Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
1.
bioRxiv ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39131287

RESUMEN

Arthritogenic alphaviruses, including chikungunya virus (CHIKV), Mayaro virus (MAYV), Ross River virus (RRV), and O'nyong nyong virus (ONNV) are emerging and reemerging viruses that cause disease characterized by fever, rash, and incapacitating joint swelling. Alphavirus infection induces robust immune responses in infected hosts, leading to the upregulation of several cytokines and chemokines, including chemokine C ligand 4 (CCL4). CCL4 is a chemoattractant for immune cells such as T cells, natural killer cells, monocytes/macrophages, and dendritic cells, recruiting these cells to the site of infection, stimulating the release of proinflammatory mediators, and inducing T cell differentiation. CCL4 has been found at high levels in both the acute and chronic phases of chikungunya disease; however, the role of CCL4 in arthritogenic alphavirus disease development remains unexplored. Here, we tested the effect of CCL4 on MAYV infection in mice through antibody depletion and treatment with recombinant mouse CCL4. We observed no differences in mice depleted of CCL4 or treated with recombinant CCL4 in terms of disease progression such as weight loss and footpad swelling or the development of viremia. CCL4 uses the G protein-coupled receptor C-C chemokine receptor type 5 (CCR5). To determine whether CCR5 deficiency would alter disease outcomes or virus replication in mice, we inoculated CCR5 knockout (CCR5-/-) mice with MAYV and observed no effect on disease development and immune cell profile of blood and footpads between CCR5-/- and wild type mice. These studies failed to identify a clear role for CCL4 or its receptor CCR5 in MAYV infection.

2.
ISME Commun ; 4(1): ycae084, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39021441

RESUMEN

Deep-sea brine pools represent rare, extreme environments, providing unique insight into the limits of life on Earth, and by analogy, the plausibility of life beyond it. A distinguishing feature of many brine pools is presence of thick microbial mats that develop at the brine-seawater interface. While these bacterial and archaeal communities have received moderate attention, viruses and their host interactions in these environments remain underexplored. To bridge this knowledge gap, we leveraged metagenomic and metatranscriptomic data from three distinct zones within the NEOM brine pool system (Gulf of Aqaba) to reveal the active viral ecology around the pools. We report a remarkable diversity and activity of viruses infecting microbial hosts in this environment, including giant viruses, RNA viruses, jumbo phages, and Polinton-like viruses. Many of these form distinct clades-suggesting presence of untapped viral diversity in this ecosystem. Brine pool viral communities exhibit zone-specific differences in infection strategy-with lysogeny dominating the bacterial mat further away from the pool's center. We linked viruses to metabolically important prokaryotes-including association between a jumbo phage and a key manganese-oxidizing and arsenic-metabolizing bacterium. These foundational results illuminate the role of viruses in modulating brine pool microbial communities and biogeochemistry through revealing novel viral diversity, host associations, and spatial heterogeneity in viral dynamics.

3.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063067

RESUMEN

Microtubule (MT)-dependent transport is a critical means of intracellular movement of cellular cargo by kinesin and dynein motors. MT-dependent transport is tightly regulated by cellular MT-associated proteins (MAPs) that directly bind to MTs and either promote or impede motor protein function. Viruses have been widely shown to usurp MT-dependent transport to facilitate their virion movement to sites of replication and/or for exit from the cell. However, it is unclear if viruses also negatively regulate MT-dependent transport. Using single-molecule motility and cellular transport assays, we show that the vaccinia virus (VV)-encoded MAP, A51R, inhibits kinesin-1-dependent transport along MTs in vitro and in cells. This inhibition is selective as the function of kinesin-3 is largely unaffected by VV A51R. Interestingly, we show that A51R promotes the perinuclear accumulation of cellular cargo transported by kinesin-1 such as lysosomes and mitochondria during infection. Moreover, A51R also regulates the release of specialized VV virions that exit the cell using kinesin-1-dependent movement. Using a fluorescently tagged rigor mutant of kinesin-1, we show that these motors accumulate on A51R-stabilized MTs, suggesting these stabilized MTs may form a "kinesin-1 sink" to regulate MT-dependent transport in the cell. Collectively, our findings uncover a new mechanism by which viruses regulate host cytoskeletal processes.


Asunto(s)
Cinesinas , Microtúbulos , Virus Vaccinia , Cinesinas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Humanos , Virus Vaccinia/metabolismo , Virus Vaccinia/fisiología , Virus Vaccinia/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Transporte Biológico , Células HeLa
4.
Front Microbiol ; 15: 1432840, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993496

RESUMEN

Mycoviruses are viruses that infect fungi. In recent years, an increasing number of mycoviruses have been reported in a wide array of fungi. With the growing interest of scientists and society in reducing the use of agrochemicals, the debate about mycoviruses as an effective next-generation biocontrol has regained momentum. Mycoviruses can have profound effects on the host phenotype, although most viruses have neutral or no effect. We speculate that understanding multiple transmission modes of mycoviruses is central to unraveling the viral ecology and their function in regulating fungal populations. Unlike plant virus transmission via vegetative plant parts, seeds, pollen, or vectors, a widely held view is that mycoviruses are transmitted via vertical routes and only under special circumstances horizontally via hyphal contact depending on the vegetative compatibility groups (i.e., the ability of different fungal strains to undergo hyphal fusion). However, this view has been challenged over the past decades, as new possible transmission routes of mycoviruses are beginning to unravel. In this perspective, we discuss emerging studies with evidence suggesting that such novel routes of mycovirus transmission exist and are pertinent to understanding the full picture of mycovirus ecology and evolution.

5.
Microbiol Resour Announc ; 13(7): e0014624, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38917449

RESUMEN

Complete genome data for the globally distributed Aedes flavivirus (AEFV) is scarce. We analyzed a new Italian AEFV strain isolated from Aedes albopictus. The results demonstrated genetic diversity among Italian AEFVs. The high similarity between AEFV genomes across geographically distant regions suggests long distance spreading via invasive host mosquito species.

6.
New Phytol ; 243(3): 1172-1189, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38853429

RESUMEN

IRE1, BI-1, and bZIP60 monitor compatible plant-potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of three IRE1 isoforms, the bZIP60U and bZIP60S, and BI-1 roles in genetic reprogramming of cells during potexvirus infection. Experiments were performed using Arabidopsis thaliana knockout lines and Plantago asiatica mosaic virus infectious clone tagged with the green fluorescent protein gene (PlAMV-GFP). There were more PlAMV-GFP infection foci in ire1a/b, ire1c, bzip60, and bi-1 knockout than wild-type (WT) plants. Cell-to-cell movement and systemic RNA levels were greater bzip60 and bi-1 than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression of AtIRE1b or StbZIP60 in ire1a/b or bzip60 mutant background reduced virus infection foci, while StbZIP60 expression influences virus movement. Transgenic overexpression of StbZIP60 also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER. This is the first demonstration of a potato bZIP transcription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI-1 contribute separately to virus cell-to-cell and systemic movement.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Potexvirus , Arabidopsis/virología , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Potexvirus/fisiología , Regulación de la Expresión Génica de las Plantas , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Mutación/genética , Tunicamicina/farmacología , Proteínas de la Membrana , Proteínas Quinasas
7.
Bull Math Biol ; 86(7): 85, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853189

RESUMEN

How viral infections develop can change based on the number of viruses initially entering the body. The understanding of the impacts of infection doses remains incomplete, in part due to challenging constraints, and a lack of research. Gaining more insights is crucial regarding the measles virus (MV). The higher the MV infection dose, the earlier the peak of acute viremia, but the magnitude of the peak viremia remains almost constant. Measles is highly contagious, causes immunosuppression such as lymphopenia, and contributes substantially to childhood morbidity and mortality. This work investigated mechanisms underlying the observed wild-type measles infection dose responses in cynomolgus monkeys. We fitted longitudinal data on viremia using maximum likelihood estimation, and used the Akaike Information Criterion (AIC) to evaluate relevant biological hypotheses and their respective model parameterizations. The lowest AIC indicates a linear relationship between the infection dose, the initial viral load, and the initial number of activated MV-specific T cells. Early peak viremia is associated with high initial number of activated MV-specific T cells. Thus, when MV infection dose increases, the initial viremia and associated immune cell stimulation increase, and reduce the time it takes for T cell killing to be sufficient, thereby allowing dose-independent peaks for viremia, MV-specific T cells, and lymphocyte depletion. Together, these results suggest that the development of measles depends on virus-host interactions at the start and the efficiency of viral control by cellular immunity. These relationships are additional motivations for prevention, vaccination, and early treatment for measles.


Asunto(s)
Macaca fascicularis , Conceptos Matemáticos , Virus del Sarampión , Sarampión , Carga Viral , Viremia , Sarampión/inmunología , Sarampión/transmisión , Sarampión/prevención & control , Sarampión/virología , Sarampión/epidemiología , Animales , Viremia/inmunología , Viremia/virología , Virus del Sarampión/inmunología , Virus del Sarampión/patogenicidad , Virus del Sarampión/fisiología , Funciones de Verosimilitud , Humanos , Modelos Inmunológicos , Modelos Biológicos , Linfocitos T/inmunología , Activación de Linfocitos
8.
Virus Evol ; 10(1): veae032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779130

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can infect various human tissues and cell types, principally via interaction with its cognate receptor angiotensin-converting enzyme-2 (ACE2). However, how the virus evolves in different cellular environments is poorly understood. Here, we used experimental evolution to study the adaptation of the SARS-CoV-2 spike to four human cell lines expressing different levels of key entry factors. After twenty passages of a spike-expressing recombinant vesicular stomatitis virus (VSV), cell-type-specific phenotypic changes were observed and sequencing allowed the identification of sixteen adaptive spike mutations. We used VSV pseudotyping to measure the entry efficiency, ACE2 affinity, spike processing, TMPRSS2 usage, and entry pathway usage of all the mutants, alone or in combination. The fusogenicity of the mutant spikes was assessed with a cell-cell fusion assay. Finally, mutant recombinant VSVs were used to measure the fitness advantage associated with selected mutations. We found that the effects of these mutations varied across cell types, both in terms of viral entry and replicative fitness. Interestingly, two spike mutations (L48S and A372T) that emerged in cells expressing low ACE2 levels increased receptor affinity, syncytia induction, and entry efficiency under low-ACE2 conditions. Our results demonstrate specific adaptation of the SARS-CoV-2 spike to different cell types and have implications for understanding SARS-CoV-2 tissue tropism and evolution.

9.
Methods Mol Biol ; 2808: 89-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743364

RESUMEN

The study of virus-host interactions is essential to achieve a comprehensive understanding of the viral replication process. The commonly used methods are yeast two-hybrid approach and transient expression of a single tagged viral protein in host cells followed by affinity purification of interacting cellular proteins and mass spectrometry analysis (AP-MS). However, by these approaches, virus-host protein-protein interactions are detected in the absence of a real infection, not always correctly compartmentalized, and for the yeast two-hybrid approach performed in a heterologous system. Thus, some of the detected protein-protein interactions may be artificial. Here we describe a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect protein partners during the infection (AP-MS in viral context). This way, virus-host protein-protein interacting co-complexes can be purified directly from infected cells for further characterization.


Asunto(s)
Interacciones Huésped-Patógeno , Virus del Sarampión , Genética Inversa , Proteínas Virales , Virus del Sarampión/genética , Humanos , Interacciones Huésped-Patógeno/genética , Genética Inversa/métodos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Técnicas del Sistema de Dos Híbridos , Replicación Viral , Espectrometría de Masas , Mapeo de Interacción de Proteínas/métodos , Sarampión/virología , Sarampión/metabolismo , Animales , Unión Proteica
10.
Proc Natl Acad Sci U S A ; 121(16): e2318160121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598339

RESUMEN

Organic carbon availability in soil is crucial for shaping microbial communities, yet, uncertainties persist concerning microbial adaptations to carbon levels and the ensuing ecological and evolutionary consequences. We investigated organic carbon metabolism, antibiotic resistance, and virus-host interactions in soils subjected to 40 y of chemical and organic fertilization that led to contrasting carbon availability: carbon-poor and carbon-rich soils, respectively. Carbon-poor soils drove the enrichment of putative genes involved in organic matter decomposition and exhibited specialization in utilizing complex organic compounds, reflecting scramble competition. This specialization confers a competitive advantage of microbial communities in carbon-poor soils but reduces their buffering capacity in terms of organic carbon metabolisms, making them more vulnerable to environmental fluctuations. Additionally, in carbon-poor soils, viral auxiliary metabolic genes linked to organic carbon metabolism increased host competitiveness and environmental adaptability through a strategy akin to "piggyback the winner." Furthermore, putative antibiotic resistance genes, particularly in low-abundance drug categories, were enriched in carbon-poor soils as an evolutionary consequence of chemical warfare (i.e., interference competition). This raises concerns about the potential dissemination of antibiotic resistance from conventional agriculture that relies on chemical-only fertilization. Consequently, carbon starvation resulting from long-term chemical-only fertilization increases microbial adaptations to competition, underscoring the importance of implementing sustainable agricultural practices to mitigate the emergence and spread of antimicrobial resistance and to increase soil carbon storage.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/metabolismo , Agricultura/métodos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Microbiología del Suelo
11.
J Virol ; 98(5): e0185723, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38567969

RESUMEN

The host-virus interactome is increasingly recognized as an important research field to discover new therapeutic targets to treat influenza. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify new pro- and antiviral host factors of the influenza A virus. However, at present, a comprehensive summary of the results is lacking. We performed a systematic review of all reported CRISPR studies in this field in combination with a meta-analysis using the algorithm of meta-analysis by information content (MAIC). Two ranked gene lists were generated based on evidence in 15 proviral and 4 antiviral screens. Enriched pathways in the proviral MAIC results were compared to those of a prior array-based RNA interference (RNAi) meta-analysis. The top 50 proviral MAIC list contained genes whose role requires further elucidation, such as the endosomal ion channel TPCN1 and the kinase WEE1. Moreover, MAIC indicated that ALYREF, a component of the transcription export complex, has antiviral properties, whereas former knockdown experiments attributed a proviral role to this host factor. CRISPR-Cas-pooled screens displayed a bias toward early-replication events, whereas the prior RNAi meta-analysis covered early and late-stage events. RNAi screens led to the identification of a larger fraction of essential genes than CRISPR screens. In summary, the MAIC algorithm points toward the importance of several less well-known pathways in host-influenza virus interactions that merit further investigation. The results from this meta-analysis of CRISPR screens in influenza A virus infection may help guide future research efforts to develop host-directed anti-influenza drugs. IMPORTANCE: Viruses rely on host factors for their replication, whereas the host cell has evolved virus restriction factors. These factors represent potential targets for host-oriented antiviral therapies. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify pro- and antiviral host factors in the context of influenza virus infection. We performed a comprehensive analysis of the outcome of these screens based on the publicly available gene lists, using the recently developed algorithm meta-analysis by information content (MAIC). MAIC allows the systematic integration of ranked and unranked gene lists into a final ranked gene list. This approach highlighted poorly characterized host factors and pathways with evidence from multiple screens, such as the vesicle docking and lipid metabolism pathways, which merit further exploration.


Asunto(s)
Sistemas CRISPR-Cas , Interacciones Huésped-Patógeno , Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/genética , Gripe Humana/virología , Gripe Humana/genética , Interacciones Huésped-Patógeno/genética , Replicación Viral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Interferencia de ARN
12.
J Virol ; 98(5): e0006024, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38557170

RESUMEN

As obligate parasites, viruses have evolved multiple strategies to evade the host immune defense. Manipulation of the host proteasome system to degrade specific detrimental factors is a common viral countermeasure. To identify host proteins targeted for proteasomal degradation by porcine reproductive and respiratory syndrome virus (PRRSV), we conducted a quantitative proteomics screen of PRRSV-infected Marc-145 cells under the treatment with proteasome inhibitor MG132. The data revealed that the expression levels of programmed cell death 4 (PDCD4) were strongly downregulated by PRRSV and significantly rescued by MG132. Further investigation confirmed that PRRSV infection induced the translocation of PDCD4 from the nucleus to the cytoplasm, and the viral nonstructural protein 9 (Nsp9) promoted PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway. The C-terminal domain of Nsp9 was responsible for PDCD4 degradation. As for the role of PDCD4 during PRRSV infection, we demonstrated that PDCD4 knockdown favored viral replication, while its overexpression significantly attenuated replication, suggesting that PDCD4 acts as a restriction factor for PRRSV. Mechanistically, we discovered eukaryotic translation initiation factor 4A (eIF4A) was required for PRRSV. PDCD4 interacted with eIF4A through four sites (E249, D253, D414, and D418) within its two MA3 domains, disrupting eIF4A-mediated translation initiation in the 5'-untranslated region of PRRSV, thereby inhibiting PRRSV infection. Together, our study reveals the antiviral function of PDCD4 and the viral strategy to antagonize PDCD4. These results will contribute to our understanding of the immune evasion strategies employed by PRRSV and offer valuable insights for developing new antiviral targets.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in major economic losses in the global swine industry and is difficult to control effectively. Here, using a quantitative proteomics screen, we identified programmed cell death 4 (PDCD4) as a host protein targeted for proteasomal degradation by PRRSV. We demonstrated that PDCD4 restricts PRRSV replication by interacting with eukaryotic translation initiation factor 4A, which is required for translation initiation in the viral 5'-untranslated region. Additionally, four sites within two MA3 domains of PDCD4 are identified to be responsible for its antiviral function. Conversely, PRRSV nonstructural protein 9 promotes PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway, thus weakening the anti-PRRSV function. Our work unveils PDCD4 as a previously unrecognized host restriction factor for PRRSV and reveals that PRRSV develops countermeasures to overcome PDCD4. This will provide new insights into virus-host interactions and the development of new antiviral targets.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Factor 4A Eucariótico de Iniciación , Virus del Síndrome Respiratorio y Reproductivo Porcino , Proteínas de Unión al ARN , Proteínas no Estructurales Virales , Replicación Viral , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Animales , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Porcinos , Línea Celular , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Interacciones Huésped-Patógeno , Proteolisis , Humanos , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
13.
Cell Rep ; 43(3): 113882, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38457341

RESUMEN

Numerous viruses alter host microtubule (MT) networks during infection, but how and why they induce these changes is unclear in many cases. We show that the vaccinia virus (VV)-encoded A51R protein is a MT-associated protein (MAP) that directly binds MTs and stabilizes them by both promoting their growth and preventing their depolymerization. Furthermore, we demonstrate that A51R-MT interactions are conserved across A51R proteins from multiple poxvirus genera, and highly conserved, positively charged residues in A51R proteins mediate these interactions. Strikingly, we find that viruses encoding MT interaction-deficient A51R proteins fail to suppress a reactive oxygen species (ROS)-dependent antiviral response in macrophages that leads to a block in virion morphogenesis. Moreover, A51R-MT interactions are required for VV virulence in mice. Collectively, our data show that poxviral MAP-MT interactions overcome a cell-intrinsic antiviral ROS response in macrophages that would otherwise block virus morphogenesis and replication in animals.


Asunto(s)
Poxviridae , Replicación Viral , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Poxviridae/genética , Virus Vaccinia/fisiología , Proteínas Virales/metabolismo , Microtúbulos/metabolismo , Antivirales/metabolismo
14.
J Cyst Fibros ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508950

RESUMEN

BACKGROUND: People with cystic fibrosis (pwCF) are considered at risk of developing severe forms of respiratory viral infections. We studied the consequences of COVID-19 and virus-host cell interactions in CF vs. non-CF individuals. METHODS: We enrolled CF and non-CF individuals, with /without COVID-like symptoms, who underwent nasopharyngeal swab for detection of SARS-CoV-2. Gene expression was evaluated by RNA sequencing on the same nasopharyngeal swabs. Criteria for COVID-19 severity were hospitalization and requirement or increased need of oxygen therapy. RESULTS: The study included 171 patients (65 pwCF and 106 non-CF individuals). Among them, 10 pwCF (15.4 %) and 43 people without CF (40.6 %) tested positive at RT-PCR. Symptomatic infections were observed in 8 pwCF (with 2 requiring hospitalization) and in 11 individuals without CF (6 requiring hospitalization). Host transcriptomic analysis revealed that genes involved in protein translation, particularly ribosomal components, were downregulated in CF samples irrespective of SARS-CoV-2 status. In SARS-CoV-2 negative individuals, we found a significant difference in genes involved with motile cilia expression and function, which were upregulated in CF samples. Pathway enrichment analysis indicated that interferon signaling in response to SARS-CoV-2 infection was upregulated in both pwCF and non-CF subjects. CONCLUSIONS: COVID-19 does not seem to be more severe in CF, possibly due to factors intrinsic to this population: the lower expression of ribosomal genes may downregulate the protein translation machinery, thus creating an unfavorable environment for viral replication.

15.
Curr Opin Struct Biol ; 86: 102787, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38458088

RESUMEN

X-ray crystallography and cryo-electron microscopy have enabled the determination of structures of numerous viruses at high resolution and have greatly advanced the field of structural virology. These structures represent only a subset of snapshot end-state conformations, without describing all conformational transitions that virus particles undergo. Allostery plays a critical role in relaying the effects of varied perturbations both on the surface through environmental changes and protein (receptor/antibody) interactions into the genomic core of the virus. Correspondingly, allostery carries implications for communicating changes in genome packaging to the overall stability of the virus particle. Amide hydrogen/deuterium exchange mass spectrometry (HDXMS) of whole viruses is a powerful probe for uncovering virus allostery. Here we critically discuss advancements in understanding virus dynamics by HDXMS with single particle cryo-EM and computational approaches.


Asunto(s)
Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Virión , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Virión/química , Virión/metabolismo , Regulación Alostérica , Amidas/química , Virus/química , Virus/metabolismo , Microscopía por Crioelectrón/métodos , Espectrometría de Masas/métodos , Medición de Intercambio de Deuterio
16.
J Virol ; 98(3): e0148523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38412044

RESUMEN

Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE: Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.


Asunto(s)
Filaminas , Virus Vaccinia , Proteínas Virales , Humanos , Línea Celular , ADN/metabolismo , Filaminas/genética , Filaminas/metabolismo , FN-kappa B/metabolismo , Vaccinia/virología , Virus Vaccinia/patogenicidad , Virus Vaccinia/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Animales
17.
Arch Microbiol ; 206(3): 94, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334822

RESUMEN

One of the mechanisms viruses use in hijacking host cellular machinery is mimicking Short Linear Motifs (SLiMs) in host proteins to maintain their life cycle inside host cells. In the face of the escalating volume of virus-host protein-protein interactions (vhPPIs) documented in databases; the accurate prediction of molecular mimicry remains a formidable challenge due to the inherent degeneracy of SLiMs. Consequently, there is a pressing need for computational methodologies to predict new instances of viral mimicry. Our present study introduces a DMI-de-novo pipeline, revealing that vhPPIs catalogued in the VirHostNet3.0 database effectively capture domain-motif interactions (DMIs). Notably, both affinity purification coupled mass spectrometry and yeast two-hybrid assays emerged as good approaches for delineating DMIs. Furthermore, we have identified new vhPPIs mediated by SLiMs across different viruses. Importantly, the de-novo prediction strategy facilitated the recognition of several potential mimicry candidates implicated in the subversion of host cellular proteins. The insights gleaned from this research not only enhance our comprehension of the mechanisms by which viruses co-opt host cellular machinery but also pave the way for the development of novel therapeutic interventions.


Asunto(s)
Proteínas , Virus , Secuencias de Aminoácidos , Proteínas/química , Proteínas/metabolismo , Virus/genética , Virus/metabolismo , Interacciones Huésped-Patógeno
18.
Microbiol Spectr ; 12(3): e0365823, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38323828

RESUMEN

The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE: The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.


Asunto(s)
Virus de la Fiebre Aftosa , Animales , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Unión al ARN/genética , Ribosomas/genética , Endopeptidasas/metabolismo , Sitios Internos de Entrada al Ribosoma , Proteasas Virales 3C , Ubiquitinas/genética , Ubiquitinas/metabolismo
19.
FEMS Microbiol Rev ; 48(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38337179

RESUMEN

One continuous companion and one of the major players in the human blood virome are members of the Anelloviridae family. Anelloviruses are probably found in all humans, infection occurs early in life and the composition (anellome) is thought to remain stable and personal during adulthood. The stable anellome implies a great balance between the host immune system and the virus. However, the lack of a robust culturing system hampers direct investigation of interactions between virus and host cells. Other techniques, however, including next generation sequencing, AnelloScan-antibody tests, evolution selection pressure analysis, and virus protein structures, do provide new insights into the interactions between anelloviruses and the host immune system. This review aims at providing an overview of the current knowledge on the immune mechanisms acting on anelloviruses and the countering viral mechanisms allowing immune evasion.


Asunto(s)
Anelloviridae , Infecciones por Virus ADN , Humanos , Adulto , Secuenciación de Nucleótidos de Alto Rendimiento , Evasión Inmune
20.
mSystems ; 9(3): e0117723, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38376179

RESUMEN

Predators play a central role in shaping community structure, function, and stability. The degree to which bacteriophage predators (viruses that infect bacteria) evolve to be specialists with a single bacterial prey species versus generalists able to consume multiple types of prey has implications for their effect on microbial communities. The presence and abundance of multiple bacterial prey types can alter selection for phage generalists, but less is known about how interactions between prey shape predator specificity in microbial systems. Using a phenomenological mathematical model of phage and bacterial populations, we find that the dominant phage strategy depends on prey ecology. Given a fitness cost for generalism, generalist predators maintain an advantage when prey species compete, while specialists dominate when prey are obligately engaged in cross-feeding interactions. We test these predictions in a synthetic microbial community with interacting strains of Escherichia coli and Salmonella enterica by competing a generalist T5-like phage able to infect both prey against P22vir, an S. enterica-specific phage. Our experimental data conform to our modeling expectations when prey species are competing or obligately mutualistic, although our results suggest that the in vitro cost of generalism is caused by a combination of biological mechanisms not anticipated in our model. Our work demonstrates that interactions between bacteria play a role in shaping ecological selection on predator specificity in obligately lytic bacteriophages and emphasizes the diversity of ways in which fitness trade-offs can manifest. IMPORTANCE: There is significant natural diversity in how many different types of bacteria a bacteriophage can infect, but the mechanisms driving this diversity are unclear. This study uses a combination of mathematical modeling and an in vitro system consisting of Escherichia coli, Salmonella enterica, a T5-like generalist phage, and the specialist phage P22vir to highlight the connection between bacteriophage specificity and interactions between their potential microbial prey. Mathematical modeling suggests that competing bacteria tend to favor generalist bacteriophage, while bacteria that benefit each other tend to favor specialist bacteriophage. Experimental results support this general finding. The experiments also show that the optimal phage strategy is impacted by phage degradation and bacterial physiology. These findings enhance our understanding of how complex microbial communities shape selection on bacteriophage specificity, which may improve our ability to use phage to manage antibiotic-resistant microbial infections.


Asunto(s)
Bacteriófagos , Bacteriófagos/fisiología , Bacterias , Escherichia coli/fisiología , Fenómenos Fisiológicos Bacterianos , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA