Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Foods Hum Nutr ; 79(2): 401-409, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602652

RESUMEN

This study focused on studying the bioaccesible phenolic compounds (PCs) from yellow pea flour (F) and protein isolate (I). Total phenolic contents (TPC), PCs composition and antioxidant activities were analysed in ethanol 60% extracts obtained by applying ultrasound assisted extraction (UAE, 15 min/40% amplitude). The preparation of I under alkaline conditions and the elimination of some soluble components at lower pH produced a change of PCs profile and antioxidant activity. After simulated gastrointestinal digestion (SGID) of both ingredients to obtain the digests FD and ID, notable changes in the PCs concentration and profiles could be demonstrated. FD presented a higher ORAC activity than ID (IC50 = 0.022 and 0.039 mg GAE/g dm, respectively), but lower ABTS•+ activity (IC50 = 0.8 and 0.3 mg GAE/g dm, respectively). After treatment with cholestyramine of extracts from FD and ID in order to eliminate bile salts and obtain the bioaccesible fractions FDb and IDb, ROS scavenging in H2O2-induced Caco2-TC7 cells was evaluated, registering a greater activity for ID respect to FD (IC50 = 0.042 and 0.017 mg GAE/mL, respectively). These activities could be attributed to the major bioaccesible PCs: OH-tyrosol, polydatin, trans-resveratrol, rutin, (-)-epicatechin and (-)-gallocatechin gallate for FD; syringic (the most concentrated) and ellagic acids, trans-resveratrol, and (-)-gallocatechin gallate for ID, but probably other compounds such as peptides or amino acids can also contribute.


Asunto(s)
Antioxidantes , Harina , Fenoles , Pisum sativum , Antioxidantes/farmacología , Antioxidantes/análisis , Pisum sativum/química , Fenoles/análisis , Fenoles/farmacología , Harina/análisis , Humanos , Células CACO-2 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Proteínas de Plantas/análisis , Proteínas de Guisantes/química , Digestión
2.
Foods ; 13(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38472775

RESUMEN

This study focused on evaluating the potential of the natural fermentation of pea flour to improve the release of antioxidant compounds. Preliminary fermentations of 36.4% w/w flour dispersions were performed in tubes under different conditions (24 and 48 h, 30 and 37 °C). Finally, fermented flours (FFs) were obtained in a bioreactor under two conditions: 1: 36.4% w/w, 24 h, 30 °C (FF1); 2: 14.3% w/w, 24 h, 37 °C (FF2). The pH values decreased to 4.4-4.7, with a predominance of lactic acid bacteria. As in the fermentations in tubes, an increment in the proteolysis degree (TNBS method) (greater for FF2), polypeptide aggregation and a decrease in their solubility, an increase in <2 kDa peptides, and an increase in the Oxygen Radical Absorption Capacity (ORAC) potency of PBS-soluble fractions after fermentation were demonstrated. Also, fermentation increased the proteolysis degree after simulated gastrointestinal digestion (SGID, COST-INFOGEST) with respect to the non-fermented flour digests, with some differences in the molecular composition of the different digests. ORAC and Hydroxyl Radical Averting Capacity (HORAC) potencies increased in all cases. The digest of FF2 (FF2D) presented the greater ORAC value, with higher activities for >4 kDa, as well as for some fractions in the ranges 2-0.3 kDa and <0.10 kDa. Fermentation also increased the 60%-ethanol-extracted phenolic compounds, mainly flavonoids, and the ORAC activity. After SGID, the flavan-3-ols disappeared, but some phenolic acids increased with respect to the flour. Fermentation in condition 2 was considered the most appropriate to obtain a functional antioxidant ingredient.

3.
Food Sci Nutr ; 11(8): 4572-4582, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576055

RESUMEN

Legumes contain dietary fiber and resistant starch, which are beneficial to the intestinal environment. Here, we investigated the effects of yellow pea noodle consumption on the gut microbiota and fecal metabolome of healthy individuals. This single-armed pre-post comparative pilot study evaluated eight healthy female participants who consumed yellow pea noodles for 4 weeks. The gut microbiota composition and fecal metabolomic profile of each participant were evaluated before (2 weeks), during (4 weeks), and after (4 weeks) daily yellow pea noodle consumption. 16S rRNA gene sequencing was performed on stool samples, followed by clustering of operational taxonomic units using the Cluster Database at High Identity with Tolerance and integrated QIIME pipeline to elucidate the gut microbiota composition. The fecal metabolites were analyzed using capillary electrophoresis time-of-flight mass spectrometry and liquid chromatography time-of-flight mass spectrometry. Compared to day 0, the relative abundances of five bacterial genera (Bacteroides, Bilophila, Hungatella, Parabacteroides, and Streptococcus) in the intestinal microbiota significantly decreased, wherein those of Bifidobacterium longum and Ruminococcus bromii were increased on day 29 and decreased to the basal level (day 0) on day 57. Fecal metabolomic analysis identified 11 compounds showing significant fluctuations in participants on day 29 compared to day 0. Although the average levels of short-chain fatty acids in participants did not differ significantly on day 29 compared to those on day 0, the levels tended to increase in individual participants with >8% relative abundance of R. bromii in their gut microbiota. In conclusion, incorporating yellow peas as a daily staple may confer human health benefits by favorably altering the intestinal environment.

4.
Foods ; 10(9)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34574317

RESUMEN

Despite the many benefits of pulses, their consumption is still very low in many Western countries. One approach to solving this issue is to develop attractive pulse-based foods, e.g., plant-based cheeses. This study aimed to assess the suitability of different types of pulse flour, from boiled and roasted yellow peas and faba beans, to develop plant-based cheese analogues. Different stabilizer combinations (kappa- and iota-carrageenan, kappa-carrageenan, and xanthan gum) were tested. The results showed that firm and sliceable pulse-based cheese analogues could be prepared using all types of pulse flour using a flour-to-water ratio of 1:4 with the addition of 1% (w/w) kappa-carrageenan. The hardness levels of the developed pulse-based cheese analogues were higher (1883-2903 g, p < 0.01) than the reference Gouda cheese (1636 g) but lower than the commercial vegan cheese analogue (5787 g, p < 0.01). Furthermore, the crude protein (4-6% wb) and total dietary fiber (6-8% wb) contents in the developed pulse-based cheese analogues were significantly (p < 0.01) higher than in the commercial vegan cheese analogue, whereas the fat contents were lower. In conclusion, flours from boiled and roasted yellow peas and faba beans have been shown to be suitable as raw materials for developing cheese analogues with nutritional benefits.

5.
Foods ; 10(6)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204282

RESUMEN

Spray-drying and freeze-drying can extend the shelf life and improve the transportability of high-nutritional foods such as Liluva (processing water of legumes). Nonetheless, the effects of these processes on nutrition, physiochemical properties, and sensory quality are unknown. In this study, particle sizes, protein profiles, colour, and preliminary sensory profile of pea powder samples were determined by Mastersizer 3000, protein gels, chroma meter, and 9-point hedonic scale, respectively. Results indicated that no significant difference was found in the molecular weight distribution of protein bands in pea water and sensory profile after drying. Fibre content in pea water after spray-drying was higher while soluble carbohydrates and minerals were lower than those after freeze-drying. Spray-drying decreased pea water's lysine content, particle size, redness colour, and yellowness colour, while it increased its light colour; however, freeze-drying showed the opposite results. Overall, spray-drying could be a better drying technology that can be applied to dry pea water. Further experiments are required, however, to determine the influence of drying technologies on emulsifying activity.

6.
Appl Physiol Nutr Metab ; 39(12): 1360-5, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25302637

RESUMEN

Whether pulse components can be used as value-added ingredients in foods formulated for blood glucose (BG) and food intake (FI) control requires investigation. The objective of this study was to examine of the effects of pea components on FI at an ad libitum meal, as well as appetite and BG responses before and after the meal. In a repeated-measures crossover trial, men (n = 15) randomly consumed (i) pea hull fibre (7 g), (ii) pea protein (10 g), (iii) pea protein (10 g) plus hull fibre (7 g), (iv) yellow peas (406 g), and (v) control. Pea hull fibre and protein were served with tomato sauce and noodles, while yellow peas were served with tomato sauce. Control was noodles and tomato sauce. FI was measured at a pizza meal (135 min). Appetite and BG were measured pre-pizza (0-135 min) and post-pizza (155-215 min). Protein plus fibre and yellow peas led to lower pre-pizza BG area under the curve compared with fibre and control. At 30 min, BG was lower after protein plus fibre and yellow peas compared with fibre and control, whereas at 45 and 75 min, protein plus fibre and yellow peas led to lower BG compared with fibre (p < 0.05). Following the pizza meal (155 min), yellow peas led to lower BG compared with fibre (p < 0.05). No differences were observed in FI or appetite. This trial supports the use of pea components as value-added ingredients in foods designed to improve glycemic control.


Asunto(s)
Apetito/efectos de los fármacos , Glucemia/efectos de los fármacos , Fibras de la Dieta/farmacología , Proteínas en la Dieta/farmacología , Ingestión de Alimentos/efectos de los fármacos , Pisum sativum , Proteínas de Plantas/farmacología , Adolescente , Adulto , Estudios Cruzados , Humanos , Masculino , Método Simple Ciego , Adulto Joven
7.
Appl Physiol Nutr Metab ; 39(7): 849-51, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24797207

RESUMEN

This study investigated whether pulses (chickpeas, yellow peas, navy beans, lentils) have an effect on blood glucose (BG) and appetite following a fixed-size meal 2 h later. Over the following 2 h, all pulses lowered BG area under the curve (AUC) and lentils reduced appetite AUC compared with white bread (p < 0.05). Following the meal, BG was lower after lentils and chickpeas at 150 and 165 min, and AUC was lower after lentils compared with white bread (p < 0.05).


Asunto(s)
Apetito , Glucemia/análisis , Fabaceae , Comidas , Adolescente , Adulto , Estudios Cruzados , Humanos , Masculino , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA