RESUMEN
Cytidine diphosphate diacylglycerol (CDP-DAG), an important intermediate for glycerolipid biosynthesis, is synthesized under the catalytic activity of CDP-DAG synthase (CDS) to produce anionic phosphoglycerolipids such as phosphatidylglycerol (PG) and cardiolipin (CL). Previous studies showed that Arabidopsis CDSs are encoded by a small gene family, termed CDS1-CDS5, the members of which are integral membrane proteins in endoplasmic reticulum (ER) and in plastids. However, the details on how CDP-DAG is provided for mitochondrial membrane-specific phosphoglycerolipids are missing. Here we present the identification of a mitochondrion-specific CDS, designated CDS6. Enzymatic activity of CDS6 was demonstrated by the complementation of CL synthesis in the yeast CDS-deficient tam41Δ mutant. The Arabidopsis cds6 mutant lacking CDS6 activity showed decreased mitochondrial PG and CL biosynthesis capacity, a severe growth deficiency finally leading to plant death. These defects were rescued partly by complementation with CDS6 or supplementation with PG and CL. The ultrastructure of mitochondria in cds6 was abnormal, missing the structures of cristae. The degradation of triacylglycerol (TAG) in lipid droplets and starch in chloroplasts in the cds6 mutant was impaired. The expression of most differentially expressed genes involved in the mitochondrial electron transport chain was upregulated, suggesting an energy-demanding stage in cds6. Furthermore, the contents of polar glycerolipids in cds6 were dramatically altered. In addition, cds6 seedlings lost the capacity for cell proliferation and showed a higher oxidase activity. Thus, CDS6 is indispensable for the biosynthesis of PG and CL in mitochondria, which is critical for establishing mitochondrial structure, TAG degradation, energy production and seedling development.
Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Glucógeno Sintasa/metabolismo , Citidina Difosfato/metabolismo , Diglicéridos/metabolismo , Diacilglicerol Colinafosfotransferasa/metabolismo , Mitocondrias/metabolismo , Fosfatidilgliceroles/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMEN
Degradation of the storage compound triacylglycerol (TAG) is a crucial process in response to environmental stimuli. In microalgae, this process is important for re-growth when conditions become favorable after cells have experienced stresses. Mobilization of TAG is initiated by actions of lipases causing the release of glycerol and free fatty acids, which can be further broken down for energy production or recycled to synthesize membrane lipids. Although key enzymes in the process, TAG lipases remain to be characterized in the model green alga Chlamydomonas reinhardtii. Here, we describe the functional analysis of a putative TAG lipase, i.e. LIP4, which shares 44% amino acid identity with the major TAG lipase in Arabidopsis (SUGAR DEPENDENT1-SDP1). The LIP4 transcript level was downregulated during nitrogen deprivation when TAG accumulates, but was upregulated during nitrogen resupply (NR) when TAG was degraded. Both artificial microRNA and insertional mutants showed a delay in TAG mobilization during NR. The difference in TAG degradation was more pronounced when the cultures were incubated without acetate in the dark. Furthermore, the lip4 insertional mutants over-accumulated TAG during optimal growth conditions. Taken together, the results suggest to us that LIP4 likely acts as a TAG lipase and plays a role in TAG homeostasis in Chlamydomonas.