Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.042.402
Filtrar
1.
Nagoya J Med Sci ; 86(2): 223-236, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38962411

RESUMEN

Cleft palate is the most common facial birth defect worldwide. It is caused by environmental factors or genetic mutations. Environmental factors such as pharmaceutical exposure in women are known to induce cleft palate. The aim of the present study was to investigate the protective effect of Sasa veitchii extract against medicine-induced inhibition of proliferation of human embryonic palatal mesenchymal cells. We demonstrated that all-trans-retinoic acid inhibited human embryonic palatal mesenchymal cell proliferation in a dose-dependent manner, whereas dexamethasone treatment had no effect on cell proliferation. Cotreatment with Sasa veitchii extract repressed all-trans-retinoic acid-induced toxicity in human embryonic palatal mesenchymal cells. We found that cotreatment with Sasa veitchii extract protected all-trans-retinoic acid-induced cyclin D1 downregulation in human embryonic palatal mesenchymal cells. Furthermore, Sasa veitchii extract suppressed all-trans-retinoic acid-induced miR-4680-3p expression. Additionally, the expression levels of the genes that function downstream of the target genes ( ERBB2 and JADE1 ) of miR-4680-3p in signaling pathways were enhanced by cotreatment with Sasa veitchii extract and all-trans-retinoic acid compared to all-trans-retinoic acid treatment. These results suggest that Sasa veitchii extract suppresses all-trans-retinoic acid-induced inhibition of cell proliferation via modulation of miR-4680-3p expression.


Asunto(s)
Proliferación Celular , Fisura del Paladar , Hueso Paladar , Extractos Vegetales , Tretinoina , Humanos , Tretinoina/farmacología , Proliferación Celular/efectos de los fármacos , Hueso Paladar/efectos de los fármacos , Hueso Paladar/embriología , Hueso Paladar/citología , Extractos Vegetales/farmacología , MicroARNs/metabolismo , MicroARNs/genética , MicroARNs/efectos de los fármacos , Ciclina D1/metabolismo , Ciclina D1/genética , Células Cultivadas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal/efectos de los fármacos
2.
J Biomed Opt ; 29(Suppl 2): S22707, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38962492

RESUMEN

Significance: Adaptive optics fluorescence lifetime ophthalmoscopy (AOFLIO) provides a label-free approach to observe functional and molecular changes at cellular scale in vivo. Adding multispectral capabilities improves interpretation of lifetime fluctuations due to individual fluorophores in the retinal pigment epithelium (RPE). Aim: To quantify the cellular-scale changes in autofluorescence with age and eccentricity due to variations in lipofuscin, melanin, and melanolipofuscin in RPE using multispectral AOFLIO. Approach: AOFLIO was performed on six subjects at seven eccentricities. Four imaging channels ( λ ex / λ em ) were used: 473/SSC, 473/LSC, 532/LSC, and 765/NIR. Cells were segmented and the timing signals of each pixel in a cell were combined into a single histogram, which were then used to compute the lifetime and phasor parameters. An ANOVA was performed to investigate eccentricity and spectral effects on each parameter. Results: A repeatability analysis revealed < 11.8 % change in lifetime parameters in repeat visits for 532/LSC. The 765/NIR and 532/LSC had eccentricity and age effects similar to previous reports. The 473/LSC had a change in eccentricity with mean lifetime and a phasor component. Both the 473/LSC and 473/SSC had changes in eccentricity in the short lifetime component and its relative contribution. The 473/SSC had no trend in eccentricity in phasor. The comparison across the four channels showed differences in lifetime and phasor parameters. Conclusions: Multispectral AOFLIO can provide a more comprehensive picture of changes with age and eccentricity. These results indicate that cell segmentation has the potential to allow investigations in low-photon scenarios such as in older or diseased subjects with the co-capture of an NIR channel (such as 765/NIR) with the desired spectral channel. This work represents the first multispectral, cellular-scale fluorescence lifetime comparison in vivo in the human RPE and may be a useful method for tracking diseases.


Asunto(s)
Oftalmoscopía , Epitelio Pigmentado de la Retina , Humanos , Oftalmoscopía/métodos , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/química , Adulto , Masculino , Femenino , Envejecimiento/fisiología , Persona de Mediana Edad , Anciano , Adulto Joven , Imagen Óptica/métodos , Lipofuscina/metabolismo , Lipofuscina/análisis , Lipofuscina/química , Estudios de Factibilidad
3.
Adv Exp Med Biol ; 1445: 11-36, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967747

RESUMEN

Although V(D)J recombination and immunoglobulin (Ig) production are traditionally recognised to occur only in B lymphocytes and plasma cells, the expression of Igs in non-lymphoid cells, which we call non B cell-derived Igs (non B Igs), has been documented by growing studies. It has been demonstrated that non B-Igs can be widely expressed in most cell types, including, but not limited to, epithelial cells, cardiomyocytes, hematopoietic stem/progenitor cells, myeloid cells, and cells from immune-privileged sites, such as neurons and spermatogenic cells. In particular, malignant tumour cells express high level of IgG. Moreover, different from B-Igs that mainly localised on the B cell membrane and in the serum and perform immune defence function mainly, non B-Igs have been found to distribute more widely and play critical roles in immune defence, maintaining cell proliferation and survival, and promoting progression. The findings of non B-Igs may provide a wealthier breakthrough point for more therapeutic strategies for a wide range of immune-related diseases.


Asunto(s)
Inmunoglobulinas , Humanos , Animales , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Inmunoglobulinas/inmunología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/inmunología , Células Mieloides/inmunología , Células Mieloides/metabolismo
4.
Commun Biol ; 7(1): 809, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961268

RESUMEN

During early embryonic development, the transition from totipotency to pluripotency is a fundamental and critical process for proper development. However, the regulatory mechanisms governing this transition remain elusive. Here, we conducted a comprehensive genome-wide CRISPR/Cas9 screen to investigate the 2-cell-like cells (2CLCs) phenotype in mouse embryonic stem cells (mESCs). This effort led to the identification of ten regulators that play a pivotal role in determining cell fate during this transition. Notably, our study revealed Mdm2 as a significant negative regulator of 2CLCs, as perturbation of Mdm2 resulted in a higher proportion of 2CLCs. Mdm2 appears to influence cell fate through its impact on cell cycle progression and H3K27me3 epigenetic modifications. In summary, the results of our CRISPR/Cas9 screen have uncovered several genes with distinct functions in regulating totipotency and pluripotency at various levels, offering a valuable resource for potential targets in future molecular studies.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Embrionarias de Ratones , Proteínas Proto-Oncogénicas c-mdm2 , Animales , Ratones , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Diferenciación Celular/genética , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica
5.
Commun Biol ; 7(1): 806, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961250

RESUMEN

Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.


Asunto(s)
Cerebelo , Receptores de Glutamato Metabotrópico , Sinapsis , Animales , Cerebelo/metabolismo , Cerebelo/fisiología , Cerebelo/citología , Sinapsis/fisiología , Sinapsis/metabolismo , Ratones , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Células de Purkinje/metabolismo , Células de Purkinje/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones Noqueados , Ratones Endogámicos C57BL
6.
Genome Biol ; 25(1): 175, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961490

RESUMEN

BACKGROUND: Transposable elements play a critical role in maintaining genome architecture during neurodevelopment. Short Interspersed Nuclear Elements (SINEs), a major subtype of transposable elements, are known to harbor binding sites for the CCCTC-binding factor (CTCF) and pivotal in orchestrating chromatin organization. However, the regulatory mechanisms controlling the activity of SINEs in the developing brain remains elusive. RESULTS: In our study, we conduct a comprehensive genome-wide epigenetic analysis in mouse neural precursor cells using ATAC-seq, ChIP-seq, whole genome bisulfite sequencing, in situ Hi-C, and RNA-seq. Our findings reveal that the SET domain bifurcated histone lysine methyltransferase 1 (SETDB1)-mediated H3K9me3, in conjunction with DNA methylation, restricts chromatin accessibility on a selective subset of SINEs in neural precursor cells. Mechanistically, loss of Setdb1 increases CTCF access to these SINE elements and contributes to chromatin loop reorganization. Moreover, de novo loop formation contributes to differential gene expression, including the dysregulation of genes enriched in mitotic pathways. This leads to the disruptions of cell proliferation in the embryonic brain after genetic ablation of Setdb1 both in vitro and in vivo. CONCLUSIONS: In summary, our study sheds light on the epigenetic regulation of SINEs in mouse neural precursor cells, suggesting their role in maintaining chromatin organization and cell proliferation during neurodevelopment.


Asunto(s)
Cromatina , N-Metiltransferasa de Histona-Lisina , Células-Madre Neurales , Elementos de Nucleótido Esparcido Corto , Animales , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones , Cromatina/metabolismo , Metilación de ADN , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Epigénesis Genética , Histonas/metabolismo , Encéfalo/metabolismo , Encéfalo/citología
7.
J Neuroinflammation ; 21(1): 168, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961498

RESUMEN

BACKGROUND: The eye is a highly specialized sensory organ which encompasses the retina as a part of the central nervous system, but also non-neural compartments such as the transparent vitreous body ensuring stability of the eye globe and a clear optical axis. Hyalocytes are the tissue-resident macrophages of the vitreous body and are considered to play pivotal roles in health and diseases of the vitreoretinal interface, such as proliferative vitreoretinopathy or diabetic retinopathy. However, in contrast to other ocular macrophages, their embryonic origin as well as the extent to which these myeloid cells might be replenished by circulating monocytes remains elusive. RESULTS: In this study, we combine transgenic reporter mice, embryonic and adult fate mapping approaches as well as parabiosis experiments with multicolor immunofluorescence labeling and confocal laser-scanning microscopy to comprehensively characterize the murine hyalocyte population throughout development and in adulthood. We found that murine hyalocytes express numerous well-known myeloid cell markers, but concomitantly display a distinct immunophenotype that sets them apart from retinal microglia. Embryonic pulse labeling revealed a yolk sac-derived origin of murine hyalocytes, whose precursors seed the developing eye prenatally. Finally, postnatal labeling and parabiosis established the longevity of hyalocytes which rely on Colony Stimulating Factor 1 Receptor (CSF1R) signaling for their maintenance, independent of blood-derived monocytes. CONCLUSION: Our study identifies hyalocytes as long-living progeny of the yolk sac hematopoiesis and highlights their role as integral members of the innate immune system of the eye. As a consequence of their longevity, immunosenescence processes may culminate in hyalocyte dysfunction, thereby contributing to the development of vitreoretinal diseases. Therefore, myeloid cell-targeted therapies that convey their effects through the modification of hyalocyte properties may represent an interesting approach to alleviate the burden imposed by diseases of the vitreoretinal interface.


Asunto(s)
Macrófagos , Ratones Transgénicos , Cuerpo Vítreo , Saco Vitelino , Animales , Ratones , Cuerpo Vítreo/citología , Saco Vitelino/citología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Animales Recién Nacidos
8.
Circ Res ; 135(2): 353-371, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38963865

RESUMEN

The epicardium, previously viewed as a passive outer layer around the heart, is now recognized as an essential component in development, regeneration, and repair. In this review, we explore the cellular and molecular makeup of the epicardium, highlighting its roles in heart regeneration and repair in zebrafish and salamanders, as well as its activation in young and adult postnatal mammals. We also examine the latest technologies used to study the function of epicardial cells for therapeutic interventions. Analysis of highly regenerative animal models shows that the epicardium is essential in regulating cardiomyocyte proliferation, transient fibrosis, and neovascularization. However, despite the epicardium's unique cellular programs to resolve cardiac damage, it remains unclear how to replicate these processes in nonregenerative mammalian organisms. During myocardial infarction, epicardial cells secrete signaling factors that modulate fibrotic, vascular, and inflammatory remodeling, which differentially enhance or inhibit cardiac repair. Recent transcriptomic studies have validated the cellular and molecular heterogeneity of the epicardium across various species and developmental stages, shedding further light on its function under pathological conditions. These studies have also provided insights into the function of regulatory epicardial-derived signaling molecules in various diseases, which could lead to new therapies and advances in reparative cardiovascular medicine. Moreover, insights gained from investigating epicardial cell function have initiated the development of novel techniques, including using human pluripotent stem cells and cardiac organoids to model reparative processes within the cardiovascular system. This growing understanding of epicardial function holds the potential for developing innovative therapeutic strategies aimed at addressing developmental heart disorders, enhancing regenerative therapies, and mitigating cardiovascular disease progression.


Asunto(s)
Pericardio , Regeneración , Pericardio/metabolismo , Pericardio/citología , Animales , Humanos , Regeneración/fisiología , Transducción de Señal , Miocitos Cardíacos/metabolismo
9.
Front Endocrinol (Lausanne) ; 15: 1387133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966215

RESUMEN

Introduction: Endocrine disrupting chemicals (EDCs) are known to interfere with endocrine homeostasis. Their impact on the adrenal cortex and steroidogenesis has not yet been sufficiently elucidated. This applies in particular to the ubiquitously available bisphenols A (BPA), F (BPF), and S (BPS). Methods: NCI-H295R adrenocortical cells were exposed to different concentrations (1nM-1mM) of BPA, BPF, BPS, and an equimolar mixture of them (BPmix). After 72 hours, 15 endogenous steroids were measured using LC-MS/MS. Ratios of substrate and product of CYP-regulated steps were calculated to identify most influenced steps of steroidogenesis. mRNA expression of steroidogenic enzymes was determined by real-time PCR. Results: Cell viability remained unaffected at bisphenol concentrations lower than 250 µM. All tested bisphenols and their combination led to extensive alterations in the quantified steroid levels. The most profound fold changes (FC) in steroid concentrations after exposure to BPA (>10µM) were seen for androstenedione, e.g. a 0.37±0.11-fold decrease at 25µM (p≤0.0001) compared to vehicle-treated controls. For BPF, levels of 17-hydroxyprogesterone were significantly increased by 25µM (FC 2.57±0.49, p≤0.001) and 50µM (FC 2.65±0.61, p≤0.0001). BPS treatment led to a dose-dependent decrease of 11-deoxycorticosterone at >1µM (e.g. FC 0.24±0.14, p≤0.0001 at 10µM). However, when combining all three bisphenols, additive effects were detected: e.g. 11-deoxycortisosterone was decreased at doses >10µM (FC 0.27±0.04, p≤0.0001, at 25µM), whereas 21-deoxycortisol was increased by 2.92±0.20 (p≤0.01) at 10µM, and by 3.21±0.45 (p≤0.001) at 50µM. While every measured androgen (DHEA, DHEAS, androstenedione, testosterone, DHT) was lowered in all experiments, estradiol levels were significantly increased by BPA, BPF, BPS, and BPmix (e.g. FC 3.60±0.54, p≤0.0001 at 100µM BPF). Calculated substrate-product ratios indicated an inhibition of CYP17A1-, and CYP21A2 mediated conversions, whereas CYP11B1 and CYP19A1 showed higher activity in the presence of bisphenols. Based on these findings, most relevant mRNA expression of CYP genes were analysed. mRNA levels of StAR, CYP11B1, and CYP17A1 were significantly increased by BPF, BPS, and BPmix. Discussion: In cell culture, bisphenols interfere with steroidogenesis at non-cytotoxic levels, leading to compound-specific patterns of significantly altered hormone levels. These results justify and call for additional in-vivo studies to evaluate effects of EDCs on adrenal gland functionality.


Asunto(s)
Corteza Suprarrenal , Compuestos de Bencidrilo , Disruptores Endocrinos , Fenoles , Plastificantes , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Humanos , Disruptores Endocrinos/toxicidad , Corteza Suprarrenal/efectos de los fármacos , Corteza Suprarrenal/metabolismo , Corteza Suprarrenal/citología , Plastificantes/toxicidad , Esteroides/biosíntesis , Sulfonas/farmacología , Supervivencia Celular/efectos de los fármacos
10.
Curr Protoc ; 4(7): e1038, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967962

RESUMEN

A variety of metals, e.g., lead (Pb), cadmium (Cd), and lithium (Li), are in the environment and are toxic to humans. Hematopoietic stem cells (HSCs) reside at the apex of hematopoiesis and are capable of generating all kinds of blood cells and self-renew to maintain the HSC pool. HSCs are sensitive to environmental stimuli. Metals may influence the function of HSCs by directly acting on HSCs or indirectly by affecting the surrounding microenvironment for HSCs in the bone marrow (BM) or niche, including cellular and extracellular components. Investigating the impact of direct and/or indirect actions of metals on HSCs contributes to the understanding of immunological and hematopoietic toxicology of metals. Treatment of HSCs with metals ex vivo, and the ensuing HSC transplantation assays, are useful for evaluating the impacts of the direct actions of metals on the function of HSCs. Investigating the mechanisms involved, given the rarity of HSCs, methods that require large numbers of cells are not suitable for signal screening; however, flow cytometry is a useful tool for signal screening HSCs. After targeting signaling pathways, interventions ex vivo and HSCs transplantation are required to confirm the roles of the signaling pathways in regulating the function of HSCs exposed to metals. Here, we describe protocols to evaluate the mechanisms of direct and indirect action of metals on HSCs. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Identify the impact of a metal on the competence of HSCs Basic Protocol 2: Identify the impact of a metal on the lineage bias of HSC differentiation Basic Protocol 3: Screen the potential signaling molecules in HSCs during metal exposure Alternate Protocol 1: Ex vivo treatment with a metal on purified HSCs Alternate Protocol 2: Ex vivo intervention of the signaling pathway regulating the function of HSCs during metal exposure.


Asunto(s)
Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Animales , Metales/toxicidad , Ratones , Humanos , Trasplante de Células Madre Hematopoyéticas , Citometría de Flujo/métodos
11.
Proc Natl Acad Sci U S A ; 121(28): e2317711121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968101

RESUMEN

Adult neural stem cells (NSCs) reside in the dentate gyrus of the hippocampus, and their capacity to generate neurons and glia plays a role in learning and memory. In addition, neurodegenerative diseases are known to be caused by a loss of neurons and glial cells, resulting in a need to better understand stem cell fate commitment processes. We previously showed that NSC fate commitment toward a neuronal or glial lineage is strongly influenced by extracellular matrix stiffness, a property of elastic materials. However, tissues in vivo are not purely elastic and have varying degrees of viscous character. Relatively little is known about how the viscoelastic properties of the substrate impact NSC fate commitment. Here, we introduce a polyacrylamide-based cell culture platform that incorporates mismatched DNA oligonucleotide-based cross-links as well as covalent cross-links. This platform allows for tunable viscous stress relaxation properties via variation in the number of mismatched base pairs. We find that NSCs exhibit increased astrocytic differentiation as the degree of stress relaxation is increased. Furthermore, culturing NSCs on increasingly stress-relaxing substrates impacts cytoskeletal dynamics by decreasing intracellular actin flow rates and stimulating cyclic activation of the mechanosensitive protein RhoA. Additionally, inhibition of motor-clutch model components such as myosin II and focal adhesion kinase partially or completely reverts cells to lineage distributions observed on elastic substrates. Collectively, our results introduce a unique system for controlling matrix stress relaxation properties and offer insight into how NSCs integrate viscoelastic cues to direct fate commitment.


Asunto(s)
Diferenciación Celular , Células-Madre Neurales , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Animales , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/fisiología , Ratones , Resinas Acrílicas/química , Proteína de Unión al GTP rhoA/metabolismo , Células Cultivadas , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/citología , Matriz Extracelular/metabolismo , Estrés Mecánico
12.
Proc Natl Acad Sci U S A ; 121(28): e2400596121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968119

RESUMEN

In adult songbirds, new neurons are born in large numbers in the proliferative ventricular zone in the telencephalon and migrate to the adjacent song control region HVC (acronym used as proper name) [A. Reiner et al., J. Comp. Neurol. 473, 377-414 (2004)]. Many of these new neurons send long axonal projections to the robust nucleus of the arcopallium (RA). The HVC-RA circuit is essential for producing stereotyped learned song. The function of adult neurogenesis in this circuit has not been clear. A previous study suggested that it is important for the production of well-structured songs [R. E. Cohen, M. Macedo-Lima, K. E. Miller, E. A. Brenowitz, J. Neurosci. 36, 8947-8956 (2016)]. We tested this hypothesis by infusing the neuroblast migration inhibitor cyclopamine into HVC of male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) to block seasonal regeneration of the HVC-RA circuit. Decreasing the number of new neurons in HVC prevented both the increase in spontaneous electrical activity of RA neurons and the improved structure of songs that would normally occur as sparrows enter breeding condition. These results show that the incorporation of new neurons into the adult HVC is necessary for the recovery of both electrical activity and song behavior in breeding birds and demonstrate the value of the bird song system as a model for investigating adult neurogenesis at the level of long projection neural circuits.


Asunto(s)
Neurogénesis , Prosencéfalo , Vocalización Animal , Animales , Neurogénesis/fisiología , Prosencéfalo/fisiología , Prosencéfalo/citología , Vocalización Animal/fisiología , Masculino , Gorriones/fisiología , Neuronas/fisiología , Regeneración Nerviosa/fisiología
13.
J Biomed Mater Res B Appl Biomater ; 112(7): e35448, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38968133

RESUMEN

Traditional decellularized bioscaffolds possessing intact vascular networks and unique architecture have been extensively studied as conduits for repairing nerve damage. However, they are limited by the absence of electrical conductivity, which is crucial for proper functioning of nervous tissue. This study focuses on investigating decellularized umbilical cord arteries by applying coatings of graphene oxide (GO) and reduced graphene oxide (RGO) to their inner surfaces. This resulted in a homogeneous GO coating that fully covered the internal lumen of the arteries. The results of electrical measurements demonstrated that the conductivity of the scaffolds could be significantly enhanced by incorporating RGO and GO conductive sheets. At a low frequency of 0.1 Hz, the electrical resistance level of the coated scaffolds decreased by 99.8% with RGO and 98.21% with GO, compared with uncoated scaffolds. Additionally, the mechanical properties of the arteries improved by 24.69% with GO and 32.9% with RGO after the decellularization process. The GO and RGO coatings did not compromise the adhesion of endothelial cells and promoted cell growth. The cytotoxicity tests revealed that cell survival rate increased over time with RGO, while it decreased with GO, indicating the time-dependent effect on the cytotoxicity of GO and RGO. Blood compatibility evaluations showed that graphene nanomaterials did not induce hemolysis but exhibited some tendency toward blood coagulation.


Asunto(s)
Materiales Biocompatibles Revestidos , Conductividad Eléctrica , Grafito , Arterias Umbilicales , Grafito/química , Humanos , Materiales Biocompatibles Revestidos/química , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Andamios del Tejido/química , Ensayo de Materiales , Cordón Umbilical/citología , Animales
14.
Int Ophthalmol ; 44(1): 316, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38969958

RESUMEN

BACKGROUND: Diabetic cataract (DC) is a common complication of diabetes and its etiology and progression are multi-factorial. In this study, the roles of specific protein 1 (SP1) and fibroblast growth factor 7 (FGF7) in DC development were explored. METHODS: DC cell model was established by treating SRA01/04 cells with high glucose (HG). MTT assay was conducted to evaluate cell viability. Transwell assay and wound-healing assay were performed to assess cell migration and invasion. Western blot assay and qRT-PCR assay were conducted to measure the expression of N-cadherin, E-cadherin, Collagen I, Fibronectin, SP1 and FGF7 expression. CHIP assay and dual-luciferase reporter assay were conducted to analyze the combination between FGF7 and SP1. RESULTS: FGF7 was upregulated in DC patients and HG-induced SRA01/04 cells. HG treatment promoted SRA01/04 cell viability, migration, invasion and epithelial-mesenchymal transition (EMT), while FGF7 knockdown abated the effects. Transcription factor SP1 activated the transcription level of FGF7 and SP1 overexpression aggravated HG-induced SRA01/04 cell injury. SP1 silencing repressed HG-induced SRA01/04 cell viability, migration, invasion and EMT, but these effects were ameliorated by upregulating FGF7. Additionally, SP1 knockdown inhibited the PI3K/AKT pathway by regulating the transcription level of FGF7. CONCLUSION: Transcription factor SP1 activated the transcription level of FGF7 and the PI3K/AKT pathway to regulate HG-induced SRA01/04 cell viability, migration, invasion and EMT.


Asunto(s)
Movimiento Celular , Supervivencia Celular , Células Epiteliales , Transición Epitelial-Mesenquimal , Factor 7 de Crecimiento de Fibroblastos , Glucosa , Cristalino , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Factor de Transcripción Sp1 , Transición Epitelial-Mesenquimal/efectos de los fármacos , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp1/genética , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Glucosa/farmacología , Células Epiteliales/metabolismo , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Factor 7 de Crecimiento de Fibroblastos/genética , Factor 7 de Crecimiento de Fibroblastos/farmacología , Cristalino/metabolismo , Cristalino/citología , Catarata/metabolismo , Células Cultivadas , Regulación de la Expresión Génica
15.
PeerJ ; 12: e17616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952966

RESUMEN

Background: Mesenchymal stem cells (MSCs) are increasingly recognized for their regenerative potential. However, their clinical application is hindered by their inherent variability, which is influenced by various factors, such as the tissue source, culture conditions, and passage number. Methods: MSCs were sourced from clinically relevant tissues, including adipose tissue-derived MSCs (ADMSCs, n = 2), chorionic villi-derived MSCs (CMMSCs, n = 2), amniotic membrane-derived MSCs (AMMSCs, n = 3), and umbilical cord-derived MSCs (UCMSCs, n = 3). Passages included the umbilical cord at P0 (UCMSCP0, n = 2), P3 (UCMSCP3, n = 2), and P5 (UCMSCP5, n = 2) as well as the umbilical cord at P5 cultured under low-oxygen conditions (UCMSCP5L, n = 2). Results: We observed that MSCs from different tissue origins clustered into six distinct functional subpopulations, each with varying proportions. Notably, ADMSCs exhibited a higher proportion of subpopulations associated with vascular regeneration, suggesting that they are beneficial for applications in vascular regeneration. Additionally, CMMSCs had a high proportion of subpopulations associated with reproductive processes. UCMSCP5 and UCMSCP5L had higher proportions of subpopulations related to female reproductive function than those for earlier passages. Furthermore, UCMSCP5L, cultured under low-oxygen (hypoxic) conditions, had a high proportion of subpopulations associated with pro-angiogenic characteristics, with implications for optimizing vascular regeneration. Conclusions: This study revealed variation in the distribution of MSC subpopulations among different tissue sources, passages, and culture conditions, including differences in functions related to vascular and reproductive system regeneration. These findings hold promise for personalized regenerative medicine and may lead to more effective clinical treatments across a spectrum of medical conditions.


Asunto(s)
Tejido Adiposo , Células Madre Mesenquimatosas , Cordón Umbilical , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Humanos , Cordón Umbilical/citología , Femenino , Tejido Adiposo/citología , Células Cultivadas , Vellosidades Coriónicas/fisiología , Amnios/citología , Diferenciación Celular
16.
PeerJ ; 12: e17602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952968

RESUMEN

Background: Peritoneal metastasis (PM) is the most prevalent type of metastasis in patients with gastric cancer (GC) and has an extremely poor prognosis. The detection of free cancer cells (FCCs) in the peritoneal cavity has been demonstrated to be one of the worst prognostic factors for GC. However, there is a lack of sensitive detection methods for FCCs in the peritoneal cavity. This study aimed to use a new peritoneal lavage fluid cytology examination to detect FCCs in patients with GC, and to explore its clinical significance on diagnosing of occult peritoneal metastasis (OPM) and prognosis. Methods: Peritoneal lavage fluid from 50 patients with GC was obtained and processed via the isolation by size of epithelial tumor cells (ISET) method. Immunofluorescence and fluorescence in situ hybridization (FISH) were used to identify FCCs expressing chromosome 8 (CEP8), chromosome 17 (CEP17), and epithelial cell adhesion molecule (EpCAM). Results: Using a combination of the ISET platform and immunofluorescence-FISH, the detection of FCCs was higher than that by light microscopy (24.0% vs. 2.0%). Samples were categorized into positive and negative groups, based on the expressions of CEP8, CEP17, and EpCAM. Statistically significant relationships were demonstrated between age (P = 0.029), sex (P = 0.002), lymphatic invasion (P = 0.001), pTNM stage (P = 0.001), and positivity for FCCs. After adjusting for covariates, patients with positive FCCs had lower progression-free survival than patients with negative FCCs. Conclusion: The ISET platform highly enriched nucleated cells from peritoneal lavage fluid, and indicators comprising EpCAM, CEP8, and CEP17 confirmed the diagnosis of FCCs. As a potential detection method, it offers an opportunity for early intervention of OPM and an extension of patient survival.


Asunto(s)
Hibridación Fluorescente in Situ , Lavado Peritoneal , Neoplasias Peritoneales , Neoplasias Gástricas , Humanos , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/patología , Neoplasias Peritoneales/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Gástricas/patología , Neoplasias Gástricas/diagnóstico , Anciano , Líquido Ascítico/patología , Líquido Ascítico/citología , Pronóstico , Molécula de Adhesión Celular Epitelial/metabolismo , Molécula de Adhesión Celular Epitelial/genética , Adulto , Citodiagnóstico/métodos , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Citología
17.
Chin J Dent Res ; 27(2): 121-131, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38953477

RESUMEN

As the biological mechanisms of orthodontic tooth movement have been explored further, scholars have gradually focused on the remodelling mechanism of the extracellular matrix (ECM) in the periodontal ligament (PDL). The ECM of the PDL consists of various types of collagens and other glycoproteins. The specific process and mechanism of ECM remodelling during orthodontic tooth movement remains unclear. Collagen I and III, which constitute major components of the PDL, are upregulated under orthodontic force. The changes in the contents of ECM proteins also depend on the expression of ECM-related enzymes, which organise new collagen fibre networks to adapt to changes in tooth position. The matrix metalloproteinase family is the main enzyme that participates in collagen hydrolysis and renewal and changes its expression under orthodontic force. Moreover, ECM adhesion molecules, such as integrins, are also regulated by orthodontic force and participate in the dynamic reaction of cell adhesion and separation with the ECM. This article reviews the changes in ECM components, related enzymes and adhesion molecules in the PDL under orthodontic force to lay the foundation for the exploration of the regulatory mechanism of ECM remodelling during orthodontic tooth movement.


Asunto(s)
Matriz Extracelular , Ligamento Periodontal , Técnicas de Movimiento Dental , Matriz Extracelular/metabolismo , Humanos , Técnicas de Movimiento Dental/métodos , Ligamento Periodontal/citología , Periodoncio/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Integrinas/metabolismo , Colágeno/metabolismo
18.
Methods Mol Biol ; 2814: 1-27, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954194

RESUMEN

The social amoeba Dictyostelium discoideum is a versatile model for understanding many different cellular processes involving cell motility including chemotaxis, phagocytosis, and cytokinesis. Cytokinesis, in particular, is a model cell-shaped change process in which a cell separates into two daughter cells. D. discoideum has been used extensively to identify players in cytokinesis and understand how they comprise the mechanosensory and biochemical pathways of cytokinesis. In this chapter, we describe how we use cDNA library complementation with D. discoideum to discover potential regulators of cytokinesis. Once identified, these regulators are further analyzed through live cell imaging, immunofluorescence imaging, fluorescence correlation and cross-correlation spectroscopy, micropipette aspiration, and fluorescence recovery after photobleaching. Collectively, these methods aid in detailing the mechanisms and signaling pathways that comprise cell division.


Asunto(s)
Citocinesis , Dictyostelium , Dictyostelium/metabolismo , Dictyostelium/genética , Dictyostelium/citología , Biblioteca de Genes , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Transducción de Señal , Recuperación de Fluorescencia tras Fotoblanqueo/métodos
19.
Methods Mol Biol ; 2814: 149-161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954204

RESUMEN

Over the last decade, the use of microfabricated substrates has proven pivotal for studying the effect of substrate topography on cell deformation and migration. Microfabrication techniques allow one to construct a transparent substrate with topographic features with high designability and reproducibility and thus well suited to experiments that microscopically address how spatial and directional bias are brought about in the cytoskeletal machineries and hence cell motility. While much of the progress in this avenue of study has so far been made in adhesive cells of epithelial and mesenchymal nature, whether related phenomena exist in less adhesive fast migrating cells is relatively unknown. In this chapter, we describe a method that makes use of micrometer-scale ridges to study fast-migrating Dictyostelium cells where it was recently shown that membrane evagination associated with macropinocytic cup formation plays a pivotal role in the topography sensing. The method requires only basic photolithography, and thus the step-by-step protocol should be a good entry point for cell biologists looking to incorporate similar microfabrication approaches.


Asunto(s)
Movimiento Celular , Dictyostelium , Microtecnología , Dictyostelium/citología , Dictyostelium/fisiología , Microtecnología/métodos , Adhesión Celular
20.
Proc Natl Acad Sci U S A ; 121(28): e2404210121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38954541

RESUMEN

Mesenchymal stem cells (MSCs) are essential in regenerative medicine. However, conventional expansion and harvesting methods often fail to maintain the essential extracellular matrix (ECM) components, which are crucial for their functionality and efficacy in therapeutic applications. Here, we introduce a bone marrow-inspired macroporous hydrogel designed for the large-scale production of MSC-ECM spheroids. Through a soft-templating approach leveraging liquid-liquid phase separation, we engineer macroporous hydrogels with customizable features, including pore size, stiffness, bioactive ligand distribution, and enzyme-responsive degradability. These tailored environments are conducive to optimal MSC proliferation and ease of harvesting. We find that soft hydrogels enhance mechanotransduction in MSCs, establishing a standard for hydrogel-based 3D cell culture. Within these hydrogels, MSCs exist as both cohesive spheroids, preserving their innate vitality, and as migrating entities that actively secrete functional ECM proteins. Additionally, we also introduce a gentle, enzymatic harvesting method that breaks down the hydrogels, allowing MSCs and secreted ECM to naturally form MSC-ECM spheroids. These spheroids display heightened stemness and differentiation capacity, mirroring the benefits of a native ECM milieu. Our research underscores the significance of sophisticated materials design in nurturing distinct MSC subpopulations, facilitating the generation of MSC-ECM spheroids with enhanced therapeutic potential.


Asunto(s)
Matriz Extracelular , Hidrogeles , Células Madre Mesenquimatosas , Esferoides Celulares , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Hidrogeles/química , Matriz Extracelular/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Humanos , Diferenciación Celular , Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Porosidad , Mecanotransducción Celular/fisiología , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA