Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 826
Filtrar
1.
J Environ Sci (China) ; 147: 414-423, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003059

RESUMEN

The anaerobic acid production experiments were conducted with the pretreated kitchen waste under pH adjustment. The results showed that pH 8 was considered to be the most suitable condition for acid production, especially for the formation of acetic acid and propionic acid. The average value of total volatile fatty acid at pH 8 was 8814 mg COD/L, 1.5 times of that under blank condition. The average yield of acetic acid and propionic acid was 3302 mg COD/L and 2891 mg COD/L, respectively. The activities of key functional enzymes such as phosphotransacetylase, acetokinase, oxaloacetate transcarboxylase and succinyl-coA transferase were all enhanced. To further explore the regulatory mechanisms within the system, the distribution of microorganisms at different levels in the fermentation system was obtained by microbial sequencing, results indicating that the relative abundances of Clostridiales, Bacteroidales, Chloroflexi, Clostridium, Bacteroidetes and Propionibacteriales, which were great contributors for the hydrolysis and acidification, increased rapidly at pH 8 compared with the blank group. Besides, the proportion of genes encoding key enzymes was generally increased, which further verified the mechanism of hydrolytic acidification and acetic acid production of organic matter under pH regulation.


Asunto(s)
Ácidos Grasos Volátiles , Concentración de Iones de Hidrógeno , Ácidos Grasos Volátiles/metabolismo , Fermentación , Ácido Acético/metabolismo , Reactores Biológicos
2.
Bioresour Technol ; 413: 131564, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362348

RESUMEN

Biodegradable plastics (BPs) are presenting new challenges for their reutilization. This work found that volatile fatty acids (VFAs) production by co-fermentation of BPs with waste activated sludge (WAS) reached 4-37 times of the WAS fermentation alone, which was further amplified by pH regulation (especially alkaline regulation). Moreover, the VFAs composition is highly associated with BPs category. By contrast, the traditional plastic showed a limited effect on the VFAs yield and composition. Alkaline regulation enhanced the breakdown of BPs' ester bonds and boosted WAS disintegration, increasing bioavailable substrates. The hydrolytic-acidogenic anaerobes (i.e., Serpentinicella and Proteiniclasticum) and the major metabolic processes participated in the transformation of BPs and WAS to VFAs were upregulated under alkaline conditions. Further exploration unveiled that quorum sensing and peptidoglycan synthesis played important roles in counteracting alkaline stress and maintaining microbial activity for effective VFAs generation. The works demonstrated the effectiveness of pH-regulated anaerobic co-fermentation for BPs valorization.

3.
J Dairy Sci ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389297

RESUMEN

Our objective was to determine the effects of isoacids (ISO) on the lactation performance, digestibility, and milk fatty acid (FA) profile of Holstein cows fed 2 forage NDF levels (FL). The study was 10-wk long (including 2-wk for covariate) utilizing a randomized complete block design. Sixty-four mid-lactating Holstein cows [662 ± 71 kg BW, 119 ± 51 DIM, 2 ± 0.9 parity] were blocked by parity, DIM, and prior milk yield (MY) for multiparous cows or genetic merit for primiparous cows, and randomly assigned to 1 of the 4 diets (n = 16). Diets were arranged as a 2 × 2 factorial, with 2 FL containing 21 (HF) and 17% forage NDF (LF) without (WIA) or with ISO supplementation (IA, 7.85 mmol/kg DM and 3.44 mmol/kg DM for isobutyrate and 2-methylbutyrate, respectively). Diets were balanced for similar NEL (1.58 Mcal/kg DM), CP (16.0%) and total NDF (27.2%). Feed intake and MY were recorded daily. Nutrient digestibility for each cow was determined using indigestible NDF as a marker, and fecal samples were collected at 8-time points (4 h intervals between samples). Individual cow milk samples composited over a 10-wk period were analyzed using gas chromatography for FA profile. The statistical model included FL, ISO, and FL × ISO as fixed effects and block as a random effect (lme4 in R). The ISO did not affect DMI (P = 0.13), while LF had greater DMI than HF diets (27.8 vs. 26.0 kg/d; P < 0.01). However, ISO increased MY (34.7 vs. 37.2 kg/d; P < 0.01) and ECM (41.9 vs. 39.0 kg/d; P < 0.01) by 7% in HF but not in the LF diet, suggesting FL × ISO interaction (P = 0.04). Interestingly, ISO increased ADG (0.4 kg/d) but decreased MUN by 9% only in LF diet as indicated by FL × ISO interaction (P < 0.01). Additionally, ISO increased DM, OM, NDF, and CP digestibility by 10-24% in HF (P < 0.01), but not in LF (FL × ISO; P > 0.05). As expected, ISO increased milk odd chain FA profiles in the IA groups irrespective of FL, e.g., the IA had greater C15:0 (1.87 vs. 1.54 g/100g FA; P = 0.03) and a tendency to be greater C17:0 levels (0.86 vs. 0.76 g/100g FA; P = 0.05) compared with WIA groups. Overall, ISO improved MY and nutrient digestibility in the HF whereas it increased ADG and decreased MUN in LF diet. Additionally, ISO increased milk odd chain FA (C15:0 and C17:0) regardless of FL.

4.
J Environ Manage ; 370: 122828, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39383742

RESUMEN

D-limonene extracted from citrus peels possesses an inhibitory effect on methanogenic archaea. This study is aimed to bridge the research gap on the influence of D-limonene on volatile fatty acids (VFA) production from waste activated sludge (WAS) and to address the low VFA yield in standalone anaerobic fermentation of WAS. When the initial pH was not controlled, 1.00 g/g TSS D-limonene resulted in a VFA accumulation of 1175.45 ± 101.36 mg/L (174.45 ± 8.13 mgCOD/gVS). When the initial pH was controlled at 10 and the D-limonene concentration was 0.50 g/g TSS, the VFA accumulation reached 2707.44 ± 183.65 mg/L (445.51 ± 17.10 mgCOD/gVS). The pH-regulated D-limonene treatment enhanced solubilization and acidification, slightly inhibited hydrolysis, and significantly suppressed methanogenesis. D-limonene under alkaline conditions can increase the relative abundance of Clostridium_sensu_stricto, significantly enhancing acidification. Moreover, it markedly inhibited methanogenesis by particularly reducing the relative abundance of Methanothrix that was responsible for acetate consumption, thus favoring the accumulation of VFA. The research reveals the potential mechanism of pH regulation and D-limonene on anaerobic fermentation acid production, providing a theoretical basis for improving the acid production performance of the anaerobic fermentation of WAS.

5.
Bioresour Technol ; : 131616, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395604

RESUMEN

Dark fermentation (DF) is a waste treatment bioprocess which produces biohydrogen and volatile fatty acids (VFAs) such as acetate or butyrate. DF can be coupled with microalgae cultivation, allowing VFA conversion into valuable biomass. Nevertheless, the process is hindered by slow butyrate consumption. In this study, novel artificial microalgae-bacteria consortia were used as a strategy to accelerate butyrate removal. Three microalgal strains with various trophic metabolisms, Chlorella sorokiniana, Euglena gracilis and Ochromonas danica, were cultivated on DF effluent that was either sterile or contained endogenous bacteria. Bacteria did not impact microalgal biomass production of C. sorokiniana or E. gracilis while accelerating butyrate removal rates 2 to 10-fold. O. danica greatly impacted microbial diversity, probably due to its phagotrophic metabolism. These results show that bacteria in organic rich effluents can greatly aid in substrate removal while allowing microalgal growth, inspiring bioprocesses coupling raw fermentation effluents with microalgae biomass production and valorization.

6.
J Environ Manage ; 370: 122736, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362162

RESUMEN

Ruminal microbes can efficiently ferment biomass waste to produce volatile fatty acids (VFAs). However, keeping long-term efficient VFA production efficiency has become a bottleneck. In this study, yeast culture (YC) was used to enhance the VFA production in long-term fermentation. Results showed that YC group improved the volatile solid removal and VFA concentration to 47.8% and 7.82 g/L, respectively, 18.6% and 16.1% higher than the control, mainly enhancing the acetic, propionic, and butyric acid production. YC addition reduced the bacterial diversity, changed the bacterial composition, and improved interactions among bacteria. The regulation mechanism of YC was to increase the abundance and activity of hydrolytic and acidogenic bacteria such as Prevotella and Treponema, improve bacterial interactions, and further promote expression of functional genes. Ultimately, a long-term efficient ruminal fermentation of corn straw into VFAs was achieved.

7.
Bioresour Technol ; : 131631, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39401656

RESUMEN

This study evaluated the effectiveness of embedding immobilization technology in wastewater treatment and its capacity to enhance the hydrolysis acidification process. Based on this technology, a stable anaerobic environment has been maintained. Results showed that the rates of dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) conversion both exceeded 98 % under short hydraulic retention time (HRT = 2h) and ambient temperature. Notably, acetic acid and propionic acid comprised up to 90.9 % of the total volatile fatty acids in the effluent, providing suitable carbon sources for downstream denitrification. 16S rRNA gene sequencing indicated that biofillers effectively enriched and retained functional bacteria, causing norank_Anaerolineaceae (11.6 %-29.7 %) and norank_Bacteroidetes_vadinHA17 (10.8 %-14.9 %) as the dominant genera in the reactor, which were crucial for refractory organic matter degradation. Immobilized biofillers effectively improved wastewater biodegradability, supporting a stable microbial community with high DON and DOP conversion rates as well as increased VFA accumulation.

8.
J Biotechnol ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39396642

RESUMEN

The International Space Station currently requires four annual replenishments for food supply, a practice that won't be feasible for deep space missions due to the greater distances. Based on the design of closed ecological life support systems, two waste streams were identified: urea from the crew urine, volatile fatty acids (VFAs) from a first stage of anaerobic digestion of waste. The objective of this study was to assess the ability of bacterium Cupriavidus necator to produce single cell protein on urea and VFAs. Thus, the effect of carbon sources (glucose vs VFAs) and the dilution rate on the biomass composition was determined in continuous cultures. Complete transformation of the carbon source into protein-rich biomass was achieved up to 78% cell dry weight (CDW). For both carbon sources, the protein content increased from 55.0%CDW to 78%CDW with a decrease in the dilution rate. Conversely, the nucleic acid and polyhydroxyalkanoate contents decreased with the dilution rate from 8.8%CDW to 4.8%CDW and 9.8%CDW to 0.6%CDW respectively. Working at a low dilution rate seems to be a good way to maximize protein content while minimizing unwanted nucleic acids and polyhydroxyalkanoates.

9.
Heliyon ; 10(18): e37737, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39315231

RESUMEN

Cashew trees (Anacardium occidentale L.) are planted for primarily their nuts, but they also generate apples which are mostly thrown away due to their astringent taste. The current study aimed to explore the possible utilization of cashew apple by-products (CABP) in West Africa as an alternative feedstuff for small ruminants' nutrition. To achieve this aim, five parts of cashew apple by-products (whole, up, down and middle part, and pomace) of two cashew varieties (red and yellow) were collected in two different agroecological zones (Sudanian Zone, SZ and Sudano-Guinea Zone, SZ) to be characterized for the chemical composition, including polyphenols and sugars, and the in vitro fermentation pattern. In general, the results showed that CABP characteristics depend more on sampling area than on variety. The dry matter (DM) in SZ and SGZ varied from 12.76 to 26.10 % and 7.41-22.9 %, respectively. The pomace showed the highest crude protein, lipids, and neutral detergent fiber (NDF) content (SZ: 9.48, 3.94 and 31.66 % DM; SGZ: 14.03, 4.94 and 34.12 % DM, respectively) but the lowest nonstructural carbohydrate (NSC) and sugar for both zones. Regarding the in vitro fermentation, the organic matter degradability (dOM) was higher in the middle part (73.73 %) and whole apple (61.62 %) of SZ and SGZ, respectively. In contrast, the pomace from both zones showed the lowest in vitro fermentation parameters. The total polyphenols were more concentrated in the CABP from SZ (whole: 2736 µg/g DW; pomace: 3813 µg/g DW) compared to those from SGZ (whole: 1755 µg/g DW; pomace: 1374 µg/g DW). Results suggest that CABP should be collected in each cultivation zone regardless of variety, separating pomace from other by-products and may be used as alternative feedstuff for small ruminants during the dry season in the West Africa region.

10.
Biotechnol Biofuels Bioprod ; 17(1): 123, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342259

RESUMEN

BACKGROUND: The integration of anaerobic digestion into bio-based industries can create synergies that help render anaerobic digestion self-sustaining. Two-stage digesters with separate acidification stages allow for the production of green hydrogen and short-chain fatty acids, which are promising industrial products. Heat shocks can be used to foster the production of these products, the practical applicability of this treatment is often not addressed sufficiently, and the presented work therefore aims to close this gap. METHODS: Batch experiments were conducted in 5 L double-walled tank reactors incubated at 37 °C. Short microwave heat shocks of 25 min duration and exposure times of 5-10 min at 80 °C were performed and compared to oven heat shocks. Pairwise experimental group differences for gas production and chemical parameters were determined using ANOVA and post-hoc tests. High-throughput 16S rRNA gene amplicon sequencing was performed to analyse taxonomic profiles. RESULTS: After heat-shocking the entire seed sludge, the highest hydrogen productivity was observed at a substrate load of 50 g/l with 1.09 mol H2/mol hexose. With 1.01 mol H2/mol hexose, microwave-assisted treatment was not significantly different from oven-based treatments. This study emphasised the better repeatability of heat shocks with microwave-assisted experiments, revealing low variation coefficients averaging 29%. The pre-treatment with microwaves results in a high predictability and a stronger microbial community shift to Clostridia compared to the treatment with the oven. The pre-treatment of heat shocks supported the formation of butyric acid up to 10.8 g/l on average, with a peak of 24.01 g/l at a butyric/acetic acid ratio of 2.0. CONCLUSION: The results support the suitability of using heat shock for the entire seed sludge rather than just a small inoculum, making the process more relevant for industrial applications. The performed microwave-based treatment has proven to be a promising alternative to oven-based treatments, which ultimately may facilitate their implementation into industrial systems. This approach becomes economically sustainable with high-temperature heat pumps with a coefficient of performance (COP) of 4.3.

11.
Water Res ; 266: 122421, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39260197

RESUMEN

Structural extracellular polymeric substances (SEPS) as valuable biopolymers, can be extracted from waste activated sludge (WAS). However, the extraction yield is typically low, and detailed information on SEPS characterizations, as well as proper treatment of the sludge after SEPS extraction, remains limited. This study aimed to optimize the conditions of heating-Na2CO3 extraction process to increase the yield of SEPS extracted from WAS. Subsequently, SEPS were characterized, and, for the first time, insights into their protein composition were uncovered by using proteomics. A maximum SEPS yield of 209 mg g-1 volatile solid (VS) was obtained under optimal conditions: temperature of 90 °C, heating time of 60 min, Na+ dosage of 8.0 mmol/g VS, and pH required to precipitation of 4.0, which was comparable to that from the aerobic granular sludge reported in literature. Proteomics analysis unveiled that the proteins in SEPS primarily originated from microorganisms involved in nitrogen fixation and organic matter degradation, including their intracellular and membrane-associated regions. These proteins exhibited various catalytic activities and played crucial roles in aggregation processes. Besides, the process of SEPS extraction significantly enhanced volatile fatty acid (VFA) production during the anaerobic fermentation of residual WAS after SEPS extraction. A maximum VFA yield of 420 ± 14 mg COD/g VSadded was observed in anaerobic fermentation of 10 d, which was 77.2 ± 0.1 % higher than that from raw sludge. Mechanism analysis revealed that SEPS extraction not only improved WAS disintegration and solubilization but also reduced the relative activity of methanogens during anaerobic fermentation. Moreover, SEPS extraction shifted the microbial population during anaerobic fermentation in the direction towards hydrolysis and acidification such as Fermentimonas sp. and Soehngenia sp. This study proposed a novel strategy based on SEPS extraction and VFA production for sludge treatment, offering potential benefits for resource recovery and improved process efficiency.

12.
J Environ Manage ; 369: 122160, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39208750

RESUMEN

Anaerobic digestion provides a solution for the treatment of vegetable waste water (VWW), but there are currently limited targeted treatment methods available. Building upon previous studies, this research investigated the effects of polyacrylamide-modified magnetic micro-particles (MMP) on anaerobic digestion (AD) of VWW. Three variations of these particles were created by grafting anionic, cationic, and non-ionic polyacrylamide (PAM) onto the MMPs' surfaces, resulting in aPAM-MMP, cPAM-MMP, and nPAM-MMP, respectively. In AD experiments, the addition of aPAM-MMP notably enhanced the degradation of chemical oxygen demand (COD) in VWW. COD decreased to 1290 mg/L in the reactor with aPAM-MMP by day 12 and remained low, while the other reactors had COD concentrations of 4137.5, 5510, and 3010 mg/L on the same day, decreasing thereafter. This modification also improved the production and utilization of hydrogen gas and volatile fatty acids (VFAs), along with the conversion of methane. When tested for bioaffinity using fluorescent GFP-E.coli bacteria, the aPAM-MMP, cPAM-MMP, and nPAM-MMP demonstrated increases in fluorescence intensity by 51.66%, 36.13%, and 37.02%, respectively, compared to unmodified MMP when attached with GFP-E.coli. Further analyses of microbial community revealed that the reactor with aPAM-MMP had the highest microbial richness and enriched bacteria capable of organic matter degradation, such as Bacteroidota, Synergistota, Chloroflexi, Halobacterota phyla, and Parabacteroides, Muribaculaceae, and Azotobacter genera. In conclusion, our experiment verifies that APAM-MMP promotes anaerobic treatment of VWW and provides a novel reference point for enhancing VWW degradation.


Asunto(s)
Resinas Acrílicas , Verduras , Aguas Residuales , Anaerobiosis , Aguas Residuales/química , Resinas Acrílicas/química , Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno
13.
J Adv Vet Anim Res ; 11(2): 349-355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39101090

RESUMEN

Objective: This study aimed to evaluate rumen fermentation parameters influenced by both grazing system and breed. Materials and Methods: A 2 × 2 factorial design was employed, involving 40 cows with matched age, parity, and physiological status. The cows were evenly divided between Bonsmara and Nguni breeds, as well as communal and commercial grazing systems. Rumen fluid samples were collected and analyzed for parameters including ammonia-nitrogen (NH3-N), pH, temperature, and volatile fatty acids (VFAs). Results: Nguni cows exhibited significantly higher ruminal NH3-N levels (p < 0.05) compared to Bonsmara, ranging from 69.05 to 96.78 mg/l. Commercial grazing demonstrated significantly higher NH3-N concentrations (p < 0.05) than communal grazing. Ruminal pH, temperature, total VFAs, and specific VFAs (Iso-butyrate, valeric, and iso-valeric) did not show significant differences (p > 0.05). However, total VFAs were slightly lower in communal grazing (78.87 mmol/l) than in commercial grazing (89.80 mmol/l). Acetate, propionate, butyrate, and the acetate to propionate ratio did not display significant differences (p > 0.05) between breeds but varied between grazing systems. Communal systems had higher acetate and acetate to propionate ratio (p < 0.05), while commercial systems showed higher propionate and butyrate levels (p < 0.05). Conclusion: Grazing conditions significantly influenced rumen fermentation parameters, irrespective of breed. Further research is necessary to explore the relationship between forage conditions, diversity, and rumen fermentation within different grazing systems.

14.
Bioresour Technol ; 408: 131201, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39097236

RESUMEN

For revealing the influence of temperature on volatile fatty acids (VFAs) generation from primary sludge (PS) during the anaerobic fermentation process facilitated by peroxymonosulfate (PMS), five fermentation groups (15, 25, 35, 45, and 55 °C) were designed. The results indicated that the production of VFAs (5148 mg COD/L) and acetic acid (2019 mg COD/L) reached their peaks at 45 °C. High-throughput sequencing technology disclosed that Firmicutes, Proteobacteria, and Actinobacteria was the dominant phyla, carbohydrate metabolism and membrane transport were the most vigorous at 45 °C. Additionally, higher temperature and PMS exhibit synergistic effects in promoting VFAs accumulation. This study unveiled the mechanism of the effect of the pretreatment of PS with PMS on the VFAs production, which established a theoretical foundation for the production of VFAs.


Asunto(s)
Ácidos Grasos Volátiles , Fermentación , Aguas del Alcantarillado , Temperatura , Ácidos Grasos Volátiles/metabolismo , Aguas del Alcantarillado/microbiología , Peróxidos , Anaerobiosis , Bacterias/metabolismo , Reactores Biológicos
15.
J Dairy Sci ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098492

RESUMEN

Periparturient dairy cattle undergo physiological adaptations to support fetal growth and colostrum synthesis in late gestation and milk production in early lactation. To support energy and protein demands dairy cattle mobilize body tissue reserves. The objective of this study was to determine the effects of prepartum skeletal muscle reserves and supplementation of branched-chain volatile fatty acids (BCVFA) on body composition measurements, metabolic markers related to health, protein, and energy status, and subsequent milk yield in multiparous dairy cows. Skeletal muscle reserves were assessed by 3 ultrasounds of the longissimus dorsi muscle depth (LDD) measured 42 d before expected calving (BEC), and cows (n = 48) were assigned to either high muscle (HM; > 4.6 cm) or low muscle (LM; ≤ 4.6 cm) groups. Cows were then randomly assigned to either control (CON) of soyhull pellets (80 g/d) or BCVFA treatment which contained isobutyrate (40 g/d), isovalerate (20 g/d), and 2-methylbutyrate (20 g/d) calcium salt products. Treatments were top dressed from 42 BEC until parturition, resulting in 4 combinations of muscle groups and treatments: HM-CON (n = 13), HM-BCVFA (n = 13), LM-CON (n = 11), and LM-BCVFA (n = 11). Measurements of the LDD, BW, and BCS were taken on the following days relative to calving -42, -35, -21, -7, 0, 7, 14, 21, 28. Weekly blood samples were taken to measure glucose, BHB, and insulin concentrations, and 5 of the blood sample time points were utilized to determine 3-methylhistidine and creatinine blood concentrations. Milk yield was recorded daily for the first 28 d of lactation, and samples were taken from both milkings once a wk for the first 4 wk to determine components. The statistical model included the fixed effects of treatment, group, time, their interactions, and the random effect of cow nested within group and treatment. Prepartum muscle mobilization varied between muscle groups, as LM cows accreted muscle prepartum, and HM cows mobilized muscle. The HM cows had higher milk fat, protein, lactose, and energy corrected milk yields. The BCVFA supplementation tended to increase blood glucose concentrations both prepartum and postpartum and decreased milk urea nitrogen concentrations. Higher prepartum skeletal muscle reserves improve productivity of early lactation cows likely due to differences in muscle mobilization, and BCVFA supplementation improves glucose dynamics during the transition period, which may improve the metabolic health of the periparturient dairy cow.

16.
Water Sci Technol ; 90(4): 1267-1279, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39215737

RESUMEN

The study investigates the effect of the oxidant calcium oxide (CaO) on the codigestion of excess sludge (ES) and plant waste (PW) under mesophilic anaerobic conditions to enhance methane production. The findings indicate that CaO significantly elevated methane yield in the codigestion system, with an optimum CaO addition of 6% resulting in a maximum methane production of 461 mL/g volatile solids, which is approximately 1.3 times that of the control group. Mechanistic exploration revealed that CaO facilitated the disintegration of organic matter, enhanced the release of soluble chemical oxygen demand, and increased the concentrations of soluble proteins and polysaccharides within the codigestion substrate. The presence of CaO was conducive to the generation and biological transformation of volatile fatty acids, with a notable accumulation of acetic acid, a smaller carboxylic acid within the VFAs. The proportion of acetate in the CaO-amended group increased to 32.6-36.9%. Enzymatic analysis disclosed that CaO enhanced the activity of hydrolytic and acidogenic enzymes associated with the ES and PW codigestion process but suppressed the activity of coenzyme F420. Moreover, CaO augmented the nutrient load in the fermentation liquid. The study provides an alternative scheme for the efficient resource utilization of ES and PW.


Asunto(s)
Compuestos de Calcio , Óxidos , Aguas del Alcantarillado , Compuestos de Calcio/química , Anaerobiosis , Óxidos/química , Metano/metabolismo , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Ácidos Grasos Volátiles/metabolismo , Análisis de la Demanda Biológica de Oxígeno
17.
Sci Total Environ ; 951: 175565, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151620

RESUMEN

Long-chain fatty acids (LCFAs) are recognized as a significant inhibitory factor in anaerobic digestion of food waste (FW), yet they are inevitably present in FW due to lipid hydrolysis. Given their distinct synthesis mechanism from traditional anaerobic digestion, little is known about the effect of LCFAs on FW acidogenic fermentation. This study reveals that total volatile fatty acids (VFAs) production increased by 9.98 % and 4.03 % under stearic acid and oleic acid loading, respectively. Acetic acid production increased by 20.66 % under stearic acid loading compared to the control group (CK). However, the LCFA stress restricted the degradation of solid organic matter, particularly under oleic acid stress. Analysis of microbial community structure and quorum sensing (QS) indicates that LCFA stress enhanced the relative abundance of Lactobacillus and Klebsiella. In QS system, the relative abundance of luxS declined from 0.157 % to 0.116 % and 0.125 % under oleic acid and stearic acid stress, respectively. LCFA stress limited the Autoinducer-2 (AI-2) biosynthesis, suggesting that microorganisms cannot use QS to resist the LCFA stress. Metagenomic sequencing showed that LCFA stress promoted acetic acid production via the conversion of pyruvate and acetyl-CoA to acetate. Direct conversion of pyruvate to acetic acid increased by 47.23 % compared to the CK group, accounting for the enhanced acetic acid production under stearic acid loading. The abundance of ß-oxidation pathway under stearic acid loading was lower than under oleic acid loading. Overall, the stimulating direct conversion of pyruvate plays a pivotal role in enhancing acetic acid biosynthesis under stearic acid loading, providing insights into the effect of LCFA on mechanism of FW acidogenic fermentation.


Asunto(s)
Ácidos Grasos , Fermentación , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Insaturados/metabolismo , Alimento Perdido y Desperdiciado
18.
Animals (Basel) ; 14(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38998102

RESUMEN

The experiment was conducted to investigate the potential effects of steviol glycosides on growth performance, rumen fermentation processes, and microbial diversity in Hu sheep. A single-factor design was used for the trial. Twenty healthy weaned Hu lambs, possessing comparable body weights averaging 18.31 ± 1.24 kg, were randomly allocated into two distinct groups: the control group (CON) and the experimental group (STE), with each comprising 10 lambs. The CON was fed the basal diet, and the STE was supplemented with 0.07% steviol glycosides based on the basal diet. During the experimental period, variations in body weight and feed intake were closely monitored and recorded. After feeding for 90 d, blood was collected to determine blood biochemical indices, and rumen fluid samples were gathered for an in-depth analysis of rumen fermentation parameters and microbial diversity. The outcomes revealed no statistically significant differences in growth performance or serum biochemical indices between the two groups (p > 0.05). Rumen pH in STE and CON was within the normal range. The rumen ammonia nitrogen (NH3-N) and acetic acid (AA) content of STE decreased significantly compared with CON (p < 0.05). No significant variations were observed in the levels of other volatile fatty acids (VFAs) between the two groups (p > 0.05). The rumen microbial OTUs count, as well as the Shannon, Simpson, Chao1, and Ace indices, were notably lower in the STE group compared to the CON group (p < 0.05). Additionally, at the phylum level, the relative abundance of Firmicutes, Bacteroidetes, and Proteobacteria collectively accounted for over 97% of the total phylum composition. In comparison to the CON group, the STE group exhibited an increase in the relative abundance of Proteobacteria (p < 0.05), accompanied by a significant reduction in the relative abundance of Patescibacteria and Desulfobacteria (p < 0.05). At the genus level, there was a notable increase in the relative abundance of Prevotella_7 and Succinivibrionaceae_UCG_001 in the STE group, whereas the relative abundance of Rikenellaceae_RC9_gut_group significantly decreased (p < 0.05). According to the correlation analysis between rumen microflora and VFAs, the relative abundance of Succinivibrionaceae_UCG_001 displayed a significant negative correlation with AA (p < 0.05), whereas Lactobacillus exhibited a notable positive correlation with isobutyric acid (IBA) (p < 0.05). In summary, steviol glycosides had no significant effect on the production performance and blood biochemical indexes of Hu sheep. Steviol glycosides can improve rumen fermentation parameters and rumen microflora structure of Hu sheep and have a certain effect on rumen microbial diversity and composition.

19.
Environ Sci Ecotechnol ; 21: 100439, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39027465

RESUMEN

The production of single cell protein (SCP) using lignocellulosic materials stands out as a promising route in the circular bioeconomy transition. However, multiple steps are necessary for lignocellulosics-to-SCP processes, involving chemical pretreatments and specific aerobic cultures. Whereas there are no studies that investigated the SCP production from lignocellulosics by using only biological processes and microbial biomass able to work both anaerobically and aerobically. In this view, the valorisation of industrial hemp (Cannabis sativa L.) biomass residues (HBRs), specifically hurds and a mix of leaves and inflorescences, combined with cheese whey (CW) was investigated through a semi-continuous acidogenic co-fermentation process (co-AF). The aim of this study was to maximise HBRs conversion into VFAs to be further used as carbon-rich substrates for SCP production. Different process conditions were tested by either removing CW or increasing the amount of HBRs in terms of VS (i.e., two and four times) to evaluate the performance of the co-AF process. Increasing HBRs resulted in a proportional increase in VFA production up to 3115 mg HAc L-1, with experimental production nearly 40% higher than theoretical predictions. The synergy between HBRs and CW was demonstrated, proving the latter as essential to improve the biodegradability of the former. The produced VFAs were subsequently tested as substrates for SCP synthesis in batch aerobic tests. A biomass concentration of 2.43 g TSS L-1 was achieved with a C/N ratio of 5.0 and a pH of 9.0 after two days of aerobic fermentation, reaching a protein content of 42% (g protein per g TSS). These results demonstrate the overall feasibility of the VFA-mediated HBR-to-SCP valorisation process.

20.
Bioresour Bioprocess ; 11(1): 76, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066992

RESUMEN

The anaerobic digestion of aqueous condensate from fast pyrolysis is a promising technology for enhancing carbon and energy recovery from waste. Syngas, another pyrolysis product, could be integrated as a co-substrate to improve process efficiency. However, limited knowledge exists on the co-fermentation of pyrolysis syngas and aqueous condensate by anaerobic cultures and the effects of substrate toxicity. This work investigates the ability of mesophilic and thermophilic anaerobic mixed cultures to co-ferment syngas and the aqueous condensate from either sewage sludge or polyethylene plastics pyrolysis in semi-batch bottle fermentations. It identifies inhibitory concentrations for carboxydotrophic and methanogenic reactions, examines specific component removal and assesses energy recovery potential. The results show successful co-fermentation of syngas and aqueous condensate components like phenols and N-heterocycles. However, the characteristics and load of the aqueous condensates affected process performance and product formation. The toxicity, likely resulting from the synergistic effect of multiple toxicants, depended on the PACs' composition. At 37 °C, concentrations of 15.6 gCOD/gVSS and 7.8 gCOD/gVSS of sewage sludge-derived aqueous condensate inhibited by 50% carboxydotrophic and methanogenic activity, respectively. At 55 °C, loads between 3.9 and 6.8 gCOD/gVSS inhibited by 50% both reactions. Polyethylene plastics condensate showed higher toxicity, with 2.8 gCOD/gVSS and 0.3 gCOD/gVSS at 37 °C decreasing carboxydotrophic and methanogenic rates by 50%. At 55 °C, 0.3 gCOD/gVSS inhibited by 50% CO uptake rates and methanogenesis. Increasing PAC loads reduced methane production and promoted short-chain carboxylates formation. The recalcitrant components in sewage sludge condensate hindered e-mol recovery, while plastics condensate showed high e-mol recoveries despite the stronger toxicity. Even with challenges posed by substrate toxicity and composition variations, the successful conversion of syngas and aqueous condensates highlights the potential of this technology in advancing carbon and energy recovery from anthropogenic waste streams.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA