Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Int Immunopharmacol ; 136: 112305, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823178

RESUMEN

The second-leading cause of death, cancer, poses a significant threat to human life. Innovations in cancer therapies are crucial due to limitations in traditional approaches. Newcastle disease virus (NDV), a nonpathogenic oncolytic virus, exhibits multifunctional anticancer properties by selectively infecting, replicating, and eliminating tumor cells. To enhance NDV's antitumor activity, four oncolytic NDV viruses were developed, incorporating IL24 and/or GM-CSF genes at different gene loci using reverse genetics. In vitro experiments revealed that oncolytic NDV virus augmented the antitumor efficacy of the parental virus rClone30, inhibiting tumor cell proliferation, inducing tumor cell fusion, and promoting apoptosis. Moreover, NDV carrying the IL24 gene inhibited microvessel formation in CAM experiments. Evaluation in a mouse model of liver cancer confirmed the therapeutic efficacy of oncolytic NDV viral therapy. Tumors in mice treated with oncolytic NDV virus significantly decreased in size, accompanied by tumor cell detachment and apoptosis evident in pathological sections. Furthermore, oncolytic NDV virus enhanced T cell and dendritic cell production and substantially improved the survival rate of mice with hepatocellular carcinoma, with rClone30-IL24(P/M) demonstrating significant therapeutic effects. This study establishes a basis for utilizing oncolytic NDV virus as an antitumor agent in clinical practice.


Asunto(s)
Interleucinas , Virus de la Enfermedad de Newcastle , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/fisiología , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Oncolíticos/fisiología , Humanos , Ratones , Línea Celular Tumoral , Interleucinas/genética , Interleucinas/metabolismo , Neoplasias Hepáticas/terapia , Ratones Endogámicos BALB C , Carcinoma Hepatocelular/terapia , Apoptosis , Neovascularización Patológica/terapia , Proliferación Celular , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Células Dendríticas/inmunología , Linfocitos T/inmunología
2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675474

RESUMEN

Nanodiamonds (NDs) are emerging as a novel nanoparticle class with growing interest in medical applications. The surface coating of NDs can be modified by attaching binding ligands or imaging probes, turning them into multi-modal targeting agents. In this investigation, we assessed the targeting efficacy of octreotide-functionalized 68Ga-radiolabelled NDs for cancer imaging and compared it with the tumor uptake using [68Ga]Ga-DOTA-TOC. In vivo studies in mice bearing AR42J tumors demonstrated the highest accumulation of the radiolabeled functionalized NDs in the liver and spleen, with relatively low tumor uptake compared to [68Ga]Ga-DOTA-TOC. Our findings suggest that, within the scope of this study, functionalization did not enhance the tumor-targeting capabilities of NDs.

3.
Small ; 20(22): e2306726, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38152951

RESUMEN

Polylactide-co-glycolide (PLG) nanoparticles hold immense promise for cancer therapy due to their enhanced efficacy and biodegradable matrix structure. Understanding their interactions with blood cells and subsequent biodistribution kinetics is crucial for optimizing their therapeutic potential. In this study, three doxorubicin-loaded PLG nanoparticle systems are synthesized and characterized, analyzing their size, zeta potential, morphology, and in vitro release behavior. Employing intravital microscopy in 4T1-tumor-bearing mice, real-time blood and tumor distribution kinetics are investigated. A mechanistic pharmacokinetic model is used to analyze biodistribution kinetics. Additionally, flow cytometry is utilized to identify cells involved in nanoparticle hitchhiking. Following intravenous injection, PLG nanoparticles exhibit an initial burst release (<1 min) and rapidly adsorb to blood cells (<5 min), hindering extravasation. Agglomeration leads to the clearance of one carrier species within 3 min. In stable dispersions, drug release rather than extravasation remains the dominant pathway for drug elimination from circulation. This comprehensive investigation provides valuable insights into the interplay between competing kinetics that influence the lifecycle of PLG nanoparticles post-injection. The findings advance the understanding of nanoparticle behavior and lay the foundation for improved cancer therapy strategies using nanoparticle-based drug delivery systems.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Nanopartículas , Nanopartículas/química , Animales , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Microscopía Intravital/métodos , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Línea Celular Tumoral , Distribución Tisular , Ratones Endogámicos BALB C , Ácido Poliglicólico/química , Femenino
4.
Int Immunopharmacol ; 125(Pt A): 110978, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925944

RESUMEN

Tamoxifen (TAM) is an effective anticancer drug for breast and ovarian cancer. However, increased risk of cardiotoxicity is a long-term clinical problem associated with TAM, while the underlying mechanisms remain unclear. Here, we performed experiments in cardiomyocytes and tumor-bearing or nontumor-bearing mice, and demonstrated that TAM induced cardiac injury via the IL-6/p-STAT3/PGC-1α/IL-6 feedback loop, which is responsible for reactive oxygen species (ROS) accumulation. Compared with non-tumor bearing mice, tumor-bearing mice showed stronger cardiac toxicity after TAM injection, although there was no significant difference. In vitro experiments demonstrated STAT3 phosphorylation inhibitor can increase PGC-1α expression and protect cardiomyocyte via decreasing ROS. Since tumor has higher STAT3 phosphorylation and IL-6 expression level, our research results indicated combining TAM and STAT3 inhibitor might be an effective treatment strategy which can provide both tumor killing and cardioprotective function. Further in vivo research is needed to fully elucidate the effect and mechanisms of the combination therapy of TAM and STAT3 inhibitor.


Asunto(s)
Interleucina-6 , Neoplasias , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Interleucina-6/metabolismo , Tamoxifeno , Miocitos Cardíacos/metabolismo , Cardiotoxicidad/metabolismo , Neoplasias/metabolismo
5.
Pharmacol Res ; 195: 106866, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499704

RESUMEN

Lycorine, an isoquinoline alkaloid can exhibit significant anti-cancer effects. The present study was conducted to illustrate the underlying mechanisms of action of lycorine on breast carcinoma under in vitro and in vivo settings Tandem Mass Tag assay and Kyoto Encyclopedia of Genes and Genomes analysis revealed that 20 signaling pathways were closely related to tumorigenesis, especially Wnt signaling pathway and tight junctions. The results demonstrated that lycorine evidently inhibited the proliferation of MDA-MB-231 and MCF-7 cells with IC50 values of 1.84 ± 0.21 µM and 7.76 ± 1.16 µM, respectively. It also blocked cell cycle in G2/M phase, caused a decrease in mitochondrial membrane potential, and induced apoptosis pathways through regulating caspase-3, caspase-8, caspase-9, and PARP expression. Moreover, lycorine effectively repressed the ß-catenin signaling and reversed epithelial-mesenchymal transition (EMT) process. Furthermore, 4T1/Luc homograft tumor model was used to further demonstrate that lycorine significantly inhibited the growth and metastasis of breast tumor. These findings highlight the significance of lycorine as potential anti-neoplastic agent to combat breast cancer.


Asunto(s)
Neoplasias de la Mama , Transición Epitelial-Mesenquimal , Humanos , Femenino , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias de la Mama/metabolismo , Vía de Señalización Wnt , Movimiento Celular
6.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2343-2351, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282863

RESUMEN

This study explored the molecular mechanism of acteoside against hepatoma 22(H22) tumor in mice through c-Jun N-terminal kinase(JNK) signaling pathway. H22 cells were subcutaneously inoculated in 50 male BALB/c mice, and then the model mice were classified into model group, low-dose, medium-dose, and high-dose acteoside groups, and cisplatin group. The administration lasted 2 weeks for each group(5 consecutive days/week). The general conditions of mice in each group, such as mental status, diet intake, water intake, activity, and fur were observed. The body weight, tumor volume, tumor weight, and tumor-inhibiting rate were compared before and after administration. Morphological changes of liver cancer tissues were observed based on hematoxylin and eosin(HE) staining, and the expression of phosphorylated(p)-JNK, JNK, B-cell lymphoma-2(Bcl-2), Beclin-1, and light chain 3(LC3) in each tissue was detected by immunohistochemistry and Western blot. qRT-PCR was performed to detect the mRNA expression of JNK, Bcl-2, Beclin-1, and LC3. The general conditions of mice in model and low-dose acteoside groups were poor, while the general conditions of mice in the remaining three groups were improved. The body weight of mice in medium-dose acteoside group, high-dose acteoside group, and cisplatin group was smaller than that in model group(P<0.01). The tumor volume in model group was insignificantly different from that in low-dose acteoside group, and the volume in cisplatin group showed no significant difference from that in high-dose acteoside group. Tumor volume and weight in medium-dose and high-dose acteoside groups and cisplatin group were lower than those in the model group(P<0.001). The tumor-inhibiting rates were 10.72%, 40.32%, 53.79%, and 56.44% in the low-dose, medium-dose, and high-dose acteoside groups and cisplatin group, respectively. HE staining showed gradual decrease in the count of hepatoma cells and increasing sign of cell necrosis in the acteoside and cisplatin groups, and the necrosis was particularly obvious in the high-dose acteoside group and cisplatin group. Immunohistochemical results suggested that the expression of Beclin-1, LC3, p-JNK, and JNK was up-regulated in acteoside and cisplatin groups(P<0.05). The results of immunohistochemistry, Western blot, and qRT-PCR indicated that the expression of Bcl-2 was down-regulated in the medium-dose and high-dose acteoside groups and cisplatin group(P<0.01). Western blot showed that the expression of Beclin-1, LC3, and p-JNK was up-regulated in acteoside and cisplatin groups(P<0.01), and there was no difference in the expression of JNK among groups. qRT-PCR results showed that the levels of Beclin-1 and LC3 mRNA were up-regulated in the acteoside and cisplatin groups(P<0.05), and the level of JNK mRNA was up-regulated in medium-dose and high-dose acteoside groups and cisplatin group(P<0.001). Acteoside promotes apoptosis and autophagy of H22 cells in mice hepatoma cells by up-regulating the JNK signaling pathway, thus inhibiting tumor growth.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Animales , Ratones , Cisplatino/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Sistema de Señalización de MAP Quinasas , Beclina-1 , Apoptosis , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Necrosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Línea Celular Tumoral , ARN Mensajero/metabolismo , Autofagia
7.
Food Res Int ; 169: 112849, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254425

RESUMEN

Increasing evidence indicates that tryptophan (Trp) metabolism disturbance controls hippocampal 5-hydroxytryptamine (5-HT) and thereby affecting depression-like behavior, in which the gut microbiota (GM) might be involved. This study investigated the effect of Trp-rich whey protein isolate (WPI) on depressive-like behavior in 4T1 tumor-bearing mice. Female BALB/c mice were subcutaneously inoculated with murine 4T1 mammary carcinoma cells and received 2 g/kg of WPI by gavage daily for 21 days. The results showed that WPI exerted no significant effects on tumor weight and volume, but abrogated tumor-induced depression-like behavior, as evidenced by remarkably increased time and distance in the center of the open-field test, decreased immobility time in the tail suspension test, increased time and number of entries to the open arms in the elevated plus maze and sucrose preference. Moreover, WPI promoted the hippocampal Trp, 5-hydroxytryptophan (5-HTP), 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) levels and inhibited kynurenine (Kyn) through up-regulating serotonin transporter (SERT) and down-regulating indoleamine 2, 3-dioxygenase (IDO). WPI showed an enriched microbial diversity indicated by increased Shannon index and decreased Simpson index, reduced the abundances of Proteobacteria, Rikenellaceae_RC9_gut_group, Alloprevotella and Prevotellaceae_UCG-001, and increased the abundance of unclassified_k__norank_d__Bacteria in tumor-bearing mice (P < 0.05). At level 3, WPI enhanced the function of microbial gene related to Trp metabolism in the KEGG pathways (P < 0.05). Our results suggest that WPI exhibits a potent antidepressant-like effect via the regulation of hippocampal Trp metabolism and alteration of GM composition and function, and it may be an effective prevention for cancer-related depression.


Asunto(s)
Depresión , Triptófano , Animales , Femenino , Ratones , 5-Hidroxitriptófano , Depresión/inducido químicamente , Depresión/metabolismo , Quinurenina/metabolismo , Serotonina , Triptófano/metabolismo , Proteína de Suero de Leche/farmacología
8.
World J Gastrointest Oncol ; 15(3): 504-522, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37009316

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common digestive system cancers with high mortality rates worldwide. The main ingredients in Mu Ji Fang Granules (MJF) are alkaloids, flavonoids, and polysaccharides. MJF has been used in the clinical treatment of hepatitis, cirrhosis and HCC for more than 30 years. Few previous studies have focused on the mechanism of MJF on tumor immu-nology in the treatment of HCC. AIM: To explore the mechanism of action of MJF on tumor immunology in the treatment of HCC. METHODS: The absorbable ingredients of MJF were identified using Molecule Network related to High Performance Liquid Chromatography-Electron Spray Ionization-Time of Flight- Mass Spectrometry, and hub potential anti-HCC targets were screened using network pharmacology and pathway enrichment analysis. Forty male mice were randomly divided into the Blank, Model, and MJF groups (1.8, 5.4, and 10.8 g/kg/d) following 7 d of oral administration. Average body weight gain, spleen and thymus indices were calculated, tumor tissues were stained with hematoxylin and eosin, and Interferon gamma (IFN-γ), Tumor necrosis factor α (TNF-α), Interleukin-2, aspartate aminotransferase, alanine aminotransferase, alpha-fetoprotein (AFP), Fas, and FasL were measured by Enzyme-linked Immunosorbent Assay. Relevant mRNA expression of Bax and Bcl2 was evaluated by Real Time Quantitative PCR (RT-qPCR) and protein expression of Transforming growth factor ß1 (TGF-ß1) and Mothers against decapentaplegic homolog (SMAD) 4 was assessed by Western blotting. The HepG2 cell line was treated with 10 mg/mL, 20 mg/mL, 30 mg/mL, 40 mg/mL of MJF, and another 3 groups were treated with TGF-ß1 inhibitor (LY364947) and different doses of MJF. Relevant mRNA expression of TNF-α, IFN-γ, Bax and Bcl2 was evaluated by RT-qPCR and protein expression of TGF-ß1, SMAD2, p-SMAD2, SMAD4, and SMAD7 was assessed by Western blotting. RESULTS: It was shown that MJF improved body weight gain and tumor inhibition rate in H22 tumor-bearing mice, protected immune organs and liver function, reduced the HCC indicator AFP, affected immunity and apoptosis, and up-regulated the TGF-ß1/SMAD signaling pathway, by increasing the relative expression of TGF-ß1, SMAD2, p-SMAD2 and SMAD4 and decreasing SMAD7, reducing immune factors TNF-α and IFN-γ, decreasing apoptosis cytokines Fas, FasL and Bcl2/Bax, and inhibiting the effect of LY364947 in HepG2 cells. CONCLUSION: MJF inhibits HCC by activating the TGF-ß1/SMAD signaling pathway, and affecting immune and apoptotic cytokines, which may be due to MJF adjusting immune escape and apoptosis.

9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(1): 125-129, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36765488

RESUMEN

OBJECTIVE: To investigate the in vivo intervention and relative mechanism of Genistein (GEN) on tumor-associated inflammatory and tumor thrombophilia in lymphoma-bearing mice. METHODS: Forty female Balb/c mice aged 5-6 weeks were injected with murine-derived Pro B-cell lymphoma cell line 38B9 to establish a lymphoma mouse model, which was randomly divided into control group, tumor-bearing group, GEN drug intervention group and cyclophosphamide (CTX)drug intervention group. Histopathologic was used to evaluate the tumorigenesis. Tumor formation was observed, and tumor tissues were collected of HE and immunohistochemical staining. ELISA and flow cytometry were used to detect the expression of inflammatory factors and the changes of thrombus indices in plasma after intervention of GEN and Cyclophosphamide (CTX) respectively. Immunohistochemistry method was used to detect the expression of CD19 in tomor tissues of tummor bearing mice. RESULTS: After 14 days of tumor bearing, the mice were tumorigenic. The lymphoma cells were diffusely distributed in the tumor tissue and the expression of CD19 in the tumor tissue was positive. The inflammatory factors such as IL-6, NETs and CLEC-2, and thrombotic indices such as TF, FIB and D-D in lymphoma-bearing mice were significantly higher than those before tumor-injection and lower than those after drug-intervention (all P<0.05). The levels of CLEC-2 and D-D in GEN group were significantly lower than those in CTX group (P<0.05). CONCLUSION: Tumor-associated inflammation and thrombophilia exist in lymphoma-bearing mice. GEN shows better anti-inflammatory and anti-thrombotic effects compared with CTX by interfering with tumor inflammatory factors.


Asunto(s)
Linfoma , Trombofilia , Ratones , Femenino , Animales , Genisteína , Ciclofosfamida , Inflamación , Lectinas Tipo C
10.
J Pharm Biomed Anal ; 223: 115127, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36327577

RESUMEN

In this study, the imaging methods for evaluating the kinetics of nanoparticles as drug delivery systems in tumor tissues were improved in BxPC3 tumor-bearing mice. First, Förster resonance energy transfer (FRET) live imaging was selected to quantitatively evaluate nanoparticle kinetics in the tumor tissue of mice. Briefly, and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine iodide (as an acceptor)-and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt (as a donor)-coloaded nanoparticles were administered intravenously to the mice, and imaging was performed using a fluorescence in vivo imager. The fluorescence intensities of images were acquired in the FRET, donor, and acceptor channels, and the nanoparticle kinetics in the tumor region was quantified by compensating for bleed-through. Second, in the cleared tumor tissue of mice, the difference in evaluation properties between the two- and three-dimensional visualization of the nanoparticles was examined. In brief, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-loaded nanoparticles were intravenously administered to the mice after fluorescently labeled tomato lectin treatment to visualize tumor vessels. Excised tumor tissue was cleared and observed using laser-scanning confocal microscopy, and three-dimensional images were reconstructed. The three-dimensional minimum distances traveled by DiI from the tumor vessels were calculated using information about the two-dimensional distance and the slicing position using the Pythagoras theorem. These imaging techniques should facilitate the development of drug delivery systems for cancer.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Transferencia Resonante de Energía de Fluorescencia/métodos , Cinética , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
11.
Cancers (Basel) ; 14(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36551519

RESUMEN

In the past, different bacterial species have been tested for cancer therapy in preclinical and clinical studies. The success of bacterial cancer therapy is mainly dependent on the ability of the utilized bacteria to overcome the host immune defense system to colonize the tumors and to initiate tumor-specific immunity. In recent years, several groups have demonstrated that the gut microbiome plays an important role of modulation of the host immune response and has an impact on therapeutic responses in murine models and in cohorts of human cancer patients. Here we analyzed the impact of the gut microbiome on tumor colonization and tumor therapy by the Escherichia coli Nissle 1917 (EcN) strain. This EcN strain is a promising cancer therapy candidate with probiotic properties. In our study, we observed significantly better tumor colonization by EcN after antibiotic-induced temporal depletion of the gut microbiome and after two intranasal applications of the EcN derivate (EcN/pMUT-gfp Knr) in 4T1 tumor-bearing syngeneic BALB/c mice. In addition, we demonstrated significant reduction in tumor growth and extended survival of the EcN-treated mice in contrast to phosphate-buffered saline (PBS)-treated tumor-bearing control animals. Multispectral imaging of immune cells revealed that depletion of the gut microbiome led to significantly lower infiltration of cytotoxic and helper T cells (CD4 and CD8 cells) in PBS tumors of mice pretreated with antibiotics in comparison with antibiotic untreated PBS-or EcN treated mice. These findings may help in the future advancement of cancer treatment strategies using E. coli Nissle 1917.

12.
Front Immunol ; 13: 965342, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389835

RESUMEN

Background: Due to lack of enough specific targets and the immunosuppressive tumor microenvironment (TME) of triple-negative breast cancer (TNBC), TNBC patients often cannot benefit from a single treatment option. This study aims to explore the regulatory effects of Compound kushen injection (CKI) plus chemotherapy on the TME of TNBC from a single cell level. Methods: A mouse TNBC model in BALB/c mice was established to evaluate the antitumor efficacy and toxicity of CKI combined with chemotherapy. Flow cytometry was used to observe the influence of CKI on the lymphocyte populations in the tumor bearing mice. Both bulk RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq) were applied to portray the modulation of CKI combined with chemotherapy on the TME of TNBC mice. Results: CKI significantly enhanced the anticancer activity of chemotherapy in vivo with no obvious side effects. Flow cytometry results revealed a significantly higher activation of CD8+ T lymphocytes in the spleens and tumors of the mice with combination therapy. Bulk RNA-seq indicated that CKI could promote the cytotoxic immune cell infiltrating into tumor tissues. Meanwhile, scRNA-seq further revealed that CKI combined with chemotherapy could enhance the percentage of tumor-infiltrating CD8+ T cells, inhibit tumor-promoting signaling pathways, and promote T cell activation and positive regulation of immune response. In addition, CKI showed obvious anticancer activity against MDA-MB-231 breast tumor cells in vitro. Conclusions: The combination of CKI and chemotherapy might provide a higher efficiency and lower toxicity strategy than a single chemotherapy drug for TNBC. CKI potentiates the anti-TNBC effects of chemotherapy by activating anti-tumor immune response in mice.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Linfocitos T CD8-positivos/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , ARN , Microambiente Tumoral
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(8): 1109-1118, 2022 Aug 20.
Artículo en Chino | MEDLINE | ID: mdl-36073208

RESUMEN

OBJECTIVE: To explore the correlation of MYB proto-oncogene like 2 (MYBL2) with biological behaviors and clinical prognosis of prostate cancer (PCa). METHODS: We detected Mybl2 mRNA expression in 45 pairs of PCa and adjacent tissues using real-time quantitative PCR, and analyzed the correlation of high (23 cases) and low expression (22 cases) of Mybl2 with clinicopathological features and prognosis of the patients using nonparametric test, Kaplan-Meier survival analysis and univariate and multivariate Cox regression. The results were verified by analysis of the data from Cancer Genome Atlas (TCGA) microarray database, and the molecular pathways were identified by gene set enrichment analysis (GSEA). The CIBERPORT algorithm was used to identify the correlations between Mybl2 expression and tumor microenvironment of PCa. We also tested the effects of MYBL2 knockdown on proliferation and invasion of PCa cell lines using cell counting kit-8 and Transwell assays and observed the growth of PC3 cell xenograft with MYBL2 knockdown in nude mice and the expression levels of Ki-67 in the xenograft using immunohistochemistry. RESULTS: Mybl2 expression was significantly elevated in PCa tissues in close correlation with Gleason score and clinical and pathological stage of the tumor (P < 0.01) but not with the patients' age. Kaplan-Meier analysis indicated a significant negative correlation of high Mybl2 expression with recurrence-free survival (P < 0.05), but not with the overall survival of the patients. The data from TCGA suggested that clinical and pathological stages were independent prognostic factors for recurrence-free survival, and our data indicated that clinical stage and Gleason score were independent prognostic factors of PCa (P < 0.05). GSEA suggested that Mybl2 expression was related with the pathways involving immune function, cell adhesion, and cytokine secretion; CIBERPORT analysis suggested the involvement of Mybl2 expression with memory B cells and resting mast cells (P < 0.05). In LNCaP and PC-3 cells, MYBL2 knockdown significantly inhibited cell proliferation and invasion (P < 0.05); in the tumor-bearing nude mice, the xenografts derived from PC-3 cells with MYBL2 knockdown exhibited a lowered mean tumor weight and positivity rate for Ki67 (P < 0.05). CONCLUSION: Mybl2 is an oncogene related with multiple pathological indicators of PCa and can serve as a potential prognostic marker as well as a therapeutic target for patients with PCa.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias de la Próstata , Transactivadores , Animales , Proteínas de Ciclo Celular/genética , Proliferación Celular , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Ratones Desnudos , Pronóstico , Neoplasias de la Próstata/patología , Transactivadores/genética , Microambiente Tumoral
14.
Eur J Nucl Med Mol Imaging ; 50(1): 27-37, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36066666

RESUMEN

PURPOSE: Stimulator of interferon genes (STING) protein plays a vital role in the immune surveillance of tumor microenvironment. Monitoring STING expression in tumors benefits the relevant STING therapy. This study aimed to develop a novel 18F-labeled agonist, dimeric amidobenzimidazole (diABZI), and firstly evaluate the feasibility of noninvasive positron emission tomography (PET) imaging of STING expression in the tumor microenvironment. METHODS: An analog of the STING agonist NOTA-DABI was synthesized and labeled with 18F via Al18F-NOTA complexation (denoted as [18F]F-DABI). Physicochemical properties, STING protein-binding affinity, and specificity of [18F]F-DABI were evaluated using cell uptake and docking assays. In vivo small-animal PET imaging and biodistribution studies of [18F]F-DABI in tumor-bearing mice were performed to verify the pharmacokinetics and tumor targeting ability. The correlation between tumor uptake and STING expression was also analyzed. RESULTS: [18F]F-DABI was produced conveniently with high radiochemical yield (44 ± 15%), radiochemical purity (> 97%) and molar activity (15-30 GBq/µmol). In vitro binding assays demonstrated that [18F]F-DABI has a favorable affinity and specificity for STING with a KD of 12.98 ± 2.07 nM. In vivo studies demonstrated the specificity of [18F]F-DABI for PET imaging of STING expression with B16F10 tumor uptake of 10.93 ± 0.93%ID/g, which was significantly different from that of blocking groups (3.13 ± 0.88%ID/g, ***p < 0.0001). Furthermore, tumor uptake of [18F]F-DABI was well positively correlated with STING expression in different tumor types. Biodistribution results demonstrated that [18F]F-DABI was predominately uptaken in the liver and intestines, indicating its hepatobiliary elimination. CONCLUSION: This proof-of-concept study demonstrated a STING-binding radioligand for PET imaging, which could be used as a potential companion diagnostic tool for related STING-agonist therapies.


Asunto(s)
Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Animales , Ratones , Radioisótopos de Flúor/farmacocinética , Distribución Tisular , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Expresión Génica , Interferones
15.
Biomolecules ; 12(8)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36008969

RESUMEN

The consequences of aging and disease conditions in tissues involve reactive oxygen species (ROS) and related molecular alterations of different cellular compartments. We compared a murine model of immunodeficient (SCID) xenografted young (4 weeks old) and old (17 weeks old) mice with corresponding controls without tumor implantation and carried out a compositional evaluation of brain tissue for changes in parallel DNA and lipids compartments. DNA damage was measured by four purine 5',8-cyclo-2'-deoxynucleosides, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), and 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxo-dA). In brain lipids, the twelve most representative fatty acid levels, which were mostly obtained from the transformation of glycerophospholipids, were followed up during the aging and disease progressions. The progressive DNA damage due to age and tumoral conditions was confirmed by raised levels of 5'S-cdG and 5'S-cdA. In the brain, the remodeling involved a diminution of palmitic acid accompanied by an increase in arachidonic acid, along both age and tumor progressions, causing increases in the unsaturation index, the peroxidation index, and total TFA as indicators of increased oxidative and free radical reactivity. Our results contribute to the ongoing debate on the central role of DNA and genome instability in the aging process, and on the need for a holistic vision, which implies choosing the best biomarkers for such monitoring. Furthermore, our data highlight brain tissue for its lipid remodeling response and inflammatory signaling, which seem to prevail over the effects of DNA damage.


Asunto(s)
Ácidos Grasos , Neoplasias , 8-Hidroxi-2'-Desoxicoguanosina , Envejecimiento , Animales , Encéfalo , ADN , Daño del ADN , Ratones , Ratones SCID , Neoplasias/genética , Purinas
16.
Anticancer Res ; 42(6): 2847-2857, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35641258

RESUMEN

BACKGROUND/AIM: The objective of this study was to prepare doxorubicin encapsulated in micelles (DOX-micelles) using poly(hexadecanyloxyethylene glycol-lactate phosphate), which we recently synthesized, and to evaluate the anticancer effect of DOX-micelles in vitro and in vivo. MATERIALS AND METHODS: To evaluate the anticancer effect of DOX-micelles in vitro, three-dimensional spheroids composed of B16 mouse melanoma cells and fibroblasts were prepared by changing the ratio of cancer cells to fibroblasts. In addition, for efficient doxorubicin treatment of the cells present in the center of the spheroids, tranilast, an anti-fibrotic drug was added to the spheroids before treatment with DOX-micelles, then the amount of doxorubicin and cell viability of spheroids were evaluated. Moreover, to assess the effects of the combination of DOX-micelles with tranilast in vivo, relative tumor volume was investigated in a mouse model of melanoma. RESULTS: The mean diameter and doxorubicin content of DOX-micelles were 93.3 nm and 3.5%, respectively. When the ratio of cancer cells to fibroblasts was 20:80, spheroids with spherical and rigid shapes were obtained. In addition, the amount of doxorubicin in the spheroids was increased by tranilast treatment, and an efficient anticancer effect was also observed. The anticancer effect of the combination of tranilast and DOX-micelles was confirmed in vivo. CONCLUSION: Micelles encapsulating doxorubicin are promising for cancer therapy, and their anticancer effect is improved by tranilast pretreatment in 3D spheroids in vivo.


Asunto(s)
Melanoma , Micelas , Animales , Antibióticos Antineoplásicos/farmacología , Doxorrubicina , Portadores de Fármacos , Humanos , Melanoma/tratamiento farmacológico , Ratones , ortoaminobenzoatos
17.
Int J Biol Macromol ; 209(Pt A): 552-562, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35421410

RESUMEN

We have obtained an exopolysaccharide (YL-11 EPS) produced by Lactobacillus fermentum YL-11 isolated from fermented milk and confirmed that it can effectively inhibit colon cancer HT-29 cells proliferation in vitro. The aim of this study is to study anti-colon cancer effect in vivo and its possible mechanisms. Animal assays indicated YL-11 EPS treatment significantly suppressed the growth of HT-29 tumor xenograft without exhibiting obvious negative effects on normal cells. Cell experiments demonstrated YL-11 EPS treatment up regulated the ratio of Bax/Bcl-2 and induced the decrease in mitochondrial membrane potential and improved the expression of cleaved caspases-3 and cleaved PARP proteins, and finally induced HT-29 cells apoptosis, suggesting the involvement of mitochondrial pathway. Moreover, YL-11 EPS can block the PI3K/AKT signaling pathway and arrest the cell cycle in G1-phase to exert its anti-colon cancer activity. Overall, YL-11 EPS can be explored as a potential nutraceutical to prevent colorectal cancer.


Asunto(s)
Neoplasias del Colon , Limosilactobacillus fermentum , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/metabolismo , Células HT29 , Humanos , Limosilactobacillus fermentum/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Nanomedicine ; 40: 102477, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34740868

RESUMEN

Magnetic resonance is a key imaging tool for the detection of prostate cancer; however, better tools focusing on cancer specificity are required to distinguish benign from cancerous regions. We found higher expression of claudin-3 (CLDN-3) and -4 (CLDN-4) in higher grade than lower-grade human prostate cancer biopsies (n = 174), leading to the design of functionalized nanoparticles (NPs) with a non-toxic truncated version of the natural ligand Clostridium perfringens enterotoxin (C-CPE) that has a strong binding affinity to Cldn-3 and Cldn-4 receptors. We developed a first-of-its-type, C-CPE-NP-based MRI detection tool in a prostate tumor-bearing mouse model. NPs with an average diameter of 152.9 ±â€¯15.7 nm (RS1) had a 2-fold enhancement of tumor specificity compared to larger (421.2 ±â€¯33.8 nm) NPs (RS4). There was a 1.8-fold (P < 0.01) and 1.6-fold (P < 0.01) upregulation of the tumor-to-liver signal intensities of C-RS1 and C-RS4 (functionalized NPs) compared to controls, respectively. Also, tumor specificity was 3.1-fold higher (P < 0.001) when comparing C-RS1 to C-RS4. This detection tool improved tumor localization of contrast-enhanced MRI, supporting potential clinical applicability.


Asunto(s)
Nanopartículas , Neoplasias de la Próstata , Animales , Enterotoxinas/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo
19.
Se Pu ; 39(12): 1291-1297, 2021 Dec.
Artículo en Chino | MEDLINE | ID: mdl-34812000

RESUMEN

Photodynamic therapy (PDT) has garnered immense research interest. PDT can directly kill the cells via a combination of photosensitizer, light, and molecular oxygen. It has emerged as a promising therapeutic option for cancer treatment owing to its advantages such as minimized systemic toxicity, minimal invasiveness, high therapeutic efficacy, and potential for developing antitumor immunity. The novel photosensitizer 32-(4-methoxyphenyl)-152-aspartyl-chlorin e6 (DYSP-C34) was synthesized by introducing a 32-aryl substitution and amino acid substituent of the Chenghai chlorin (CHC). Briefly, 32-(4-methoxyphenyl) substitution was achieved via olefin metathesis reactions. The aspartic acid side chain was introduced regioselectively at C-152, followed by hydrolysis to yield the target DYSP-C34. CHC with the same chemical structure as chlorin e6 was prepared from chlorophyll a, which was extracted from Spirulina powders derived from Chenghai Lake in the Yunnan province of China. This strategy successfully endowed the resultant photosensitizer with better cellular permeability and increased water solubility. In addition, the photodynamic antitumor effects of PDT largely depend on the dose of photosensitizer used, time between photosensitizer administration and light exposure, and possibly other still poorly known variables. Determination of optimal conditions for PDT requires a coordinated interdisciplinary effort. Therefore, the pharmacokinetics and tissue distribution of DYSP-C34 in vivo are critical for the efficacy and safety of PDT. Herein, a high performance liquid chromatography-ultraviolet (HPLC-UV) detection method was established for the determination of the new photosensitizer DYSP-C34 in rat plasma. The sample preparation involved a protein-precipitation and liquid-liquid extraction method. Methanol was used to precipitate proteins and chloroform was used to extract chlorins. Then, DYSP-C34 was separated on a Unitary C18 column (250 mm×4.6 mm, 5 µm) with a mobile phase comprising methanol and 5 mmol/L tetrabutylammonium phosphate buffer solution (70∶30, v/v). The flow rate was 1.0 mL/min with UV detection using a wavelength of 400 nm at 40 ℃. Results showed that DYSP-C34 and chlorin e6 trimethyl ester (IS) were well separated under these conditions. The method was sensitive and sufficiently precise with a good linear relationship (determination coefficient (r2)=0.9941) over the range of 1-200 µg/mL in rat plasma. At three spiked levels (8, 40, and 120 µg/mL), the average recoveries were 74.39%, 69.71%, and 65.89%, respectively. The intra-day and inter-day relative standard deviations (RSDs) were lower than 5%. The precision met the requirements of biological sample determination. Furthermore, DYSP-C34 was stable in rat plasma under various storage conditions at room temperature, three freeze-thaw cycles, and long-term cryopreservation. The validated method was successfully applied to the pharmacokinetic study of DYSP-C34 after intravenous injection of a single dose in rat plasma. The pharmacokinetic parameters after intravenous injection of DYSP-C34 (16 mg/kg) were calculated. The plasma half-life (t1/2z) was 6.98 h, the area under the plasma concentration-time curve AUC(0-∞) was 1025.01 h·mg/L and the mean retention time MRT(0-∞) was 9.19 h. In addition, the results of DYSP-C34 distribution in tumor-bearing mice showed that DYSP-C34 could accumulate in tumor tissues, with higher concentrations in liver and kidney tissues, and lower concentrations in heart, spleen, and lung tissues. In summary, a specific, simple, and accurate HPLC-UV method was developed and validated for the determination of DYSP-C34 in rat plasma and tumor-bearing mouse tissues. The pharmacokinetics of DYSP-C34 after intravenous administration in rats and the tissue distribution characteristics of tumor-bearing mice were clarified for the first time. It is significant for clinical rational drug use and pharmacodynamic research. Therefore, choosing an appropriate time for light treatment time can achieve the best photodynamic effect. The results of pharmacokinetics and tissue distribution of DYSP-C34 provide vital guidance for subsequent pharmacodynamic research and further clinical trials in terms of dosage, light time, light toxicity and side effects.


Asunto(s)
Fármacos Fotosensibilizantes , Animales , China , Clorofila A , Clorofilidas , Cromatografía Líquida de Alta Presión , Ratones , Porfirinas , Ratas , Reproducibilidad de los Resultados , Distribución Tisular
20.
Int Immunopharmacol ; 101(Pt B): 108316, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34768129

RESUMEN

PURPOSE: Previously, we reported the octyl ester derivative of ginsenoside Rh2 (Rh2-O) had better antitumor and immunomodulatory effects than Rh2 in H22 tumor-bearing mice. Therefore, this study further explored the effects of Rh2-O on splenic lymphocytes in H22 tumor-bearing mice and the underlying mechanism. METHODS: Wild type and Tlr4-/- mice were selected to establish the H22 tumor-bearing mice model. After the treatment of Rh2-O (10 mg/kg by gavage) for 15 days, the sizes of tumor were measured. Subsequently, the splenic lymphocytes were isolated and the activities (eg. cell proliferation, cytotoxicity and cytokine secretion) were evaluated. Then, the proteins and mRNA expression levels of TRAF6 and NF-ĸB p65 in splenic lymphocytes were examined. RESULTS: The results showed that Rh2-O administration enhanced the proliferative capacity and cytotoxicity of splenic lymphocytes, and the effects were Tlr4-associated. Compared to WT mice, the up-regulation of cytokines secretion (eg. IFN-γ, IL-2 and IL-4) in isolated splenic lymphocytes after Rh2-O administration was lower in Tlr4-/- mice. Moreover, the results showed Rh2-O increased the expression of TRAF6 and the level of endonuclear NF-ĸB p65, which was inhibited in Tlr4-/- mice (P < 0.05). CONCLUSION: Rh2-O could exert immunomodulatory effects on splenic lymphocytes with the partial participation of TLR4 in H22 tumor-bearing mice.


Asunto(s)
Ginsenósidos/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Linfocitos/patología , Ratones , Bazo/patología , Receptor Toll-Like 4
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA