Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36976755

RESUMEN

Methamphetamine (METH) is a psychostimulant that primarily exerts its effects on the catecholamine (dopamine (DA) and norepinephrine (NE)) systems, which are implicated in drug addiction. METH exists as two distinct enantiomers, dextrorotatory (d) and levorotatory (l). In contrast to d-METH, the major component of illicit METH used to induce states of euphoria and alertness, l-METH is available without prescription as a nasal decongestant and has been highlighted as a potential agonist replacement therapy to treat stimulant use disorder. However, little is known regarding l-METH's effects on central catecholamine transmission and behavior. In this study, we used fast-scan cyclic voltammetry to elucidate how METH isomers impact NE and DA transmission in two limbic structures, the ventral bed nucleus of the stria terminalis (vBNST) and nucleus accumbens (NAc), respectively, of anesthetized rats. In addition, the dose-dependent effects of METH isomers on locomotion were characterized. d-METH (0.5, 2.0, 5.0 mg/kg) enhanced both electrically evoked vBNST-NE and NAc-DA concentrations and locomotion. Alternatively, l-METH increased electrically evoked NE concentration with minimal effects on DA regulation (release and clearance) and locomotion at lower doses (0.5 and 2.0 mg/kg). Furthermore, a high dose (5.0 mg/kg) of d-METH but not l-METH elevated baseline NE and DA concentrations. These results suggest mechanistic differences between NE and DA regulation by the METH isomers. Moreover, l-METH's asymmetric regulation of NE relative to DA may have distinct implications in behaviors and addiction, which will set the neurochemical framework for future studies examining l-METH as a potential treatment for stimulant use disorders.

2.
ACS Chem Neurosci ; 7(12): 1681-1689, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27617735

RESUMEN

Central norepinephrine signaling influences a wide range of behavioral and physiological processes, and the ventral bed nucleus of the stria terminalis (vBNST) receives some of the densest norepinephrine innervation in the brain. Previous work describes norepinephrine neurons as projecting primarily unilaterally; however, recent evidence for cross-hemispheric catecholamine signaling challenges this idea. Here, we use fast-scan cyclic voltammetry and retrograde tracing to characterize cross-hemispheric norepinephrine signaling in the vBNST. We delivered stimulations to noradrenergic pathways originating in the A1/A2 and locus coeruleus and found hemispherically equivalent norepinephrine release in the vBNST regardless of stimulated hemisphere. Unilateral retrograde tracing revealed that medullary, but not locus coeruleus norepinephrine neurons send cross-hemispheric projections to the vBNST. Further characterization with pharmacological lesions revealed that stimulations of the locus coeruleus and its axon bundles likely elicit vBNST norepinephrine release through indirect activation. These experiments are the first to demonstrate contralateral norepinephrine release and establish that medullary, but not coerulean neurons are responsible for norepinephrine release in the vBNST.


Asunto(s)
Lateralidad Funcional , Bulbo Raquídeo/metabolismo , Neuronas/metabolismo , Norepinefrina/metabolismo , Núcleos Septales/metabolismo , Animales , Estimulación Eléctrica , Lateralidad Funcional/fisiología , Ácido Iboténico , Locus Coeruleus/citología , Locus Coeruleus/lesiones , Locus Coeruleus/metabolismo , Masculino , Bulbo Raquídeo/citología , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Técnicas de Trazados de Vías Neuroanatómicas , Trazadores del Tracto Neuronal , Neuronas/citología , Oxidopamina , Ratas Sprague-Dawley , Núcleos Septales/citología , Estilbamidinas
3.
Neuroscience ; 256: 433-44, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24161285

RESUMEN

In female mammals, the postpartum period involves dramatic shifts in many socioemotional behaviors. This includes a suppression of anxiety-related behaviors that requires recent physical contact with offspring. Factors contributing to differences among females in their susceptibility to the anxiety-modulating effect of offspring contact are unknown, but could include their innate anxiety and brain monoaminergic activity. Anxiety behavior was assessed in a large group of nulliparous female rats and the least-anxious and most-anxious tertiles were mated. Anxiety was assessed again postpartum after females were permitted or prevented from contacting their offspring 4 h before testing. Levels of dopamine ß-hydroxylase (DBH, norepinephrine synthesizing enzyme) and tryptophan hydroxylase-2 (TPH2, serotonin synthesizing enzyme) were measured in the brainstem and dorsal raphe, respectively. It was found that anxiety-related behavior in the two groups did not differ when dams were permitted contact with offspring before testing. Removal of the offspring before testing, however, differentially affected anxiety based on dams' innate anxiety. Specifically, dams reverted back to their pre-mating levels of anxiety such that offspring removal slightly increased anxiety in the most-anxious females but greatly lowered anxiety in the least-anxious females. This reduction in anxiety in the least-anxious females after litter removal was associated with lower brainstem DBH. There was no relationship between females' anxiety and dorsal raphe TPH2. Thus, a primary effect of recent contact with offspring on anxiety-related behavior in postpartum rats is to shift females away from their innate anxiety to a more moderate level of responding. This effect is particularly true for females with the lowest anxiety, may be mediated by central noradrenergic systems, and has implications for their ability to attend to their offspring.


Asunto(s)
Ansiedad/patología , Tronco Encefálico/metabolismo , Dopamina beta-Hidroxilasa/metabolismo , Conducta Materna/psicología , Periodo Posparto/psicología , Animales , Femenino , Mesencéfalo/metabolismo , Ratas , Ratas Long-Evans , Estadística como Asunto , Triptófano Hidroxilasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA