Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genetics ; 227(2)2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518250

RESUMEN

Studies of allele-specific expression in interspecific hybrids have provided important insights into gene-regulatory divergence and hybrid incompatibilities. Many such investigations in Drosophila have used transcriptome data from complex mixtures of many tissues or from gonads, however, regulatory divergence may vary widely among species, sexes, and tissues. Thus, we lack sufficiently broad sampling to be confident about the general biological principles of regulatory divergence. Here, we seek to fill some of these gaps in the literature by characterizing regulatory evolution and hybrid misexpression in a somatic male sex organ, the accessory gland, in F1 hybrids between Drosophila melanogaster and D. simulans. The accessory gland produces seminal fluid proteins, which play an important role in male and female fertility and may be subject to adaptive divergence due to male-male or male-female interactions. We find that trans differences are relatively more abundant than cis, in contrast to most of the interspecific hybrid literature, though large effect-size trans differences are rare. Seminal fluid protein genes have significantly elevated levels of expression divergence and tend to be regulated through both cis and trans divergence. We find limited misexpression (over- or underexpression relative to both parents) in this organ compared to most other Drosophila studies. As in previous studies, male-biased genes are overrepresented among misexpressed genes and are much more likely to be underexpressed. ATAC-Seq data show that chromatin accessibility is correlated with expression differences among species and hybrid allele-specific expression. This work identifies unique regulatory evolution and hybrid misexpression properties of the accessory gland and suggests the importance of tissue-specific allele-specific expression studies.


Asunto(s)
Drosophila melanogaster , Drosophila simulans , Evolución Molecular , Transcriptoma , Animales , Masculino , Drosophila melanogaster/genética , Drosophila simulans/genética , Femenino , Hibridación Genética , Proteínas de Drosophila/genética
2.
Plant J ; 117(4): 1191-1205, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37997015

RESUMEN

Polyploidy is an important evolutionary process throughout eukaryotes, particularly in flowering plants. Duplicated gene pairs (homoeologs) in allopolyploids provide additional genetic resources for changes in molecular, biochemical, and physiological mechanisms that result in evolutionary novelty. Therefore, understanding how divergent genomes and their regulatory networks reconcile is vital for unraveling the role of polyploidy in plant evolution. Here, we compared the leaf transcriptomes of recently formed natural allotetraploids (Tragopogon mirus and T. miscellus) and their diploid parents (T. porrifolius X T. dubius and T. pratensis X T. dubius, respectively). Analysis of 35 400 expressed loci showed a significantly higher level of transcriptomic additivity compared to old polyploids; only 22% were non-additively expressed in the polyploids, with 5.9% exhibiting transgressive expression (lower or higher expression in the polyploids than in the diploid parents). Among approximately 7400 common orthologous regions (COREs), most loci in both allopolyploids exhibited expression patterns that were vertically inherited from their diploid parents. However, 18% and 20.3% of the loci showed novel expression bias patterns in T. mirus and T. miscellus, respectively. The expression changes of 1500 COREs were explained by cis-regulatory divergence (the condition in which the two parental subgenomes do not interact) between the diploid parents, whereas only about 423 and 461 of the gene expression changes represent trans-effects (the two parental subgenomes interact) in T. mirus and T. miscellus, respectively. The low degree of both non-additivity and trans-effects on gene expression may present the ongoing evolutionary processes of the newly formed Tragopogon polyploids (~80-90 years).


Asunto(s)
Asteraceae , Tragopogon , Tragopogon/genética , Asteraceae/genética , Diploidia , Poliploidía , Evolución Molecular , Genoma de Planta/genética
3.
Genome Biol ; 21(1): 210, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32819422

RESUMEN

BACKGROUND: Gene expression differences between species are driven by both cis and trans effects. Whereas cis effects are caused by genetic variants located on the same DNA molecule as the target gene, trans effects are due to genetic variants that affect diffusible elements. Previous studies have mostly assessed the impact of cis and trans effects at the gene level. However, how cis and trans effects differentially impact regulatory elements such as enhancers and promoters remains poorly understood. Here, we use massively parallel reporter assays to directly measure the transcriptional outputs of thousands of individual regulatory elements in embryonic stem cells and measure cis and trans effects between human and mouse. RESULTS: Our approach reveals that cis effects are widespread across transcribed regulatory elements, and the strongest cis effects are associated with the disruption of motifs recognized by strong transcriptional activators. Conversely, we find that trans effects are rare but stronger in enhancers than promoters and are associated with a subset of transcription factors that are differentially expressed between human and mouse. While we find that cis-trans compensation is common within promoters, we do not see evidence of widespread cis-trans compensation at enhancers. Cis-trans compensation is inversely correlated with enhancer redundancy, suggesting that such compensation may often occur across multiple enhancers. CONCLUSIONS: Our results highlight differences in the mode of evolution between promoters and enhancers in complex mammalian genomes and indicate that studying the evolution of individual regulatory elements is pivotal to understand the tempo and mode of gene expression evolution.


Asunto(s)
Elementos de Facilitación Genéticos , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regiones Promotoras Genéticas , Animales , Secuencia Conservada , Genes Reporteros , Humanos , Ratones , Elementos Reguladores de la Transcripción , Factores de Transcripción
4.
Front Plant Sci ; 7: 1432, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27721820

RESUMEN

Gene/genome dosage balance is an essential evolutionary mechanism for organisms to ensure a normal function, but the underlying causes of dosage-imbalance regulation remain poorly understood. Herein, the serial Brassica hybrids/polyploids (AC, AAC, CCA, CCAA) with different copies of A and C subgenomes from the same two parents of Brassica rapa and Brassica oleracea were synthesized to investigate the effects of genome dosages on gene expressions and interactions by using RNA-Seq. The expression changes of A- and C-subgenome genes were consistent with dosage alterations. Dosage-dependent and -independent genes were grouped according to the correlations between dosage variations and gene expressions. Expression levels of dosage-dependent genes were strongly correlated with dosage changes and mainly contributed to dosage effects, while those of dosage-independent genes gave weak correlations with dosage variations and mostly facilitated dosage compensation. More protein-protein interactions were detected for dosage-independent genes than dosage-dependent ones, as predicted by the dosage balance hypothesis. Dosage-dependent genes more likely impacted the expressions by trans effects, whereas dosage-independent genes preferred to play by cis effects. Furthermore, dosage-dependent genes were mainly associated with the basic biological processes to maintain the stability of the growth and development, while dosage-independent genes were more enriched in the stress response related processes to accelerate adaptation. The present comprehensive analysis of gene expression dependent/independent on dosage alterations in Brassica polyploids provided new insights into gene/genome dosage-imbalance regulation of gene expressions.

5.
Genetics ; 203(3): 1177-90, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27194752

RESUMEN

Regulatory variation in gene expression can be described by cis- and trans-genetic components. Here we used RNA-seq data from a population panel of Drosophila melanogaster test crosses to compare allelic imbalance (AI) in female head tissue between mated and virgin flies, an environmental change known to affect transcription. Indeed, 3048 exons (1610 genes) are differentially expressed in this study. A Bayesian model for AI, with an intersection test, controls type I error. There are ∼200 genes with AI exclusively in mated or virgin flies, indicating an environmental component of expression regulation. On average 34% of genes within a cross and 54% of all genes show evidence for genetic regulation of transcription. Nearly all differentially regulated genes are affected in cis, with an average of 63% of expression variation explained by the cis-effects. Trans-effects explain 8% of the variance in AI on average and the interaction between cis and trans explains an average of 11% of the total variance in AI. In both environments cis- and trans-effects are compensatory in their overall effect, with a negative association between cis- and trans-effects in 85% of the exons examined. We hypothesize that the gene expression level perturbed by cis-regulatory mutations is compensated through trans-regulatory mechanisms, e.g., trans and cis by trans-factors buffering cis-mutations. In addition, when AI is detected in both environments, cis-mated, cis-virgin, and trans-mated-trans-virgin estimates are highly concordant with 99% of all exons positively correlated with a median correlation of 0.83 for cis and 0.95 for trans We conclude that the gene regulatory networks (GRNs) are robust and that trans-buffering explains robustness.


Asunto(s)
Desequilibrio Alélico/genética , Redes Reguladoras de Genes/genética , Interacción Gen-Ambiente , Transcripción Genética , Alelos , Animales , Teorema de Bayes , Drosophila melanogaster/genética , Evolución Molecular , Exones/genética , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA