Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.904
Filtrar
1.
World J Gastroenterol ; 30(33): 3818-3822, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39351429

RESUMEN

At present, cancer is still an important factor threatening human health. Colorectal cancer (CRC) is one of the top three most common cancers worldwide and one of the deadliest malignancies in humans. The latest data showed that CRC incidence and mortality rank third and second, respectively, among global malignancies. Early and accurate diagnosis is crucial to reduce the morbidity, mortality and improve survival of patients with CRC, but the current early diagnostic methods have limitations. The effectiveness and compliance of diagnostic methods have a certain impact on whether people choose screening. In this editorial, we explore strategies for the early diagnosis of CRC, including stool-based, blood-based, direct visualization, and imaging examinations.


Asunto(s)
Neoplasias Colorrectales , Detección Precoz del Cáncer , Humanos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/mortalidad , Detección Precoz del Cáncer/métodos , Sangre Oculta , Heces/química , Tamizaje Masivo/métodos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/análisis , Colonoscopía
2.
Biosens Bioelectron ; 267: 116818, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39353368

RESUMEN

Each year, millions of new cancer cases and cancer-related deaths underscore the urgent need for effective, affordable screening methods. Circulating tumor cells (CTCs), which derived from tumors and shedding into bloodstream, are considered promising biomarkers for liquid biopsy due to their unique biological significance and the substantial volume of supporting research. Among many advanced CTCs detection methods, electrochemical sensing is rapidly developing due to their high selectivity, high sensitivity, low cost, and rapid detection capability, well meeting the growing demand for non-invasive liquid biopsy. This review focuses on the entire procedure of detecting CTCs using electrochemical cytosensors, starting from sample preparation, detailing bio-recognition elements for capturing CTCs, highlighting design strategies of cytosensor, and discussing the prospects and challenges of electrochemical cytosensor applications.

3.
Expert Rev Mol Diagn ; : 1-19, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360748

RESUMEN

INTRODUCTION: Liquid biopsy is an innovative advancement in oncology, offering a noninvasive method for early cancer detection and monitoring by analyzing circulating tumor cells, DNA, RNA, and other biomarkers in bodily fluids. This technique has the potential to revolutionize precision oncology by providing real-time analysis of tumor dynamics, enabling early detection, monitoring treatment responses, and tailoring personalized therapies based on the molecular profiles of individual patients. AREAS COVERED: In this review, the authors discuss current methodologies, technological challenges, and clinical applications of liquid biopsy. This includes advancements in detecting minimal residual disease, tracking tumor evolution, and combining liquid biopsy with other diagnostic modalities for precision oncology. Key areas explored are the sensitivity, specificity, and integration of multi-omics, AI, ML, and LLM technologies. EXPERT OPINION: Liquid biopsy holds great potential to revolutionize cancer care through early detection and personalized treatment strategies. However, its success depends on overcoming technological and clinical hurdles, such as ensuring high sensitivity and specificity, interpreting results amidst tumor heterogeneity, and making tests accessible and affordable. Continued innovation and collaboration are crucial to fully realize the potential of liquid biopsy in improving early cancer detection, treatment, and monitoring.

4.
Oncol Rep ; 52(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39364763

RESUMEN

CellSearch, the only approved epithelial cell adhesion molecule (EpCAM)­dependent capture system approved for clinical use, overlooks circulating tumor cells (CTCs) undergoing epithelial­mesenchymal transition (EMT­CTCs), which is considered a crucial subtype responsible for metastasis. To address this limitation, a novel polymeric microfluidic device 'CTC­chip' designed for the easy introduction of any antibody was developed, enabling EpCAM­independent capture. In this study, antibodies against EpCAM and cell surface vimentin (CSV), identified as cancer­specific EMT markers, were conjugated onto the chip (EpCAM­chip and CSV­chip, respectively), and the capture efficiency was examined using lung cancer (PC9, H441 and A549) and colon cancer (DLD1) cell lines, classified into three types based on EMT markers: Epithelial (PC9), intermediate (H441 and DLD1) and mesenchymal (A549). PC9, H441 and DLD1 cells were effectively captured using the EpCAM­chip (average capture efficiencies: 99.4, 88.8 and 90.8%, respectively) when spiked into blood. However, A549 cells were scarcely captured (13.4%), indicating that EpCAM­dependent capture is not suitable for mesenchymal­type cells. The expression of CSV tended to be higher in cells exhibiting mesenchymal properties and A549 cells were effectively captured with the CSV­chip (72.4 and 88.4% at concentrations of 10 and 100 µg/ml, respectively) when spiked into PBS. When spiked into blood, the average capture efficiencies were 27.7 and 46.8% at concentrations of 10 and 100 µg/ml, respectively. These results suggest that the CSV­chip is useful for detecting mesenchymal­type cells and has potential applications in capturing EMT­CTCs.


Asunto(s)
Molécula de Adhesión Celular Epitelial , Transición Epitelial-Mesenquimal , Dispositivos Laboratorio en un Chip , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Vimentina , Humanos , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Vimentina/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Células A549 , Separación Celular/métodos , Biomarcadores de Tumor/metabolismo , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/sangre
5.
J Circ Biomark ; 13: 27-35, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39377016

RESUMEN

Purpose: Circulating tumor cell (CTC)-based ERBB2 (HER2) assay is a laboratory test developed by Epic Sciences using single-cell genomics to detect ERBB2 (HER2) amplification in CTCs found in the peripheral blood of metastatic breast cancer (MBC) patients. Patients and methods: Peripheral blood was collected in Streck tubes and centrifugation was used to remove plasma and red blood cells. The remaining nucleated cells were deposited on glass slides, immunofluorescent-stained with proprietary antibodies, scanned by a high-definition digital scanner, and analyzed by a proprietary algorithm. In addition, single-cell genomics was performed on selected CTC. Analytical validation was performed using white blood cells from healthy donors and breast cancer cell lines with known levels of ERBB2 amplification. Clinical concordance was assessed on MBC patients whose blood was tested by the CTC ERBB2 (HER2) assay and those results are compared to results of matched metastatic tissue biopsy (immunohistochemistry [IHC] 3+ or IHC2+/in situ hybridization [ISH+]). Results: Epic's ERBB2 (HER2) assay detected 2-fold ERBB2 amplification with 85% sensitivity and 94% specificity. In the clinical concordance study, among the 50% of the cases that had ERBB2 status results from CTCs found to be chromosomally-unstable, the CTC ERBB2 (HER2) assay showed sensitivity of 69% and specificity of 78% when compared to HER2 status by metastatic tissue biopsy. Conclusions: The CTC ERBB2 (HER2) assay can consistently detect ERBB2 status in MBC cell lines and in the population of patients with MBC with detectable chromosomally unstable CTCs for whom tissue biopsy is not available or is infeasible.

6.
Clin Exp Metastasis ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305397

RESUMEN

Circulating tumor cells (CTCs) are an established prognostic marker in metastatic prostate cancer (PrC) but have received little attention in localized high-risk disease. Peripheral blood was obtained from patients with early intermediate and high-risk PrC (n = 15) at baseline, after radiotherapy, and during follow-up, as well as from metastatic PrC patients (n = 23). CTCs were enriched using the microfluidic Parsortix® technology. CTC-related marker were quantified with qPCR and RNA in-situ hybridization (ISH). Positivity and associations to clinical parameters were assessed using McNemar test, Fisher Exact test or log-rank test. The overall positivity was high in both cohorts (87.0% metastatic vs. 66.7% early at baseline). A high concordance of qPCR and RNA ISH was achieved. In metastatic PrC, PSA and PSMA were prognostic for shorter overall survival. In early PrC patients, an increase of positive transcripts per blood sample was observed from before to after radiation therapy, while a decrease of positive markers was observed during follow-up. CTC analysis using the investigated qPCR marker panel serves as tool for achieving high detection rates of PrC patient samples even in localized disease. RNA ISH offers the advantage of confirming these markers at the single cell level. Employing the clinically relevant marker PSMA, our CTC approach can be used for diagnostic purposes to screen patients profiting from PSMA-directed PET-CT or PSMA-targeted therapy.

7.
Prostate ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239745

RESUMEN

BACKGROUND: Stereotactic body radiation therapy (SBRT) is an effective metastasis-directed therapy for managing oligometastatic prostate cancer patients. However, it lacks reliable biomarkers for risk stratification. Circulating Tumor Cells (CTC) show promise as minimally invasive prognostic indicators. This study evaluates the prognostic value of CTC in oligorecurrent hormone-sensitive prostate cancer (orHSPC). METHODS: orHSPC patients with 1-3 nodal and/or bone metastases undergoing SBRT were enrolled (N = 35), with a median follow-up time of 42.1 months. CTC levels were measured at baseline (T0), 1 month (T1), and 3 months (T2) post-SBRT using a novel metabolism-based assay. These levels were correlated with clinical outcomes through Cox-regression and Kaplan-Meier analyses. RESULTS: Median CTC counts were 5 at T0, 8 at T1, and 5 at T2 with no significant variation over time. Multivariate analysis identified high (≥5/7.5 mL) T0 CTC counts (HR 2.9, 95% CI 1.3-6.5, p = 0.01, median DPFS 29.7 vs. 14.0 months) and having more than one metastasis (HR 3.9, 95% CI 1.8-8.6, p < 0.005, median DPFS 34.1 vs. 10.7 months) as independent predictors of distant progression-free survival (DPFS). CTC assessment successfully stratified patients with a single metastasis (HR 3.4, 95% CI 1.1-10.2, p = 0.03, median DPFS 42.1 vs. 16.7 months), but not those with more than one metastasis. Additionally, a combined score based on CTC levels and the number of metastases effectively stratified patients. CONCLUSION: The study demonstrates that hypermetabolic CTC could enhance risk stratification in orHSPC patients undergoing SBRT, particularly in patients with limited metastatic burden, potentially identifying patients with indolent disease who are suitable for tailored SBRT interventions.

8.
Sci Rep ; 14(1): 20479, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227622

RESUMEN

Chromosomal Instability (CIN) is a common and evolving feature in breast cancer. Large-scale Transitions (LSTs), defined as chromosomal breakages leading to gains or losses of at least 10 Mb, have recently emerged as a metric of CIN due to their standardized definition across platforms. Herein, we report the feasibility of using low-pass Whole Genome Sequencing to assess LSTs, copy number alterations (CNAs) and their relationship in individual circulating tumor cells (CTCs) of triple-negative breast cancer (TNBC) patients. Initial assessment of LSTs in breast cancer cell lines consistently showed wide-ranging values (median 22, range 4-33, mean 21), indicating heterogeneous CIN. Subsequent analysis of CTCs revealed LST values (median 3, range 0-18, mean 5), particularly low during treatment, suggesting temporal changes in CIN levels. CNAs averaged 30 (range 5-49), with loss being predominant. As expected, CTCs with higher LSTs values exhibited increased CNAs. A CNA-based classifier of individual patient-derived CTCs, developed using machine learning, identified genes associated with both DNA proliferation and repair, such as RB1, MYC, and EXO1, as significant predictors of CIN. The model demonstrated a high predictive accuracy with an Area Under the Curve (AUC) of 0.89. Overall, these findings suggest that sequencing CTCs holds the potential to facilitate CIN evaluation and provide insights into its dynamic nature over time, with potential implications for monitoring TNBC progression through iterative assessments.


Asunto(s)
Inestabilidad Cromosómica , Variaciones en el Número de Copia de ADN , Células Neoplásicas Circulantes , Neoplasias de la Mama Triple Negativas , Secuenciación Completa del Genoma , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/sangre , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Femenino , Secuenciación Completa del Genoma/métodos , Línea Celular Tumoral
9.
Mol Cancer ; 23(1): 189, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242496

RESUMEN

Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Biopsia Líquida/métodos , Manejo de la Enfermedad , Pronóstico , Epigénesis Genética , Animales , Microambiente Tumoral
10.
Cancers (Basel) ; 16(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272785

RESUMEN

The Fas/Fas ligand (FasL) system is a major apoptosis-regulating pathway with a key role in tumor immune surveillance and metastasis. The expression of Fas/FasL on mammary tumor tissues holds prognostic value for breast cancer (BC) patients. We herein assessed Fas/FasL expression on circulating tumor cells (CTCs) and matched peripheral blood mononuclear cells (PBMCs) from 98 patients with metastatic BC receiving first-line treatment. Fas+, FasL+, and Fas+/FasL+ CTCs were identified in 88.5%, 92.3%, and 84.6% of CTC-positive patients, respectively. In addition, Fas+/FasL+, Fas-/FasL+, and Fas-/FasL- PBMCs were identified in 70.3%, 24.2%, and 5.5% of patients, respectively. A reduced progression-free survival (PFS) was revealed among CTC-positive patients (median PFS: 9.5 versus 13.4 months; p = 0.004), and specifically among those harboring Fas+/FasL+ CTCs (median PFS: 9.5 vs. 13.4 months; p = 0.009). On the other hand, an increased overall survival (OS) was demonstrated among patients with Fas+/FasL+ PBMCs rather than those with Fas-/FasL+ and Fas-/FasL- PBMCs (median OS: 35.7 vs. 25.9 vs. 14.4 months, respectively; p = 0.008). These data provide for the first time evidence on Fas/FasL expression on CTCs and PBMCs with significant prognostic value for patients with metastatic BC, thus highlighting the role of the Fas/FasL system in the peripheral immune response and metastatic progression of BC.

11.
Cancers (Basel) ; 16(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272787

RESUMEN

In recent years, liquid biopsy has emerged as a promising alternative to the bone marrow (BM) examination, since it is a minimally invasive technique allowing serial monitoring. Circulating multiple myeloma cells (CMMCs) enumerated using CELLSEARCH® were correlated with patients' prognosis and measured under treatment to assess their role in monitoring disease dynamics. Forty-four MM and seven smouldering MM (SMM) patients were studied. The CMMC medians at diagnosis were 349 (1 to 39,940) and 327 (range 22-2463) for MM and SMM, respectively. In the MM patients, the CMMC count was correlated with serum albumin, calcium, ß2-microglobulin, and monoclonal components (p < 0.04). Under therapy, the CMMCs were consistently detectable in 15/40 patients (coMMstant = 1) and were undetectable or decreasing in 25/40 patients (coMMstant = 0). High-quality response rates were lower in the coMMstant = 1 group (p = 0.04), with a 7.8-fold higher risk of death (p = 0.039), suggesting that continuous CMMC release is correlated with poor responses. In four MM patients, a single-cell DNA sequencing analysis on residual CMMCs confirmed the genomic pattern of the aberrations observed in the BM samples, also highlighting the presence of emerging clones. The CMMC kinetics during treatment were used to separate the patients into two subgroups based on the coMMstant index, with different responses and survival probabilities, providing evidence that CMMC persistence is associated with a poor disease course.

12.
Cancers (Basel) ; 16(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39272873

RESUMEN

Advancements in understanding pain physiopathology have historically challenged animals' absence of pain senses. Studies have demonstrated that animals have comparable neural pain pathways, suggesting that cats and dogs likely experience pain similarly to humans. Understanding brain circuits for effective pain control has been crucial to adjusting pain management to the patient's individual responses and current condition. The refinement of analgesic strategies is necessary to better cater to the patient's demands. Cancer pain management searches to ascertain analgesic protocols that enhance patient well-being by minimizing or abolishing pain and reducing its impact on the immune system and cancer cells. Due to their ability to reduce nerve sensitivity, opioids are the mainstay for managing moderate and severe acute pain; however, despite their association with tumor progression, specific opioid agents have immune-protective properties and are considered safe alternatives to analgesia for cancer patients.

13.
Cancers (Basel) ; 16(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39272936

RESUMEN

Circulating tumor cells (CTCs) are cells that have separated from a solid cancerous lesion and entered the bloodstream. They play a crucial role in driving the metastatic spread to distant organs, which is the leading cause of cancer-related deaths. Various concepts for blood purification devices aiming to remove CTCs from the blood and prevent metastases have been developed. Until now, it is not clear if such devices can indeed reduce new metastasis formation in a significant way. Here, we present a simple theoretical model of CTCs in the bloodstream that can be used to predict a reduction in metastatic burden using an extracorporeal or intracorporeal blood purification device. The model consists of a system of ordinary differential equations that was numerically solved and simulated. Various simulations with different parameter settings of extracorporeal and intracorporeal devices revealed that only devices implanted directly in tumor-draining vessels can reduce the metastatic burden significantly. Even if an extracorporeal device is used permanently, the reduction in metastases is only 82%, while a permanently operating implanted device in the tumor-draining vessel would achieve a reduction of 99.8%. These results are mainly due to the fact that only a small fraction of CTCs reaches peripheral circulation, resulting in a proportionally small amount of purified blood in extracorporeal devices.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39285068

RESUMEN

PURPOSE: In this study, we aimed to explore if the combination of tumor infiltrating lymphocytes (TILs) and change in tumor load on dynamic contrast-enhanced magnetic resonance imaging leads to better assessment of response to neoadjuvant chemotherapy (NAC) in patients with breast cancer, compared to either alone. METHODS: In 190 NAC treated patients, MRI scans were performed before and at the end of treatment. The percentage of stromal TILs (%TILs) was assessed in pre-NAC biopsies according to established criteria. Prediction models were developed with linear regression by least absolute shrinkage and selection operator and cross validation (CV), with residual cancer burden as the dependent variable. Discrimination for pathological complete response (pCR) was evaluated using area under the receiver operating characteristic curves (AUC). We used Cox regression analysis for exploring the association between %TILs and recurrence-free survival (RFS). RESULTS: Fifty-one patients reached pCR. In all patients, the %TILs model and change in MRI tumor load model had an estimated CV AUC of 0.69 (95% confidence interval (CI) 0.53-0.78) and 0.69 (95% CI 0.61-0.79), respectively, whereas a model combining the variables resulted in an estimated CV AUC of 0.75 (95% CI 0.66-0.83). In the group with tumors that were ER positive and HER2 negative (ER+/HER2-) and in the group with tumors that were either triple negative or HER2 positive (TN&HER2+) separately, the combined model reached an estimated CV AUC of 0.72 (95% CI 0.60-0.88) and 0.70(95% CI 0.59-0.82), respectively. A significant association was observed between pre-treatment %TILS and RFS (hazard ratio (HR) 0.72 (95% CI 0.53-0.98), for every standard deviation increase in %TILS, p = 0.038). CONCLUSION: The combination of TILs and MRI is informative of response to NAC in patients with both ER+/HER2- and TN&HER2+ tumors.

15.
Taiwan J Obstet Gynecol ; 63(5): 745-749, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39266158

RESUMEN

OBJECTIVE: This case demonstrated the possibility of using GATA3-positive circulating tumor cells (CTCs) to detect early-stage breast cancer (BrC). CASE REPORT: The 86 years old female patient received a mammographic examination with no evidence of malignancy (Breast Imaging Reporting and Data System, (BI-RADS category 2). However, CTC testing on the same day revealed four GATA3-positive CTCs in 4 ml of peripheral blood. Core needle biopsy was performed in the suspicious area even with no evidence of malignant image on breast ultrasound. Pathologic examination showed invasive carcinoma of no special type of the breast. The patient then received an oncoplastic partial mastectomy of right breast and sentinel lymph node biopsy. The surgical staging was cT1N0M0. Post-operation follow-up examination showed absence of GATA3-positive CTCs and the presence of HER2/ER positive CTCs. CONCLUSION: The role of GATA3-positive CTCs as a potential biomarker for early-stage BrC should be explored.


Asunto(s)
Neoplasias de la Mama , Factor de Transcripción GATA3 , Estadificación de Neoplasias , Células Neoplásicas Circulantes , Humanos , Femenino , Factor de Transcripción GATA3/análisis , Factor de Transcripción GATA3/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/sangre , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Biopsia del Ganglio Linfático Centinela , Biopsia con Aguja Gruesa , Mastectomía Segmentaria , Detección Precoz del Cáncer/métodos
16.
Oncol Lett ; 28(5): 531, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39290961

RESUMEN

Liver cancer is the second leading cause of tumor-related death worldwide, and a serious threat to lives and health. Circulating tumor cells (CTCs) facilitate the progression of various cancers, including liver cancer. The relationship between CTC/circulating tumor microemboli-related genes (CRGs) and the prognosis of liver cancer is unclear. The aim of the present study was to identify CTC/circulating tumour microemboli-related genes (CRGs) in hepatocellular carcinoma and to investigate their clinical significance. Transcriptomic data from The Cancer Genome Atlas (International Cancer Genome Consortium (ICGC) and GSE117623 databases were combined, and differentially expressed CRGs were identified. These were subsequently analyzed via least absolute shrinkage and selection operator and multivariate Cox analyses, and a five-gene risk signature was constructed. The signature was validated in the ICGC and GSE14520 dataset with survival analysis and receiver operating characteristic curve analysis. Immunocyte infiltration, tumor mutation burden (TMB), tumor immune dysfunction and exclusion (TIDE), and the somatic mutation rate were also compared between high- and low-risk groups, based on the median predictive index, to further evaluate the immunotherapeutic value of the model. Molecular subtypes of liver cancer were characterized by the non-negative matrix factorization method and potential therapeutic compounds were evaluated for different subtypes. Nomograms were utilized to predict the prognosis of patients, and the signature was compared with previous literature models. Additionally, the biological function of one of the CRGs, tumor protein p53 inducible protein 3 (TP53I3), in liver cancer was further explored through in vitro experiments. Analysis of the prognostic characteristics of the five CRGs led to the identification of two liver cancer subtypes. Patients in the low-risk group had a longer survival compared with those in the high-risk group, and patients in the latter group were associated with a higher TMB, immunocyte infiltration and somatic mutation rate, and lower TIDE scores. The prognostic profile was validated in the ICGC and GSE14520 datasets and exhibited a good predictive performance. In vitro analysis showed that the knockdown of TP53I3 suppressed liver cancer cell proliferation. In summary, CRGs were used to develop a new prognostic signature to predict the prognosis of patients with liver cancer. This signature may be used to assess the prognosis of patients and may provide new insights for clinical management strategies. In addition, TP53I3 is potentially a therapeutic target for liver cancer.

17.
J Pediatr Surg ; : 161887, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39294087

RESUMEN

BACKGROUND: Neuroblastoma (NBL), is the most common, non-CNS solid tumor of childhood. This disease presents with unique biological and clinical challenges necessitating accurate diagnosis, prognosis assessment, treatment, and vigilant monitoring. Liquid biopsy is an upcoming, innovative, and non-invasive diagnostic modality. It has the potential to detect tumors and perform therapeutic monitoring through the analysis of circulating biomarkers in blood, urine, saliva, and other bodily fluids. METHODOLOGY: This scoping review offers an in-depth exploration, of the current landscape of liquid biopsy-based biomarkers in NBL. The review looks at the clinical implications, prevalent challenges, and future outlook of their clinical applications in NBL. The scoping review adhered to the guidelines of the PRISMA extension for scoping reviews, known as PRISMA-ScR, as the skeletal framework. The review involved comprehensive searches for liquid biopsy-based biomarkers in NBL across multiple databases, including PUBMED, EMBASE, SCOPUS, and WEB of Science, without restrictions. RESULTS: The scoping review process uncovered a significant body of literature (n = 201) that underwent meticulous scrutiny, ultimately leading to the final selection of studies (n = 15). The liquid biopsy biomarkers included circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, and other entities in bodily fluids. Their evaluation focused on associations with clinical outcomes such as overall survival, event-free survival, and risk stratification in NBL. CONCLUSION: Our findings highlight the potential of liquid biopsy biomarkers to revolutionize NBL diagnosis and therapeutic monitoring. This rapidly evolving frontier in pediatric oncology suggests significant advancements in precision medicine for the management of NBL.

18.
Front Bioeng Biotechnol ; 12: 1443843, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280341

RESUMEN

Epithelial cell adhesion molecule negative circulating tumor cells (EpCAM- CTCs) and EpCAM positive CTCs (EpCAM + CTCs) have different biological characteristics. Therefore, the isolation of EpCAM + CTCs and EpCAM- CTCs is a new strategy to study the heterogeneity of tumor cells. The azobenzene group (Azo) and cyclodextrin (CD) composite system forms a photosensitive molecular switch based on the effect of external light stimulation. We used the technology of specifically capturing CTCs using anti-EpCAM and aptamers functionalized nanochips. Both anti-EpCAM and aptamers can be connected to Azo through the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) modification process. Therefore, we assume that a photosensitive intelligent nanoreactor (PSINR) modified with anti-EpCAM can be used to capture EpCAM + CTCs; Utilizing the characteristics of aptamer and ligand binding, a PSINR modified with aptamer is used to capture EpCAM- CTCs; Then, two PSINRs were separated and stimulated with light to release EpCAM + CTCs and EpCAM- CTCs, respectively. Based on the isolation the EpCAM + CTCs and EpCAM- CTCs, we expected to reveal the key biological mechanisms of tumor recurrence, metastasis and drug resistance, and make the individualized treatment of liver cancer more targeted, safe and effective, and provide a new basis for the final realization of accurate and individualized treatment of tumors.

19.
Gastro Hep Adv ; 3(6): 809-820, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280920

RESUMEN

Background and Aims: Blood-based biomarkers for hepatocellular carcinoma (HCC) and its recurrence are lacking. We previously showed that hepatic γ-hydroxy-1,N 2 -propano-2'-deoxyguanosine (γ-OHPdG), an endogenous DNA adduct derived from acrolein by lipid peroxidation, increased during hepatocarcinogenesis. Additionally, higher hepatic γ-OHPdG from HCC patients after surgery were strongly associated with poor survival (P < .0001) and recurrence-free survival (P = .007) (Fu et al, Hepatology, 2018). These findings suggest that γ-OHPdG is a potential prognostic biomarker for HCC and its recurrence. To attain the goal of using γ-OHPdG as a biomarker in future preventive and therapeutic trials, we developed a blood-based method to detect γ-OHPdG in circulating liver tumor cells from HCC patient blood. Methods: We first established the specificity of anti-γ-OHPdG antibody by determining its dose-response in HepG2 cells treated with acrolein. Then, HepG2 cells in spiked blood of healthy volunteers and circulating tumor cells (CTCs) from 32 HCC patients were isolated using a RosetteSep CD45 Depletion Cocktail and Ficoll Paque. The HCC CTCs identified with anti-asialoglycoprotein receptor 1, a surface protein expressed solely in hepatocytes, were stained with an anti-γ-OHPdG antibody. The number of total HCC CTCs and γ-OHPdG-positive CTCs, as well as the staining intensity, were quantified using MetaMorph software. As an initial effort toward its clinical application, we also evaluated γ-OHPdG in CTCs from these patients along with certain clinical features. Results: The γ-OHPdG antibody specificity was demonstrated by an acrolein concentration-dependent increase of γ-OHPdG-positive HepG2 cells and the intensity of γ-OHPdG staining. The recovery of HepG2 cells from spiked blood was ∼50-60%, and the positivity rate of CTCs in blood from 32 patients with advanced HCC was 97%. The MetaMorph analysis showed a wide variation among patients in total number of CTCs, γ-OHPdG positivity, and staining intensity. Statistical analysis revealed that γ-OHPdG in CTCs of these patients appears to be associated with multifocality and poor differentiation. Conclusion: A blood-based method was developed and applied to HCC patients to evaluate the potential of γ-OHPdG in CTCs as a prognostic biomarker.

20.
Discov Oncol ; 15(1): 506, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340703

RESUMEN

Assessing circulating tumor cells (CTCs) in early-stage breast cancer patients can help identify relapse risk for timely interventions. Molecular analysis of CTCs can reveal vulnerabilities for personalized treatment options in metastatic breast cancer. This study aims to summarize CTCs in breast cancer research understanding and evaluate research trends. Extracted from the Web of Science Core Collection, publications on CTCs in breast cancer studies spanning from January 1, 2008, to December 21, 2023, were included. Co-authorships, references, and keywords were analyzed using Bibliometrix R packages and VOSviewer software. References and keywords burst detection were conducted with CiteSpace, and BICOMB was utilized to generate high-frequency keyword layouts. Biclustering analysis of the binary co-keyword matrix was performed using gCLUTO. 1747 articles focusing on CTCs in breast cancer were identified. The USA and the University of Texas MD Anderson Cancer Center demonstrated the highest productivity at the national and institutional levels, respectively. The journal "CANCERS" had the highest publication outputs on this subject. Pantel K emerged as the foremost author with the highest publication and co-citation counts. Analysis of co-keywords unveiled five prominent research areas concerning CTCs in breast cancer. The prognostic and predictive roles of CTCs in breast cancer have substantial implications for clinical practice. Nevertheless, precise assessment of CTCs, encompassing its quantities and attributes through advanced technologies, and its role in detecting minimal residual disease in breast cancer, continue to pose notable challenges. In conclusion, recent advancements and trends in CTCs research in breast cancer are examined through scientometric analysis in this study. The results provide valuable insights for the formulation of novel approaches in CTCs research, emphasizing the current research frontiers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA