible urethral scarring. The researchers clarify the optimal elastic modulus of the urethral scaffolds for urethral repair and design a multilayered PVA hydrogel scaffold for urethral scar-free healing. The inner layer of the scaffold has self-healing properties, which ensures that the wound effectively resists harsh urine erosion, even when subjected to sutures. In addition, the scaffold's outer layer has an extracellular matrix-like structure that synergizes with adipose-derived stem cells to create a favorable RME. In vivo experiments confirm successful urethral scar-free healing using the PVA multilayered hydrogel scaffold. Further mechanistic study shows that the PVA multilayer hydrogel effectively resists the urine-induced inflammatory response and accelerates the transition of urethral wound healing to the proliferative phase by regulating macrophage polarization, thus providing favorable conditions for urethral scar-free healing. This study provides mechanical criteria for the fabrication of urethral tissue-engineered scaffolds, as well as important insights into their design.


Asunto(s)
Módulo de Elasticidad , Hidrogeles , Andamios del Tejido , Uretra , Cicatrización de Heridas , Andamios del Tejido/química , Animales , Hidrogeles/química , Ingeniería de Tejidos/métodos , Ratones , Regeneración , Cicatriz/patología , Masculino , Microambiente Celular , Ratas Sprague-Dawley , Células Madre/citología
11.
Biomaterials ; 312: 122716, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39121731

RESUMEN

Meniscus is vital for maintaining the anatomical and functional integrity of knee. Injuries to meniscus, commonly caused by trauma or degenerative processes, can result in knee joint dysfunction and secondary osteoarthritis, while current conservative and surgical interventions for meniscus injuries bear suboptimal outcomes. In the past decade, there has been a significant focus on advancing meniscus tissue engineering, encompassing isolated scaffold strategies, biological augmentation, physical stimulus, and meniscus organoids, to improve the prognosis of meniscus injuries. Despite noteworthy promising preclinical results, translational gaps and inconsistencies in the therapeutic efficiency between preclinical and clinical studies exist. This review comprehensively outlines the developments in meniscus tissue engineering over the past decade (Scheme 1). Reasons for the discordant results between preclinical and clinical trials, as well as potential strategies to expedite the translation of bench-to-bedside approaches are analyzed and discussed.


Asunto(s)
Menisco , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Humanos , Animales , Andamios del Tejido/química , Investigación Biomédica Traslacional
12.
Biomaterials ; 313: 122769, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39208698

RESUMEN

Minimally invasive transcatheter interventional therapy utilizing cardiac occluders represents the primary approach for addressing congenital heart defects and left atrial appendage (LAA) thrombosis. However, incomplete endothelialization and delayed tissue healing after occluder implantation collectively compromise clinical efficacy. In this study, we have customized a recombinant humanized collagen type I (rhCol I) and developed an rhCol I-based extracellular matrix (ECM)-mimetic coating. The innovative coating integrates metal-phenolic networks with anticoagulation and anti-inflammatory functions as a weak cross-linker, combining them with specifically engineered rhCol I that exhibits high cell adhesion activity and elicits a low inflammatory response. The amalgamation, driven by multiple forces, effectively serves to functionalize implantable materials, thereby responding positively to the microenvironment following occluder implantation. Experimental findings substantiate the coating's ability to sustain a prolonged anticoagulant effect, enhance the functionality of endothelial cells and cardiomyocyte, and modulate inflammatory responses by polarizing inflammatory cells into an anti-inflammatory phenotype. Notably, occluder implantation in a canine model confirms that the coating expedites reendothelialization process and promotes tissue healing. Collectively, this tailored ECM-mimetic coating presents a promising surface modification strategy for improving the clinical efficacy of cardiac occluders.


Asunto(s)
Materiales Biocompatibles Revestidos , Matriz Extracelular , Cicatrización de Heridas , Animales , Matriz Extracelular/metabolismo , Perros , Humanos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Colágeno Tipo I/metabolismo , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células Endoteliales de la Vena Umbilical Humana , Repitelización/efectos de los fármacos , Adhesión Celular/efectos de los fármacos
13.
Biomaterials ; 313: 122794, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39241552

RESUMEN

Complex tissue damage accompanying with bacterial infection challenges healthcare systems globally. Conventional tissue engineering scaffolds normally generate secondary implantation trauma, mismatched regeneration and infection risks. Herein, we developed an easily implanted scaffold with multistep shape memory and photothermal-chemodynamic properties to exactly match repair requirements of each part from the tissue defect by adjusting its morphology as needed meanwhile inhibiting bacterial infection on demand. Specifically, a thermal-induced shape memory scaffold was prepared using hydroxyethyl methacrylate and polyethylene glycol diacrylate, which was further combined with the photothermal agent iron tannate (FeTA) to produce NIR light-induced shape memory property. By varying ingredients ratios in each segment, this scaffold could perform a stepwise recovery under different NIR periods. This process facilitated implantation after shape fixing to avoid trauma caused by conventional methods and gradually filled irregular defects under NIR to perform suitable tissue regeneration. Moreover, FeTA also catalyzed Fenton reaction at bacterial infections with abundant H2O2, which produced excess ROS for chemodynamic antibacterial therapy. As expected, bacteriostatic rate was further enhanced by additional photothermal therapy under NIR. The in vitro and vivo results showed that our scaffold was able to perform high efficacy in both antibiosis, inflammation reduction and wound healing acceleration, indicating a promising candidate for the regeneration of complex tissue damage with bacterial infection.


Asunto(s)
Antibacterianos , Andamios del Tejido , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Animales , Andamios del Tejido/química , Ratones , Cicatrización de Heridas/efectos de los fármacos , Rayos Infrarrojos , Terapia Fototérmica , Ingeniería de Tejidos/métodos , Taninos/química , Taninos/farmacología , Materiales Inteligentes/química , Staphylococcus aureus/efectos de los fármacos , Masculino , Polietilenglicoles/química
14.
Biomaterials ; 313: 122807, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39241553

RESUMEN

Multiple Sclerosis (MS) is an autoimmune condition targeting the central nervous system (CNS) characterized by focal demyelination with inflammation, causing neurodegeneration and gliosis. This is accompanied by a refractory period in relapsing MS or chronic progression in primary progressive MS. Current MS treatments target disease relapses and aim to reduce further demyelination and disability. These include the treatment of acute exacerbations through global immunomodulation upon corticosteroid administration, which are accompanied by adverse reactions. Disease modifying therapies (DMTs) which provide targeted immunosuppression of T and B cells, and sequestration of leukocytes out of CNS, have led to further improvements in demyelination prevention and disease burden reduction. Despite their efficacy, DMTs are ineffective in remyelination, pathology reversal and have minimal effects in progressive MS. The advent of modern biomedical engineering approaches in combination with a better understanding of MS pathology, has led to the development of novel, regenerative approaches to treatment. Such treatments utilize neural stem cells (NSCs) and can reduce disease relapses and reverse damage caused by the disease through localized tissue regeneration. While at initial stages, pre-clinical and clinical studies utilizing NSCs and immune modulation have shown promising outcomes in tissue regeneration, creating a potential new era in MS therapy.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/terapia , Animales , Ingeniería Biomédica/métodos , Células-Madre Neurales/trasplante
15.
Food Chem ; 462: 140847, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226647

RESUMEN

Effects of varying degree of milling (DOM) (0-22%) on the bran layer structure, physicochemical properties, and cooking quality of brown rice were explored. As the DOM increased, bran degree, protein, lipid, dietary fiber, amylose, mineral elements, and color parameters (a* and b* values) of milled rice decreased while starch and L* value increased. Microscopic fluorescence images showed that the pericarp, combined seed coat-nucellus layer, and aleurone layer were removed in rice processed at DOM of 6.6%, 9.2%, and 15.4%, respectively. The pasting properties, thermal properties, and palatability of rice increased as the DOM increased. Principal component and correlation analysis indicated that excessive milling lead to a decline in nutritional value of rice with limited impact on enhancing palatability. Notably, when parts of aleurone cell wall were retained, rice samples exhibited high cooking and sensory properties. It serves as a potential guide to the production of moderately milled rice.


Asunto(s)
Culinaria , Fibras de la Dieta , Oryza , Semillas , Oryza/química , Fibras de la Dieta/análisis , Semillas/química , Valor Nutritivo , Gusto , Humanos , Manipulación de Alimentos , Almidón/química , Amilosa/química , Amilosa/análisis
16.
Artículo en Inglés | MEDLINE | ID: mdl-39365320

RESUMEN

Ultrasound is the most used interdisciplinary imaging technique in clinical routine for assessment of renal pathologies. This includes the monitoring of cystic renal lesions, which can be classified as non-complicated or complicated and by means of occurrence as solitary or multifocal lesions. The Bosniak-classification (I-IV) classifies renal cysts in 5 different categories and is used for decisions of further clinical treatment. This classification was developed for computed tomography and has been adopted for magnetic resonance imaging as well as contrast-enhanced ultrasound. In the following review article, cystic kidney lesions and their differentiation using contrast-enhanced ultrasound are presented and an overview of the therapy options is given. In interventional procedures, CEUS can make a valuable contribution in histological sampling, reduce radiation exposure and, under certain circumstances, the number of interventions for the patient.

17.
Artículo en Inglés | MEDLINE | ID: mdl-39365412

RESUMEN

In 2019, Pantoea piersonii was initially isolated from the interior surfaces of the International Space Station. This microorganism is a species within the genus Pantoea in the family Erwiniaceae, belonging to the order Enterobacterales. Recent literature has documented four cases of its isolation. Despite initial predictions suggesting the non-pathogenicity of P. piersonii strains, evidence from observed cases indicates potential pathogenicity. According to documented evidence in the literature, this microorganism is capable of causing severe and life-threatening conditions, including sepsis. Traditional tests, as well as automated systems, may fail to provide complete differentiation due to these similarities. While MALDI-TOF MS is a valuable tool for identification in clinical diagnostic microbiology, sequencing may be necessary for precise identification. To determine the antibiotic susceptibility profile, various methods can be utilized, including minimum inhibitory concentration determination, disk diffusion testing (Kirby-Bauer test), genotypic resistance assays (PCR and sequencing), and automated systems. The literature reports a limited number of cases associating P. piersonii with human infection. This study contributes to this body of knowledge by reporting a novel case in which P. piersonii was isolated from a tissue sample for the first time. In this case report, the patient achieved recovery following the administration of appropriate antibiotic treatment based on the diagnosis. It underscores the need for precise identification and understanding of its pathogenicity.

18.
Folia Med (Plovdiv) ; 66(3): 380-385, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39365621

RESUMEN

INTRODUCTION: Thick histological samples are difficult to image without proper tissue clearing methods. Among these methods ethyl cinnamate (ECi)-based clearing preserves antigenicity and is compatible with immunofluorescent labeling. In contrast to many other clearing protocols, ECi-based clearing is fast and is done as a final step after standard immunofluorescent labeling protocols.


Asunto(s)
Cinamatos , Humanos , Animales , Microscopía Fluorescente/métodos , Técnica del Anticuerpo Fluorescente/métodos , Coloración y Etiquetado/métodos
19.
Clin Transl Med ; 14(10): e70029, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39350476

RESUMEN

INTRODUCTION: Temporomandibular joint osteoarthritis (TMJ OA) is a major disease that affects maxillofacial health and is characterised by cartilage degeneration and subchondral bone remodelling. Obesity is associated with the exacerbation of pathological manifestations of TMJ OA. However, the underlying mechanism between adipose tissue and the TMJ axis remains limited. OBJECTIVES: To evaluate the effects of obesity and the adipose tissue on the development of TMJ OA. METHODS: The obesity-related metabolic changes in TMJ OA patients were detected by physical signs and plasma metabolites. The effects of adipose tissue-derived EVs (Ad-EVs) on TMJ OA was investigated through histological and cytological experiments as well as gene editing technology. Alterations of Ad-EVs in obese state were identified by microRNA-seq analysis and the mechanism by which EVs affect TMJ OA was explored in vitro and in vivo. RESULTS: Obesity and the related metabolic changes were important influencing factors for TMJ OA. Ad-EVs from obese mice induced marked chondrocyte apoptosis, cartilage matrix degradation and subchondral bone remodelling, which exacerbated the development of TMJ OA. Depletion of Ad-EVs secretion by knocking out the geranylgeranyl diphosphate synthase (Ggpps) gene in adipose tissue significantly inhibited the obesity-induced aggravation of TMJ OA. MiR-3074-5p played an important role in this process . CONCLUSIONS: Our work unveils an unknown link between obese adipose tissue and TMJ OA. Targeting the Ad-EVs and the miR-3074-5p may represent a promising therapeutic strategy for obesity-related TMJ OA. KEY POINTS: High-fat-diet-induced obesity aggravate the progression of TMJ OA in mice. Obese adipose tissue participates in cartilage damage through the altered miRNA in extracellular vesicles. Inhibition of miR-3074-5p/SMAD4 pathway in chondrocyte alleviated the effect of HFD-EVs on TMJ OA.


Asunto(s)
Tejido Adiposo , Vesículas Extracelulares , Obesidad , Osteoartritis , Vesículas Extracelulares/metabolismo , Animales , Osteoartritis/metabolismo , Osteoartritis/etiología , Obesidad/metabolismo , Obesidad/complicaciones , Ratones , Tejido Adiposo/metabolismo , Humanos , Masculino , Femenino , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología , Trastornos de la Articulación Temporomandibular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
20.
Burns Trauma ; 12: tkae039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39350780

RESUMEN

Vascularization is a major challenge in the field of tissue engineering and regenerative medicine. Mechanical factors have been demonstrated to play a fundamental role in vasculogenesis and angiogenesis and can affect the architecture of the generated vascular network. Through the regulation of mechanical factors in engineered tissues, various mechanical strategies can be used to optimize the preformed vascular network and promote its rapid integration with host vessels. Optimization of the mechanical properties of scaffolds, including controlling scaffold stiffness, increasing surface roughness and anisotropic structure, and designing interconnected, hierarchical pore structures, is beneficial for the in vitro formation of vascular networks and the ingrowth of host blood vessels. The incorporation of hollow channels into scaffolds promotes the formation of patterned vascular networks. Dynamic stretching and perfusion can facilitate the formation and maturation of preformed vascular networks in vitro. Several indirect mechanical strategies provide sustained mechanical stimulation to engineered tissues in vivo, which further promotes the vascularization of implants within the body. Additionally, stiffness gradients, anisotropic substrates and hollow channels in scaffolds, as well as external cyclic stretch, boundary constraints and dynamic flow culture, can effectively regulate the alignment of vascular networks, thereby promoting better integration of prevascularized engineered tissues with host blood vessels. This review summarizes the influence and contribution of both scaffold-based and external stimulus-based mechanical strategies for vascularization in tissue engineering and elucidates the underlying mechanisms involved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA