Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Viruses ; 16(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38675901

RESUMEN

As SARS-CoV-2 continues to evolve and COVID-19 cases rapidly increase among children and adults, there is an urgent need for a safe and effective vaccine that can elicit systemic and mucosal humoral immunity to limit the emergence of new variants. Using the Chinese Hu191 measles virus (MeV-hu191) vaccine strain as a backbone, we developed MeV chimeras stably expressing the prefusion forms of either membrane-anchored, full-length spike (rMeV-preFS), or its soluble secreted spike trimers with the help of the SP-D trimerization tag (rMeV-S+SPD) of SARS-CoV-2 Omicron BA.2. The two vaccine candidates were administrated in golden Syrian hamsters through the intranasal or subcutaneous routes to determine the optimal immunization route for challenge. The intranasal delivery of rMeV-S+SPD induced a more robust mucosal IgA antibody response than the subcutaneous route. The mucosal IgA antibody induced by rMeV-preFS through the intranasal routine was slightly higher than the subcutaneous route, but there was no significant difference. The rMeV-preFS vaccine stimulated higher mucosal IgA than the rMeV-S+SPD vaccine through intranasal or subcutaneous administration. In hamsters, intranasal administration of the rMeV-preFS vaccine elicited high levels of NAbs, protecting against the SARS-CoV-2 Omicron BA.2 variant challenge by reducing virus loads and diminishing pathological changes in vaccinated animals. Encouragingly, sera collected from the rMeV-preFS group consistently showed robust and significantly high neutralizing titers against the latest variant XBB.1.16. These data suggest that rMeV-preFS is a highly promising COVID-19 candidate vaccine that has great potential to be developed into bivalent vaccines (MeV/SARS-CoV-2).


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunidad Humoral , Inmunidad Mucosa , Inmunoglobulina A , Virus del Sarampión , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Virus del Sarampión/inmunología , Virus del Sarampión/genética , Cricetinae , Inmunoglobulina A/sangre , Humanos , Administración Intranasal , Mesocricetus , Femenino
2.
Biochem Biophys Res Commun ; 709: 149824, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38537598

RESUMEN

Heat shock factor 1 (HSF1) primarily regulates various cellular stress responses. Previous studies have shown that low pH within the physiological range directly activates HSF1 function in vitro. However, the detailed molecular mechanisms remain unclear. This study proposes a molecular mechanism based on the trimerization behavior of HSF1 at different pH values. Extensive mutagenesis of human and goldfish HSF1 revealed that the optimal pH for trimerization depended on the identity of residue 103. In particular, when residue 103 was occupied by tyrosine, a significant increase in the optimal pH was observed, regardless of the rest of the sequence. This behavior can be explained by the protonation state of the neighboring histidine residues, His101 and His110. Residue 103 plays a key role in trimerization by forming disulfide or non-covalent bonds with Cys36. If tyrosine resides at residue 103 in an acidic environment, its electrostatic interactions with positively charged histidine residues prevent effective trimerization. His101 and His110 are neutralized at a higher pH, which releases Tyr103 to interact with Cys36 and drives the effective trimerization of HSF1. This study showed that the protonation state of a histidine residue can regulate the intramolecular interactions, which consequently leads to a drastic change in the oligomerization behavior of the entire protein.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Humanos , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico/genética , Histidina/genética , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Factores de Transcripción/metabolismo , Tirosina
3.
J Mol Cell Biol ; 16(1)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38178633

RESUMEN

TRAF7 serves as a crucial intracellular adaptor and E3 ubiquitin ligase involved in signal transduction pathways, contributing to immune responses, tumor progression, and embryonic development. Somatic mutations within the coiled-coil (CC) domain and WD40 repeat domain of TRAF7 could cause brain tumors, while germline pathogenic mutations contribute to severe developmental abnormalities. However, the precise molecular mechanism underlying TRAF7 involvement in embryonic development remains unclear. In this study, we employed zebrafish as an in vivo model system. TRAF7 knock down caused defects in zebrafish embryonic development. We determined the crystal structure of TRAF7 CC domain at 3.3 Å resolution and found that the CC region trimerization was essential for TRAF7 functionality during zebrafish embryonic development. Additionally, disease-causing mutations in TRAF7 CC region could impair the trimer formation, consequently impacting early embryonic development of zebrafish. Therefore, our study sheds light on the molecular mechanism of TRAF7 CC trimer formation and its pivotal role in embryonic development.


Asunto(s)
Desarrollo Embrionario , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/metabolismo , Pez Cebra/embriología , Desarrollo Embrionario/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/química , Multimerización de Proteína , Mutación , Modelos Moleculares , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Humanos , Cristalografía por Rayos X
4.
Virology ; 589: 109925, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984151

RESUMEN

SARS-CoV-2 and its variants continue to threaten public health. Nanobodies that block the attachment of the RBD to host cell angiotensin-converting enzyme 2 (ACE2) represent promising drug candidates. In this study, we reported the identification and structural biological characterization of a nanobody from a RBD-immunized alpaca. The nanobody, termed as 2S-1-19, shows outstanding neutralizing activity against both pseudotyped and authentic SARS-CoV-2 viruses. The crystal structure of 2S-1-19 bound to SARS-CoV-2 RBD reveals an epitope that overlaps with the binding site for ACE2. We also showed that 2S-1-19 reserves promising, though compromised, neutralizing activity against the Delta variant and that the trivalent form of 2S-1-19 remarkably increases its neutralizing capacity. Despite this, neither the monomeric or trimeric 2S-1-19 could neutralize the Omicron BA.1.1 variant, possibility due to the E484A and Q493K mutations found within this virus variant. These data provide insights into immune evasion caused by SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Epítopos , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2 , SARS-CoV-2/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales
5.
Angew Chem Int Ed Engl ; 62(33): e202308046, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37377246

RESUMEN

Typically induced by the mechanical processing of powders in ball mills, mechanochemical transformations are considered to result from the application of mechanical force to solid reactants. However, the undeniable deep connection between the dynamic compaction of powders during impacts and the overall transformation degree has yet to be disclosed. In the present work, we show that the square planar bis(dibenzoylmethanato)NiII coordination compound undergoes trimerization when its powder experiences even a single ball impact. Based on systematic experiments with individual ball impacts and analysis by Raman spectroscopy, we provide here quantitative mapping of the transformation in the powder compact and deduce bulk reaction kinetics from multiple individual impacts.

6.
J Virol ; 97(1): e0146722, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36475768

RESUMEN

Assembly of the adenovirus capsid protein hexon depends on the assistance of the molecular chaperone L4-100K. However, the chaperone mechanisms remain unclear. In this study, we found that L4-100K was involved in the hexon translation process and could prevent hexon degradation by the proteasome in cotransfected human cells. Two nonadjacent domains, 84-133 and 656-697, at the N-terminal and C-terminal regions of human adenovirus type 5 L4-100K, respectively, were found to be crucial and cooperatively responsible for hexon trimer expression and assembly. These two chaperone-related domains were conserved in the sequence of L4-100K and in the function of hexon assembly across different adenovirus serotypes. Different degrees of cross-activity of hexon trimerization with different serotypes were detected in subgroups B, C, and D, which were proven to be controlled by the interaction between the C-terminal chaperone-related domain of L4-100K and hypervariable regions (HVR) of hexon. Additionally, HVR-chimeric hexon mutants were successfully assembled with the assistance of the 1-697 mutant. Structural analysis of 656-697 by nuclear magnetic resonance and structural prediction of L4-100K using Robetta showed that the two conserved domains are mainly composed of α-helices and are located on the surface of the highly folded core region. Our research provides a more complete understanding of hexon assembly and guidance for the development of hexon-chimeric adenovirus vectors that will be safer, smarter, and more efficient. IMPORTANCE Adenovirus vectors have been widely used in clinical trials of vaccines and gene therapy, although some deficiencies remain. Chimeric modification of the hexon was expected to improve the potency of preexisting immune evasion and targeting, but in many cases, viral packaging is prevented by the inability of the chimeric hexon to assemble correctly. So far, few studies have examined the mechanisms of hexon trimer assembly. Here, we show how the chaperone protein L4-100K contributes to the assembly of the adenovirus capsid protein hexon, and these data will provide a guide for novel adenovirus vector design and development, as we desired.


Asunto(s)
Adenovirus Humanos , Chaperonas Moleculares , Proteínas no Estructurales Virales , Humanos , Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
7.
Protein Sci ; 31(12): e4510, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36382881

RESUMEN

The emergence of oligomers is common during the evolution and diversification of protein families, yet the selective advantage of oligomerization is often cryptic or unclear. Oligomerization can involve the formation of isologous head-to-head interfaces (e.g., in symmetrical dimers) or heterologous head-to-tail interfaces (e.g., in cyclic complexes), the latter of which is less well studied and understood. In this work, we retrace the emergence of the trimeric form of cyclohexadienyl dehydratase from Pseudomonas aeruginosa (PaCDT) by introducing residues that form the PaCDT trimer-interfaces into AncCDT-5 (a monomeric reconstructed ancestor of PaCDT). We find that single interface mutations can switch the oligomeric state of the variants and that trimerization corresponds with a reduction in the KM value of the enzyme from a promiscuous level to the physiologically relevant range. In addition, we find that removal of a C-terminal extension present in PaCDT leads to a variant with reduced catalytic activity, indicating that the C-terminal region has a role in tuning enzymatic activity. We show that these observations can be rationalized at the structural and dynamic levels, with trimerization and C-terminal extension leading to reduced sampling of non-catalytic conformational substates in molecular dynamics simulations. Overall, this work provides insight into how neutral sampling of distinct oligomeric states along an evolutionary trajectory can facilitate the evolution and optimization of enzyme function.


Asunto(s)
Simulación de Dinámica Molecular , Prefenato Deshidratasa , Prefenato Deshidratasa/química , Prefenato Deshidratasa/genética , Prefenato Deshidratasa/metabolismo , Pseudomonas aeruginosa , Conformación Molecular , Multimerización de Proteína
8.
Polymers (Basel) ; 14(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36236129

RESUMEN

2,4- and 2,6-isomers of toluene diisocyanates (2,4-TDI and 2,6-TDI) are important raw materials in the polyurethane industry. These reactive compounds associate even under ambient conditions to form oligomers, changing the physicochemical properties of the raw material. Kinetically and thermodynamically relevant dimerization reactions were selected based on G3MP2B3 calculations from all possible dimers of phenyl isocyanate using these isocyanates as proxies. As it turned out, only the formation of the diazetidine-2,4-dione ring (11-dimer, uretdione) resulted in a species having an exothermic enthalpy of formation (-30.4 kJ/mol at 298.15 K). The oxazetidin-2-one ring product (1-2-dimer) had a slightly endothermic standard enthalpy of formation (37.2 kJ/mol at 298.15 K). The mechanism of the relevant cyclodimerization reactions was investigated further for 2,4-TDI and 2,6-TDI species using G3MP2B3 and SMD solvent model for diazetidine as well as oxazetidin-2-one ring formation. The formation of the uretdione ring structures, from the 2,4-TDI dimer with both NCO groups in the meta position for each phenyl ring and one methyl group in the para and one in the meta position, had the lowest-lying transition state (Δ#E0= 94.4 kJ/mol) in the gas phase. The one- and two-step mechanisms of the TDI cyclotrimerization were also studied based on the quasi-G3MP2B3 (qG3MP2B3) computational protocol. The one-step mechanism had an activation barrier as high as 149.0 kJ/mol, while the relative energies in the two-step mechanism were significantly lower for both transition states in the gas phase (94.7 and 60.5 kJ/mol) and in ODCB (87.0 and 54.0 kJ/mol).

9.
Molecules ; 26(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34834092

RESUMEN

Dinitropyrazole is an important structure for the design and synthesis of energetic materials. In this work, we reported the first comparative thermal studies of two representative dinitropyrazole-based energetic materials, 4-amino-3,5-dinitropyrazole (LLM-116) and its novel trimer derivative (LLM-226). Both the experimental and theoretical results proved the active aromatic N-H moiety would cause incredible variations in the physicochemical characteristics of the obtained energetic materials. Thermal behaviors and kinetic studies of the two related dinitropyrazole-based energetic structures showed that impressive thermal stabilization could be achieved after the trimerization, but also would result in a less concentrated heat-release process. Detailed analysis of condensed-phase systems and the gaseous products during the thermal decomposition processes, and simulation studies based on ReaxFF force field, indicated that the ring opening of LLM-116 was triggered by hydrogen transfer of the active aromatic N-H moiety. In contrast, the initial decomposition of LLM-226 was caused by the rupture of carbon-nitrogen bonds at the diazo moiety.

10.
Viruses ; 13(9)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34578291

RESUMEN

In current seasonal influenza vaccines, neutralizing antibody titers directed against the hemagglutinin surface protein are the primary correlate of protection. These vaccines are, therefore, quantitated in terms of their hemagglutinin content. Adding other influenza surface proteins, such as neuraminidase and M2e, to current quadrivalent influenza vaccines would likely enhance vaccine efficacy. However, this would come with increased manufacturing complexity and cost. To address this issue, as a proof of principle, we have designed genetic fusions of hemagglutinin ectodomains from H3 and H1 influenza A subtypes. These recombinant H1-H3 hemagglutinin ectodomain fusions could be transiently expressed at high yield in mammalian cell culture using Expi293F suspension cells. Fusions were trimeric, and as stable in solution as their individual trimeric counterparts. Furthermore, the H1-H3 fusion constructs were antigenically intact based on their reactivity with a set of conformation-specific monoclonal antibodies. H1-H3 hemagglutinin ectodomain fusion immunogens, when formulated with the MF59 equivalent adjuvant squalene-in-water emulsion (SWE), induced H1 and H3-specific humoral immune responses equivalent to those induced with an equimolar mixture of individually expressed H1 and H3 ectodomains. Mice immunized with these ectodomain fusions were protected against challenge with heterologous H1N1 (Bel/09) and H3N2 (X-31) mouse-adapted viruses with higher neutralizing antibody titers against the H1N1 virus. Use of such ectodomain-fused immunogens would reduce the number of components in a vaccine formulation and allow for the inclusion of other protective antigens to increase influenza vaccine efficacy.


Asunto(s)
Anticuerpos Antivirales/sangre , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Protección Cruzada/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Eficacia de las Vacunas , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
11.
Des Monomers Polym ; 24(1): 265-273, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34471398

RESUMEN

Since the trimerization of isocyanate occurs easily and controllably to form a clear trifunctional isocyanate ring, this reaction is an ideal candidate for the synthesis of a clear poly(urethane-isocyanurate) network polymer. Poly(urethane-isocyanurate) network polymer (PUI) was prepared from diphenylmethane diisocyanate (MDI) and propylene glycol (PPG) by cyclotrimerization of isocyanate group (NCO). It was proved that the expected product was successfully prepared by NCO determination, fourier transform infrared (FTIR) and gel permeation chromatography (GPC) characterization. The mechanical and thermal properties were characterized. Through the effects of catalyst dosage, polyurethane prepolymer molecular weight, reaction time, reaction temperature and MDI addition on the reaction process, it is determined that under certain other conditions, the step heating method is better for cyclotrimerization reaction. Generally, the better heating conditions are 60 °C/1 h + 80 °C/4 h + 100 °C/2 h + 120 °C/2 h + 140 °C/2 h + 160 °C/2 h. The results of thermogravimetric analysis (TGA) and mechanical properties showed that with the increase of cross-linking points in the polymer structure, the thermal stability, tensile strength, tensile modulus and hardness of PUI increased, while the elongation at break decreased significantly. The glass transition temperature (Tg) of PUI is around 45 °C, and it can be seen that the elastic modulus of the material can range from 58 to 1980 MPa. X-ray diffraction results show that the rubber phase represented by the flexible segment and the plastic phase represented by the rigid structure are amorphous.

12.
BMC Immunol ; 22(1): 56, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34384367

RESUMEN

BACKGROUND: Invariant chain (CD74, Ii) is a multifunctional protein expressed in antigen presenting cells. It assists the ER exit of various cargos and serves as a receptor for the macrophage migration inhibitory factor. The newly translated Ii chains trimerize, a structural feature that is not readily understood in the context of its MHCII chaperoning function. Two segments of Ii, the luminal C-terminal region (TRIM) and the transmembrane domain (TM), have been shown to participate in the trimerization process but their relative importance and impact on the assembly with MHCII molecules remains debated. Here, we addressed the requirement of these domains in the trimerization of human Ii as well as in the oligomerization with MHCII molecules. We used site-directed mutagenesis to generate series of Ii and DR mutants. These were transiently transfected in HEK293T cells to test their cell surface expression and analyse their interactions by co-immunoprecipitations. RESULTS: Our results showed that the TRIM domain is not essential for Ii trimerization nor for intracellular trafficking with MHCII molecules. We also gathered evidence that in the absence of TM, TRIM allows the formation of multi-subunit complexes with HLA-DR. Similarly, in the absence of TRIM, Ii can assemble into high-order structures with MHCII molecules. CONCLUSIONS: Altogether, our data show that trimerization of Ii through either TM or TRIM sustains nonameric complex formation with MHCII molecules.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/metabolismo , Membrana Celular/metabolismo , Antígenos HLA-DR/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Presentación de Antígeno , Antígenos de Diferenciación de Linfocitos B/genética , Células HEK293 , Antígeno HLA-A24/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Mutagénesis Sitio-Dirigida , Mutación/genética , Dominios Proteicos/genética , Multimerización de Proteína
13.
J Membr Biol ; 254(2): 157-173, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33427943

RESUMEN

The structural basis for the stability of the trimeric form of the light harvesting complex (LHCII), a pigmented protein from green plants pivotal for photosynthesis, remains elusive till date. The protein embedded in a dipalmitoylphosphatidylcholine (DPPC) lipid membrane is investigated using all-atom molecular dynamics simulations to find out the interactions responsible for the structural integrity of the trimer and its relation to antenna function. Central association of chlorophyll a (CLA) molecules near the LHCII chains is attributed to a conserved coordination between the Mg of CLA and the oxygen of a specific residue of the first helix of a chain. The residue forms a salt-bridge with the fourth helix of the same chain of the trimer, not of the monomer. In an earlier experiment, three residues (WYR) at each chain of the trimer have been found indispensable for the trimerization and referred to as trimerization motif. We find that the residues of the trimerization motif are connected to the lipids or pigments by a chain of interactions rather than a direct contact. Synergistic effects of sequentially located hydrogen bonds and salt-bridges within monomers of the trimer keep the trimer conformation stable in association with the pigments or the lipids. These interactions are exclusively present in the pigmented trimer and not present in the monomer or in the unpigmented trimer. Thus, our results provide a molecular basis for the inherent stability of the LHCII trimer in a lipid membrane and explain many pre-existing experimental data.


Asunto(s)
Clorofila A , Complejos de Proteína Captadores de Luz/química , Lípidos , Clorofila A/química , Lípidos/química , Plantas , Multimerización de Proteína
14.
Cell Stress Chaperones ; 26(1): 241-251, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33067759

RESUMEN

As of today, only acute effects of RF fields have been confirmed to represent a potential health hazard and they are attributed to non-specific heating (≥ 1 °C) under high-level exposure. Yet, the possibility that environmental RF impact living matter in the absence of temperature elevation needs further investigation. Since HSF1 is both a thermosensor and the master regulator of heat-shock stress response in eukaryotes, it remains to assess HSF1 activation in live cells under exposure to low-level RF signals. We thus measured basal, temperature-induced, and chemically induced HSF1 trimerization, a mandatory step on the cascade of HSF1 activation, under RF exposure to continuous wave (CW), Global System for Mobile (GSM), and Wi-Fi-modulated 1800 MHz signals, using a bioluminescence resonance energy transfer technique (BRET) probe. Our results show that, as expected, HSF1 is heat-activated by acute exposure of transiently transfected HEK293T cells to a CW RF field at a specific absorption rate of 24 W/kg for 30 min. However, we found no evidence of HSF1 activation under the same RF exposure condition when the cell culture medium temperature was fixed. We also found no experimental evidence that, at a fixed temperature, chronic RF exposure for 24 h at a SAR of 1.5 and 6 W/kg altered the potency or the maximal capability of the proteasome inhibitor MG132 to activate HSF1, whatever signal used. We only found that RF exposure to CW signals (1.5 and 6 W/kg) and GSM signals (1.5 W/kg) for 24 h marginally decreased basal HSF1 activity.


Asunto(s)
Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico , Ondas de Radio/efectos adversos , Transferencia de Energía , Células HEK293 , Factores de Transcripción del Choque Térmico/análisis , Humanos , Mediciones Luminiscentes
15.
J Cell Physiol ; 236(4): 2800-2816, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32964459

RESUMEN

The tumor necrosis factor (TNF)-like core domain of receptor activator of nuclear factor-κB ligand (RANKL) is a functional domain critical for osteoclast differentiation. One of the missense mutations identified in patients with osteoclast-poor autosomal recessive osteopetrosis (ARO) is located in residue methionine 199 that is replaced with lysine (M199K) amid the TNF-like core domain. However, the structure-function relationship of this mutation is not clear. Sequence-based alignment revealed that the fragment containing human M199 is highly conserved and equivalent to M200 in rat. Using site-directed mutagenesis, we generated three recombinant RANKL mutants M200K/A/E (M200s) by replacing the methionine 200 with lysine (M200K), alanine (M200A), and glutamic acid (M200E), representative of distinct physical properties. TRAcP staining and bone pit assay showed that M200s failed to support osteoclast formation and bone resorption, accompanied by impaired osteoclast-related signal transduction. However, no antagonistic effect was found in M200s against wild-type rat RANKL. Analysis of the crystal structure of RANKL predicted that this methionine residue is located within the hydrophobic core of the protein, thus, likely to be crucial for protein folding and stability. Consistently, differential scanning fluorimetry analysis suggested that M200s were less stable. Western blot analysis analyses further revealed impaired RANKL trimerization by M200s. Furthermore, receptor-ligand binding assay displayed interrupted interaction of M200s to its intrinsic receptors. Collectively, our studies revealed the molecular basis of human M199-induced ARO and elucidated the indispensable role of rodent residue M200 (equivalent to human M199) for the RANKL function.


Asunto(s)
Mutación Missense , Ligando RANK/genética , Animales , Resorción Ósea , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Osteoclastos/metabolismo , Osteogénesis , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Ligando RANK/química , Ligando RANK/metabolismo , Células RAW 264.7 , Ratas , Transducción de Señal , Relación Estructura-Actividad
16.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322533

RESUMEN

Direct inhibition of tumor necrosis factor-alpha (TNF-α) action is considered a promising way to prevent or treat TNF-α-associated diseases. The trimeric form of TNF-α binds to its receptor (TNFR) and activates the downstream signaling pathway. The interaction of TNF-α with molecular-grade dimethyl sulfoxide (DMSO) in an equal volumetric ratio renders TNF-α inert, in this state, TNF-α fails to activate TNFR. Here, we aimed to examine the inhibition of TNF-α function by various concentrations of DMSO. Its higher concentration led to stronger attenuation of TNF-α-induced cytokine secretion by fibroblasts, and of their death. We found that this inhibition was mediated by a perturbation in the formation of the functional TNF-α trimer. Molecular dynamics simulations revealed a transient interaction between DMSO molecules and the central hydrophobic cavity of the TNF-α homodimer, indicating that a brief interaction of DMSO with the TNF-α homodimer may disrupt the formation of the functional homotrimer. We also found that the sensitizing effect of actinomycin D on TNF-α-induced cell death depends upon the timing of these treatments and on the cell type. This study will help to select an appropriate concentration of DMSO as a working solvent for the screening of water-insoluble TNF-α inhibitors.


Asunto(s)
Dimetilsulfóxido/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Western Blotting , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Membranes (Basel) ; 10(9)2020 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-32872641

RESUMEN

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presents an urgent need for an effective vaccine. Molecular characterization of SARS-CoV-2 is critical to the development of effective vaccine and therapeutic strategies. In the present study, we show that the fusion of the SARS-CoV-2 spike protein receptor-binding domain to its transmembrane domain is sufficient to mediate trimerization. Our findings may have implications for vaccine development and therapeutic drug design strategies targeting spike trimerization. As global efforts for developing SARS-CoV-2 vaccines are rapidly underway, we believe this observation is an important consideration for identifying crucial epitopes of SARS-CoV-2.

18.
Kidney Int Rep ; 5(5): 718-726, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32405592

RESUMEN

INTRODUCTION: Alport syndrome is a hereditary glomerulonephritis that results from the disruption of collagen α345(IV) heterotrimerization caused by mutation in COL4A3, COL4A4 or COL4A5 genes. Many clinical studies have elucidated the correlation between genotype and phenotype, but there is still much ambiguity and insufficiency. Here, we focused on the α345(IV) heterotrimerization of α5(IV) missense mutant as a novel factor to further understand the pathophysiology of Alport syndrome. METHODS: We selected 9 α5(IV) missense mutants with typical glycine substitutions that clinically differed in disease progression. To quantify the trimerization of each mutant, split nanoluciferase-fused α3/α5 mutants and α4 were transfected into the cells, and intracellular and secreted heterotrimer were detected by luminescence using an assay that we developed previously. RESULTS: Trimer formation and secretion patterns tended to be similar to the wild type in most of the mutations that did not show proteinuria at a young age. On the other hand, trimer secretion was significantly reduced in all the mutations that showed proteinuria and early onset of renal failure. One of these mutants has low ability of intracellular trimer formation, and the others had the defect of low-level secretion. In addition, the mutant that is assumed to be nonpathogenic has similar trimer formation and secretion pattern as wild-type α5(IV). CONCLUSION: The result of cell-based α345(IV) heterotrimer formation assay was largely correlated with clinical genotype-phenotype. These trimerization assessments provide additional phenotypic considerations and may help to distinguish between pathogenic and nonpathogenic mutations.

19.
EBioMedicine ; 55: 102743, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32249203

RESUMEN

BACKGROUND: Coronaviruses pose a serious threat to global health as evidenced by Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and COVID-19. SARS Coronavirus (SARS-CoV), MERS Coronavirus (MERS-CoV), and the novel coronavirus, previously dubbed 2019-nCoV, and now officially named SARS-CoV-2, are the causative agents of the SARS, MERS, and COVID-19 disease outbreaks, respectively. Safe vaccines that rapidly induce potent and long-lasting virus-specific immune responses against these infectious agents are urgently needed. The coronavirus spike (S) protein, a characteristic structural component of the viral envelope, is considered a key target for vaccines for the prevention of coronavirus infection. METHODS: We first generated codon optimized MERS-S1 subunit vaccines fused with a foldon trimerization domain to mimic the native viral structure. In variant constructs, we engineered immune stimulants (RS09 or flagellin, as TLR4 or TLR5 agonists, respectively) into this trimeric design. We comprehensively tested the pre-clinical immunogenicity of MERS-CoV vaccines in mice when delivered subcutaneously by traditional needle injection, or intracutaneously by dissolving microneedle arrays (MNAs) by evaluating virus specific IgG antibodies in the serum of vaccinated mice by ELISA and using virus neutralization assays. Driven by the urgent need for COVID-19 vaccines, we utilized this strategy to rapidly develop MNA SARS-CoV-2 subunit vaccines and tested their pre-clinical immunogenicity in vivo by exploiting our substantial experience with MNA MERS-CoV vaccines. FINDINGS: Here we describe the development of MNA delivered MERS-CoV vaccines and their pre-clinical immunogenicity. Specifically, MNA delivered MERS-S1 subunit vaccines elicited strong and long-lasting antigen-specific antibody responses. Building on our ongoing efforts to develop MERS-CoV vaccines, promising immunogenicity of MNA-delivered MERS-CoV vaccines, and our experience with MNA fabrication and delivery, including clinical trials, we rapidly designed and produced clinically-translatable MNA SARS-CoV-2 subunit vaccines within 4 weeks of the identification of the SARS-CoV-2 S1 sequence. Most importantly, these MNA delivered SARS-CoV-2 S1 subunit vaccines elicited potent antigen-specific antibody responses that were evident beginning 2 weeks after immunization. INTERPRETATION: MNA delivery of coronaviruses-S1 subunit vaccines is a promising immunization strategy against coronavirus infection. Progressive scientific and technological efforts enable quicker responses to emerging pandemics. Our ongoing efforts to develop MNA-MERS-S1 subunit vaccines enabled us to rapidly design and produce MNA SARS-CoV-2 subunit vaccines capable of inducing potent virus-specific antibody responses. Collectively, our results support the clinical development of MNA delivered recombinant protein subunit vaccines against SARS, MERS, COVID-19, and other emerging infectious diseases.


Asunto(s)
Betacoronavirus/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Virales/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Femenino , Inmunización Secundaria , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/sangre , Inyecciones Subcutáneas , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/inmunología , SARS-CoV-2 , Organismos Libres de Patógenos Específicos , Factores de Tiempo , Vacunas de Subunidad/administración & dosificación , Vacunas Virales/inmunología
20.
Bioorg Med Chem Lett ; 30(12): 127190, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32317210

RESUMEN

Modulating the structural dynamics of biomembranes by inducing bilayer curvature and lipid packing defects has been highlighted as a practical tool to modify membrane-dependent cellular processes. Previously, we have reported on an amphipathic helical peptide derived from the N-terminal segment (residues 1-18, EpN18) of epsin-1, which can promote membrane remodeling including lipid packing defects in cell membranes. However, a high concentration is required to exhibit a pronounced effect. In this study, we demonstrate a significant increase in the membrane-remodeling effect of EpN18 by constructing a branched EpN18 homotrimer. Both monomer and trimer could enhance cell internalization of octaarginine (R8), a cell-penetrating peptide. The EpN18 trimer, however, promoted the uptake of R8 at an 80-fold lower concentration than the monomer. Analysis of the generalized polarization of a polarity-sensitive dye (di-4-ANEPPDHQ) revealed a higher efficacy of trimeric EpN18 in loosening the lipid packing in the cell membrane. Circular dichroism measurements in the presence of lipid vesicles showed that the EpN18 trimer has a higher α-helix content compared with the monomer. The stronger ability of the EpN18 trimer to impede negative bilayer curvature is also corroborated by solid-state 31P NMR spectroscopy. Hence, trimerizing peptides can be considered a promising approach for an exponential enhancement of their membrane-remodeling performance.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Membrana Celular/química , Péptidos de Penetración Celular/química , Células HeLa , Humanos , Membrana Dobles de Lípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA