Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 303(2): 250-264, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30548126

RESUMEN

Functional studies of skeletal anatomy are predicated on the fundamental assumption that form will follow function. For instance, previous studies have shown that the femora of specialized leaping primates are more robust than those of more generalized primate quadrupeds. Are such differences solely a plastic response to differential loading patterns during postnatal life, or might they also reflect more canalized developmental mechanisms present at birth? Here, we show that perinatal Lemur catta, an arboreal/terrestrial quadruped, have less robust femora than perinatal Propithecus coquereli, a closely related species specialized for vertical clinging and leaping (a highly unusual locomotor mode in which the hindlimbs are used to launch the animal between vertical tree trunks). These results suggest that functional differences in long bone cross-sectional dimensions are manifest at birth, belying simple interpretations of adult postcranial form as a direct record of loading patterns during postnatal life. Despite these significant differences in bone robusticity, we find that hindlimb bone mineralization, material properties, and measures of whole-bone strength generally overlap in perinatal L. catta and P. coquereli, indicating little differentiation in postcranial maturity at birth despite known differences in the pace of craniodental development between the species. In a broader perspective, our results likely reflect evolution acting during prenatal ontogeny. Even though primates are notable for relatively prolonged gestation and postnatal parental care, neonates are not buffered from selection, perhaps especially in the unpredictable and volatile environment of Madagascar. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 303:250-264, 2020. © 2018 American Association for Anatomy.


Asunto(s)
Fémur/anatomía & histología , Indriidae/anatomía & histología , Lemur/anatomía & histología , Soporte de Peso/fisiología , Animales , Fémur/fisiología , Indriidae/fisiología , Lemur/fisiología
2.
Am J Phys Anthropol ; 152 Suppl 57: 33-78, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24249591

RESUMEN

Questions surrounding the origin and early evolution of primates continue to be the subject of debate. Though anatomy of the skull and inferred dietary shifts are often the focus, detailed studies of postcrania and inferred locomotor capabilities can also provide crucial data that advance understanding of transitions in early primate evolution. In particular, the hand skeleton includes characteristics thought to reflect foraging, locomotion, and posture. Here we review what is known about the early evolution of primate hands from a comparative perspective that incorporates data from the fossil record. Additionally, we provide new comparative data and documentation of skeletal morphology for Paleogene plesiadapiforms, notharctines, cercamoniines, adapines, and omomyiforms. Finally, we discuss implications of these data for understanding locomotor transitions during the origin and early evolutionary history of primates. Known plesiadapiform species cannot be differentiated from extant primates based on either intrinsic hand proportions or hand-to-body size proportions. Nonetheless, the presence of claws and a different metacarpophalangeal [corrected] joint form in plesiadapiforms indicate different grasping mechanics. Notharctines and cercamoniines have intrinsic hand proportions with extremely elongated proximal phalanges and digit rays relative to metacarpals, resembling tarsiers and galagos. But their hand-to-body size proportions are typical of many extant primates (unlike those of tarsiers, and possibly Teilhardina, which have extremely large hands). Non-adapine adapiforms and omomyids exhibit additional carpal features suggesting more limited dorsiflexion, greater ulnar deviation, and a more habitually divergent pollex than observed plesiadapiforms. Together, features differentiating adapiforms and omomyiforms from plesiadapiforms indicate increased reliance on vertical prehensile-clinging and grasp-leaping, possibly in combination with predatory behaviors in ancestral euprimates.


Asunto(s)
Evolución Biológica , Fósiles , Huesos de la Mano , Mano , Primates , Animales , Mano/anatomía & histología , Mano/fisiología , Huesos de la Mano/anatomía & histología , Huesos de la Mano/fisiología , Locomoción/fisiología , Primates/anatomía & histología , Primates/fisiología , Análisis de Componente Principal
3.
Am J Primatol ; 16(4): 291-303, 1988.
Artículo en Inglés | MEDLINE | ID: mdl-32079371

RESUMEN

Several prosimian species begin a leap from a vertical support with their back toward the landing target. To reorient themselves from this dorsally facing, head-first lift-off to a ventrally facing, feet-first landing, the animals combine an initial twist with a partial backward somersault. Cinefilms of a captive colony of ringtailed lemurs (Lemur catta) revealed that during leaps from vertical poles to horizontal supports, the backward somersaulting rotations were often initiated while the animals were airborne. How could these prosimians initiate rotations in the absence of externally applied forces without violating angular momentum conservation? The problem was approached through vector analysis to demonstrate angular momentum (H) changes about the three principal (symmetrical) axes of rotation for a series of critical body positions that were extracted from the filmed sequences. One L. catta specimen was segmented to provide the dimensions and weights necessary for modeling the various body positions. These data were also used to calculate moments of inertia about the three principal axes in order to predict if rotations about these axes were stable or metastable. Lemurs, like any projectile, must conserve the total angular momentum (HT ) established at lift-off. HT , however, is a vector quantity that is the resultant of component vectors about the three principal axes. Thus, H about the individual axes may change as long as HT remains constant. Strategically timed tail movements tilted the body, thereby changing the H value about the head-to-toe (twisting) axis. To conserve HT , also aligned along the twisting axis, angular momentum transferred to the somersaulting axis. Owing to the direction of tail-throw, the initiated rotations were partial backward somersaults that brought the hindlimbs forward for landing. This strategy for initiating specific rotations parallels that practiced by human springboard divers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA