Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
1.
Mol Biol Rep ; 51(1): 802, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001949

RESUMEN

BACKGROUND: Alzheimer's disease is a neurological disease characterized by the build-up of amyloid beta peptide (Aß) and lipopolysaccharide (LPS), which causes synapse dysfunction, cell death, and neuro-inflammation. A maladaptive unfolded protein response (UPR), excessive autophagy, and pyroptosis aggravate the disease. Melatonin (MEL) and hydroxybutyrate (BHB) have both shown promise in terms of decreasing Aß pathology. The goal of this study was to see how BHB and MEL affected the UPR, autophagy, and pyroptosis pathways in Aß1-42 and LPS-induced SH-SY5Y cells. MATERIALS AND METHODS: Human neuroblastoma SH-SY5Y cells were treated with BHB, MEL, or a combination of the two after being exposed to A ß1-42 and LPS. Cell viability was determined using the MTT test, and gene expression levels of UPR (ATF6, PERK, and CHOP), autophagy (Beclin-1, LC3II, P62, and Atg5), and pyroptosis-related markers (NLRP3, TXNIP, IL-1ß, and NFκB1) were determined using quantitative Real-Time PCR (qRT-PCR). For statistical analysis, one-way ANOVA was employed, followed by Tukey's post hoc test. RESULTS: BHB and MEL significantly increased SH-SY5Y cell viability in the presence of A ß1-42 and LPS. Both compounds inhibited the expression of maladaptive UPR and autophagy-related genes, as well as inflammatory and pyroptotic markers caused by Aß1-42 and LPS-induced SH-SY5Y cells. CONCLUSION: BHB and MEL rescue neurons in A ß1-42 and LPS-induced SH-SY5Y cells by reducing maladaptive UPR, excessive autophagy, and pyroptosis. More research is needed to fully comprehend the processes behind their beneficial effects and to discover their practical applications in the treatment of neurodegenerative disorders.


Asunto(s)
Ácido 3-Hidroxibutírico , Péptidos beta-Amiloides , Autofagia , Lipopolisacáridos , Melatonina , Fragmentos de Péptidos , Piroptosis , Respuesta de Proteína Desplegada , Humanos , Melatonina/farmacología , Péptidos beta-Amiloides/metabolismo , Autofagia/efectos de los fármacos , Piroptosis/efectos de los fármacos , Lipopolisacáridos/farmacología , Línea Celular Tumoral , Respuesta de Proteína Desplegada/efectos de los fármacos , Ácido 3-Hidroxibutírico/farmacología , Fragmentos de Péptidos/farmacología , Supervivencia Celular/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patología
2.
CNS Neurosci Ther ; 30(7): e14840, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38973202

RESUMEN

BACKGROUND: Heat stress (HS) commonly occurs as a severe pathological response when the body's sensible temperature exceeds its thermoregulatory capacity, leading to the development of chronic brain inflammation, known as neuroinflammation. Emerging evidence suggests that HS leads to the disruption of the gut microbiota, whereas abnormalities in the gut microbiota have been demonstrated to affect neuroinflammation. However, the mechanisms underlying the effects of HS on neuroinflammation are poorly studied. Meanwhile, effective interventions have been unclear. ß-Hydroxybutyric acid (BHBA) has been found to have neuroprotective and anti-inflammatory properties in previous studies. This study aims to explore the modulatory effects of BHBA on neuroinflammation induced by HS and elucidate the underlying molecular mechanisms. METHODS: An in vivo and in vitro model of HS was constructed under the precondition of BHBA pretreatment. The modulatory effects of BHBA on HS-induced neuroinflammation were explored and the underlying molecular mechanisms were elucidated by flow cytometry, WB, qPCR, immunofluorescence staining, DCFH-DA fluorescent probe assay, and 16S rRNA gene sequencing of colonic contents. RESULTS: Heat stress was found to cause gut microbiota disruption in HS mouse models, and TM7 and [Previotella] spp. may be the best potential biomarkers for assessing the occurrence of HS. Fecal microbiota transplantation associated with BHBA effectively reversed the disruption of gut microbiota in HS mice. Moreover, BHBA may inhibit microglia hyperactivation, suppress neuroinflammation (TNF-α, IL-1ß, and IL-6), and reduce the expression of cortical endoplasmic reticulum stress (ERS) markers (GRP78 and CHOP) mainly through its modulatory effects on the gut microbiota (TM7, Lactobacillus spp., Ruminalococcus spp., and Prevotella spp.). In vitro experiments revealed that BHBA (1 mM) raised the expression of the ERS marker GRP78, enhanced cellular activity, and increased the generation of reactive oxygen species (ROS) and anti-inflammatory cytokines (IL-10), while also inhibiting HS-induced apoptosis, ROS production, and excessive release of inflammatory cytokines (TNF-α and IL-1ß) in mouse BV2 cells. CONCLUSION: ß-Hydroxybutyric acid may be an effective agent for preventing neuroinflammation in HS mice, possibly due to its ability to inhibit ERS and subsequent microglia neuroinflammation via the gut-brain axis. These findings lay the groundwork for future research and development of BHBA as a preventive drug for HS and provide fresh insights into techniques for treating neurological illnesses by modifying the gut microbiota.


Asunto(s)
Ácido 3-Hidroxibutírico , Eje Cerebro-Intestino , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Animales , Ratones , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Eje Cerebro-Intestino/fisiología , Eje Cerebro-Intestino/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Masculino , Ácido 3-Hidroxibutírico/farmacología , Trastornos de Estrés por Calor/metabolismo , Chaperón BiP del Retículo Endoplásmico , Fármacos Neuroprotectores/farmacología , Respuesta al Choque Térmico/fisiología , Respuesta al Choque Térmico/efectos de los fármacos
3.
Mol Med ; 30(1): 95, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38910244

RESUMEN

BACKGROUND: Ketone ß-hydroxybutyrate (BHB) has been reported to prevent tumor cell proliferation and improve drug resistance. However, the effectiveness of BHB in oxaliplatin (Oxa)-resistant colorectal cancer (CRC) and the underlying mechanism still require further proof. METHODS: CRC-Oxa-resistant strains were established by increasing concentrations of CRC cells to Oxa. CRC-Oxa cell proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT) were checked following BHB intervention in vitro. The subcutaneous and metastasis models were established to assess the effects of BHB on the growth and metastasis of CRC-Oxa in vivo. Eight Oxa responders and seven nonresponders with CRC were enrolled in the study. Then, the serum BHB level and H3K79me, H3K27ac, H3K14ac, and H3K9me levels in tissues were detected. DOT1L (H3K79me methyltransferase) gene knockdown or GNE-049 (H3K27ac inhibitor) use was applied to analyze further whether BHB reversed CRC-Oxa resistance via H3K79 demethylation and/or H3K27 deacetylation in vivo and in vitro. RESULTS: Following BHB intervention based on Oxa, the proliferation, migration, invasion, and EMT of CRC-Oxa cells and the growth and metastasis of transplanted tumors in mice were suppressed. Clinical analysis revealed that the differential change in BHB level was associated with drug resistance and was decreased in drug-resistant patient serum. The H3K79me, H3K27ac, and H3K14ac expressions in CRC were negatively correlated with BHB. Furthermore, results indicated that H3K79me inhibition may lead to BHB target deletion, resulting in its inability to function. CONCLUSIONS: ß-hydroxybutyrate resensitized CRC cells to Oxa by suppressing H3K79 methylation in vitro and in vivo.


Asunto(s)
Ácido 3-Hidroxibutírico , Proliferación Celular , Neoplasias Colorrectales , Resistencia a Antineoplásicos , Histonas , Oxaliplatino , Oxaliplatino/farmacología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Humanos , Ácido 3-Hidroxibutírico/farmacología , Animales , Ratones , Histonas/metabolismo , Metilación , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones Desnudos
4.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891898

RESUMEN

The consequences of stroke include cognitive deficits and sensorimotor disturbances, which are largely related to mitochondrial impairments in the brain. In this work, we have shown that the mimetic of the ketogenic diet beta-hydroxybutyrate (ßHB) can improve neurological brain function in stroke. At 3 weeks after photothrombotic stroke, mice receiving ßHB with drinking water before and after surgery recovered faster in terms of sensorimotor functions assessed by the string test and static rods and cognitive functions assessed by the Morris water maze. At the same time, the ßHB-treated mice had lower expression of some markers of astrocyte activation and inflammation (Gfap, Il-1b, Tnf). We hypothesize that long-term administration of ßHB promotes the activation of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway, which leads to increased expression of antioxidant genes targeting mitochondria and genes involved in signaling pathways necessary for the maintenance of synaptic plasticity. ßHB partially maintained mitochondrial DNA (mtDNA) integrity during the first days after photothrombosis. However, in the following three weeks, the number of mtDNA damages increased in all experimental groups, which coincided with a decrease in Ogg1 expression, which plays an important role in mtDNA repair. Thus, we can assume that ßHB is not only an important metabolite that provides additional energy to brain tissue during recovery from stroke under conditions of mitochondrial damage but also an important signaling molecule that supports neuronal plasticity and reduces neuroinflammation.


Asunto(s)
Ácido 3-Hidroxibutírico , Disfunción Cognitiva , Accidente Cerebrovascular Isquémico , Animales , Ratones , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/complicaciones , Masculino , Modelos Animales de Enfermedad , Factor 2 Relacionado con NF-E2/metabolismo , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Trombosis/metabolismo , Trombosis/etiología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Ratones Endogámicos C57BL
5.
Nutrients ; 16(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892612

RESUMEN

Pharmacotherapy is the therapeutic mainstay in epilepsy; however, in about 30% of patients, epileptic seizures are drug-resistant. A ketogenic diet (KD) is an alternative therapeutic option. The mechanisms underlying the anti-seizure effect of a KD are not fully understood. Epileptic seizures lead to an increased energy demand of neurons. An improvement in energy provisions may have a protective effect. C8 and C10 fatty acids have been previously shown to activate mitochondrial function in vitro. This could involve sirtuins (SIRTs) as regulatory elements of energy metabolism. The aim of the present study was to investigate whether ß-hydroxybutyrate (ßHB), C8 fatty acids, C10 fatty acids, or a combination of C8 and C10 (250/250 µM) fatty acids, which all increase under a KD, could up-regulate SIRT1, -3, -4, and -5 in HT22 hippocampal murine neurons in vitro. Cells were incubated for 1 week in the presence of these metabolites. The sirtuins were measured at the enzyme (fluorometrically), protein (Western blot), and gene expression (PCR) levels. In hippocampal cells, the C8, C10, and C8 and C10 incubations led to increases in the sirtuin levels, which were not inferior to a ßHB incubation as the 'gold standard'. This may indicate that both C8 and C10 fatty acids are important for the antiepileptic effect of a KD. A KD may be replaced by nutritional supplements of C8 and C10 fatty acids, which could facilitate the diet.


Asunto(s)
Ácido 3-Hidroxibutírico , Dieta Cetogénica , Epilepsia Refractaria , Ácidos Grasos , Hipocampo , Neuronas , Sirtuinas , Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Dieta Cetogénica/métodos , Ratones , Sirtuinas/metabolismo , Ácidos Grasos/metabolismo , Epilepsia Refractaria/dietoterapia , Epilepsia Refractaria/tratamiento farmacológico , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ácido 3-Hidroxibutírico/farmacología , Línea Celular
6.
Ren Fail ; 46(1): 2354918, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38757723

RESUMEN

Cisplatin is a particularly potent antineoplastic drug. However, its usefulness is restricted due to the induction of nephrotoxicity. More recent research has indicated that ß-hydroxybutyrate (ß-HB) protects against acute or chronic organ damage as an efficient healing agent. Nonetheless, the therapeutic mechanisms of ß-HB in acute kidney damage caused by chemotherapeutic drugs remain unclear. Our study developed a model of cisplatin-induced acute kidney injury (AKI), which involved the administration of a ketogenic diet or ß-HB. We analyzed blood urea nitrogen (BUN) and creatinine (Cr) levels in serum, and used western blotting and immunohistochemical staining to assess ferroptosis and the calcium/calmodulin-dependent kinase kinase 2 (Camkk2)/AMPK pathway. The mitochondrial morphology and function were examined. Additionally, we conducted in vivo and in vitro experiments using selective Camkk2 inhibitor or activator to investigate the protective mechanism of ß-HB on cisplatin-induced AKI. Exogenous or endogenous ß-HB effectively alleviated cisplatin-induced abnormally elevated levels of BUN and Cr and renal tubular necrosis in vivo. Additionally, ß-HB reduced ferroptosis biomarkers and increased the levels of anti-ferroptosis biomarkers in the kidney. ß-HB also improved mitochondrial morphology and function. Moreover, ß-HB significantly attenuated cisplatin-induced cell ferroptosis and damage in vitro. Furthermore, western blotting and immunohistochemical staining indicated that ß-HB may prevent kidney injury by regulating the Camkk2-AMPK pathway. The use of the Camkk2 inhibitor or activator verified the involvement of Camkk2 in the renal protection by ß-HB. This study provided evidence of the protective effects of ß-HB against cisplatin-induced nephrotoxicity and identified inhibited ferroptosis and Camkk2 as potential molecular mechanisms.


ß-HB protects against cisplatin-induced renal damage both in vivo and in vitro.Moreover, ß-HB is effective in attenuating cisplatin-induced lipid peroxidation and ferroptosis.The regulation of energy metabolism, as well as the treatment involving ß-HB, is associated with Camkk2.


Asunto(s)
Ácido 3-Hidroxibutírico , Lesión Renal Aguda , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Cisplatino , Ferroptosis , Cisplatino/efectos adversos , Cisplatino/toxicidad , Animales , Ferroptosis/efectos de los fármacos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Masculino , Ratones , Ácido 3-Hidroxibutírico/farmacología , Modelos Animales de Enfermedad , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Antineoplásicos/toxicidad , Antineoplásicos/efectos adversos , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Nitrógeno de la Urea Sanguínea , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Creatinina/sangre , Humanos
7.
Exp Neurol ; 378: 114819, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763355

RESUMEN

BACKGROUND: Both glymphatic system dysfunction and inflammatory response aggravate neurological dysfunction after subarachnoid hemorrhage (SAH). Studies have shown that ß-hydroxybutyrate (BHB) may mitigate painful diabetic neuropathy (PDN) by upregulating SNTA1 expression and reinstating AQP4 polarity. However, the potential of BHB to ameliorate glymphatic system function and inflammatory response in SAH mice remains uncertain. METHODS: The SAH models were constructed by injection of arterial blood into cisterna Magana. Three groups of C57 mice were randomly assigned: Sham, SAH, and BHB. All mice were subjected to neurological function assessment, western blot, immunofluorescence double staining, and RNA-seq. Glymphatic system function was examined with tracer and immunofluorescence double staining, and the differential genes were examined with RNA-seq. In addition, the expression of related inflammation was detected. RESULTS: Compared with the SAH group, BHB reinstated AQP4 polarization by upregulating SNTA1 protein to enhance the glymphatic system. According to RNA-seq, the different genes were primarily connected to microglia activation, astrocytes, and inflammation. Western blot and immunofluorescence further confirmed that the related inflammatory protein expression levels were upregulated. BHB attenuated neuroinflammation after SAH. Ultimately, it can mitigate the neurological deficits in SAH mice. CONCLUSION: The study reveals a novel mechanism that BHB treatment mitigates neurologic impairment in SAH mice. We propose that BHB may play a neuroprotective effect by enhancing glymphatic system function and attenuating neuroinflammatory subarachnoid hemorrhage.


Asunto(s)
Ácido 3-Hidroxibutírico , Sistema Glinfático , Ratones Endogámicos C57BL , Hemorragia Subaracnoidea , Animales , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/tratamiento farmacológico , Ratones , Sistema Glinfático/efectos de los fármacos , Sistema Glinfático/metabolismo , Masculino , Ácido 3-Hidroxibutírico/farmacología , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/etiología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/metabolismo
8.
Am J Physiol Cell Physiol ; 326(6): C1710-C1720, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38708524

RESUMEN

Ketone bodies (acetoacetate and ß-hydroxybutyrate) are oxidized in skeletal muscle mainly during fasting as an alternative source of energy to glucose. Previous studies suggest that there is a negative relationship between increased muscle ketolysis and muscle glucose metabolism in mice with obesity and/or type 2 diabetes. Therefore, we investigated the connection between increased ketone body exposure and muscle glucose metabolism by measuring the effect of a 3-h exposure to ketone bodies on glucose uptake in differentiated L6 myotubes. We showed that exposure to acetoacetate at a typical concentration (0.2 mM) resulted in increased basal glucose uptake in L6 myotubes, which was dependent on increased membrane glucose transporter type 4 (GLUT4) translocation. Basal and insulin-stimulated glucose uptake was also increased with a concentration of acetoacetate reflective of diabetic ketoacidosis or a ketogenic diet (1 mM). We found that ß-hydroxybutyrate had a variable effect on basal glucose uptake: a racemic mixture of the two ß-hydroxybutyrate enantiomers (d and l) appeared to decrease basal glucose uptake, while 3 mM d-ß-hydroxybutyrate alone increased basal glucose uptake. However, the effects of the ketone bodies individually were not observed when acetoacetate was present in combination with ß-hydroxybutyrate. These results provide insight that will help elucidate the effect of ketone bodies in the context of specific metabolic diseases and nutritional states (e.g., type 2 diabetes and ketogenic diets).NEW & NOTEWORTHY A limited number of studies investigate the effect of ketone bodies at concentrations reflective of both typical fasting and ketoacidosis. We tested a mix of physiologically relevant concentrations of ketone bodies, which allowed us to highlight the differential effects of d- and l-ß-hydroxybutyrate and acetoacetate on skeletal muscle cell glucose uptake. Our findings will assist in better understanding the mechanisms that contribute to muscle insulin resistance and provide guidance on recommendations regarding ketogenic diets.


Asunto(s)
Ácido 3-Hidroxibutírico , Acetoacetatos , Glucosa , Insulina , Fibras Musculares Esqueléticas , Acetoacetatos/metabolismo , Acetoacetatos/farmacología , Animales , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Insulina/farmacología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Línea Celular , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Ratas , Cuerpos Cetónicos/metabolismo , Ratones
9.
Cancer Lett ; 593: 216940, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729554

RESUMEN

Decreased levels of ß-hydroxybutyrate (BHB), a lipid metabolic intermediate known to slow the progression of colorectal cancer (CRC), have been observed in the colon mucosa of patients with inflammatory bowel diseases (IBD). In particular, patients with recurrent IBD present an increased risk of developing colitis-associated colorectal cancer (CAC). The role and molecular mechanism of BHB in the inflammatory and carcinogenic process of CAC remains unclear. Here, the anti-tumor effect of BHB was investigated in the Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS)-induced CAC model and tumor organoids derivatives. The underlying mechanisms were studied using transcriptome and non-target metabolomic assay and further validated in colon tumor cell lineage CT26 in vitro. The tumor tissues and the nearby non-malignant tissues from colon cancer patients were collected to measure the expression levels of ketogenic enzymes. The exogenous BHB supplement lightened tumor burden and angiogenesis in the CAC model. Notably, transcriptome analysis revealed that BHB effectively decreased the expression of VEGFA in the CAC tumor mucosa. In vitro, BHB directly reduced VEGFA expression in hypoxic-treated CT26 cells by targeting transcriptional factor HIF-1α. Conversely, the deletion of HIF-1α largely reversed the inhibitory effect of BHB on CAC tumorigenesis. Additionally, decreased expression of ketogenesis-related enzymes in tumor tissues were associated with poor survival outcomes in patients with colon cancer. In summary, BHB carries out anti-angiogenic activity in CAC by regulating HIF-1α/VEGFA signaling. These findings emphasize the role of BHB in CAC and may provide novel perspectives for the prevention and treatment of colonic tumors.


Asunto(s)
Ácido 3-Hidroxibutírico , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neovascularización Patológica , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Animales , Ratones , Humanos , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Línea Celular Tumoral , Carcinogénesis/efectos de los fármacos , Masculino , Azoximetano/toxicidad , Colitis/complicaciones , Colitis/metabolismo , Colitis/patología , Colitis/inducido químicamente , Sulfato de Dextran , Modelos Animales de Enfermedad , Angiogénesis
10.
Mol Biol Rep ; 51(1): 641, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727798

RESUMEN

BACKGROUND: The interrelationship between cellular metabolism and the epithelial-to-mesenchymal transition (EMT) process has made it an interesting topic to investigate the adjuvant effect of therapeutic diets in the treatment of cancers. However, the findings are controversial. In this study, the effects of glucose limitation along and with the addition of beta-hydroxybutyrate (bHB) were examined on the expression of specific genes and proteins of EMT, Wnt, Hedgehog, and Hippo signaling pathways, and also on cellular behavior of gastric cancer stem-like (MKN-45) and non-stem-like (KATO III) cells. METHODS AND RESULTS: The expression levels of chosen genes and proteins studied in cancer cells gradually adopted a low-glucose condition of one-fourth, along and with the addition of bHB, and compared to the unconditioned control cells. The long-term switching of the metabolic fuels successfully altered the expression profiles and behaviors of both gastric cancer cells. However, the results for some changes were the opposite. Glucose limitation along and with the addition of bHB reduced the CD44+ population in MKN-45 cells. In KATO III cells, glucose restriction increased the CD44+ population. Glucose deprivation alleviated EMT-related signaling pathways in MKN-45 cells but stimulated EMT in KATO III cells. Interestingly, bHB enrichment reduced the beneficial effect of glucose starvation in MKN-45 cells, but also alleviated the adverse effects of glucose restriction in KATO III cells. CONCLUSIONS: The findings of this research clearly showed that some controversial results in clinical trials for ketogenic diet in cancer patients stemmed from the different signaling responses of various cells to the metabolic changes in a heterogeneous cancer mass.


Asunto(s)
Ácido 3-Hidroxibutírico , Transición Epitelial-Mesenquimal , Glucosa , Transducción de Señal , Neoplasias Gástricas , Transición Epitelial-Mesenquimal/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Humanos , Línea Celular Tumoral , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Glucosa/metabolismo , Cetosis/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética
11.
Biomed Pharmacother ; 175: 116752, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761425

RESUMEN

The gut microbiota has been reported to be perturbed by chemotherapeutic agents and to modulate side effects. However, the critical role of ß-hydroxybutyrate (BHB) in the regulation of the gut microbiota and the pathogenesis of chemotherapeutic agents related nephrotoxicity remains unknown. We conducted a comparative analysis of the composition and function of gut microbiota in healthy, cisplatin-challenged, BHB-treated, and high-fat diet-treated mice using 16 S rDNA gene sequencing. To understand the crucial involvement of intestinal flora in BHB's regulation of cisplatin -induced nephrotoxicity, we administered antibiotics to deplete the gut microbiota and performed fecal microbiota transplantation (FMT) before cisplatin administration. 16 S rDNA gene sequencing analysis demonstrated that both endogenous and exogenous BHB restored gut microbiota dysbiosis and cisplatin-induced intestinal barrier disruption in mice. Additionally, our findings suggested that the LPS/TLR4/NF-κB pathway was responsible for triggering renal inflammation in the gut-kidney axis. Furthermore, the ablation of the gut microbiota ablation using antibiotics eliminated the renoprotective effects of BHB against cisplatin-induced acute kidney injury. FMT also confirmed that administration of BHB-treated gut microbiota provided protection against cisplatin-induced nephrotoxicity. This study elucidated the mechanism by which BHB affects the gut microbiota mediation of cisplatin-induced nephrotoxicity by inhibiting the inflammatory response, which may help develop novel therapeutic approaches that target the composition of the microbiota.


Asunto(s)
Ácido 3-Hidroxibutírico , Lesión Renal Aguda , Cisplatino , Disbiosis , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Animales , Cisplatino/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Masculino , Disbiosis/inducido químicamente , Ratones , Ácido 3-Hidroxibutírico/farmacología , Riñón/efectos de los fármacos , Trasplante de Microbiota Fecal , Dieta Alta en Grasa/efectos adversos , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Sustancias Protectoras/farmacología , Antibacterianos/farmacología , Antibacterianos/efectos adversos , Antineoplásicos/efectos adversos , Antineoplásicos/toxicidad
12.
Adv Sci (Weinh) ; 11(25): e2400426, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38666466

RESUMEN

Adaptive metabolic responses and innate metabolites hold promising therapeutic potential for stroke, while targeted interventions require a thorough understanding of underlying mechanisms. Adiposity is a noted modifiable metabolic risk factor for stroke, and recent research suggests that it benefits neurological rehabilitation. During the early phase of experimental stroke, the lipidomic results showed that fat depots underwent pronounced lipolysis and released fatty acids (FAs) that feed into consequent hepatic FA oxidation and ketogenesis. Systemic supplementation with the predominant ketone beta-hydroxybutyrate (BHB) is found to exert discernible effects on preserving blood-brain barrier (BBB) integrity and facilitating neuroinflammation resolution. Meanwhile, blocking FAO-ketogenesis processes by administration of CPT1α antagonist or shRNA targeting HMGCS2 exacerbated endothelial damage and aggravated stroke severity, whereas BHB supplementation blunted these injuries. Mechanistically, it is unveiled that BHB infusion is taken up by monocarboxylic acid transporter 1 (MCT1) specifically expressed in cerebral endothelium and upregulated the expression of tight junction protein ZO-1 by enhancing local ß-hydroxybutyrylation of H3K9 at the promoter of TJP1 gene. Conclusively, an adaptive metabolic mechanism is elucidated by which acute lipolysis stimulates FAO-ketogenesis processes to restore BBB integrity after stroke. Ketogenesis functions as an early metabolic responder to restrain stroke progression, providing novel prospectives for clinical translation.


Asunto(s)
Ácido 3-Hidroxibutírico , Barrera Hematoencefálica , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico , Proteína de la Zonula Occludens-1 , Animales , Barrera Hematoencefálica/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Ratones , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/genética , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Epigénesis Genética/genética , Masculino , Ratones Endogámicos C57BL , Hidroximetilglutaril-CoA Sintasa , Transportadores de Ácidos Monocarboxílicos , Simportadores
13.
Gen Comp Endocrinol ; 352: 114514, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582175

RESUMEN

Hormonal influence on hepatic function is a critical aspect of whole-body energy balance in vertebrates. Catecholamines and corticosteroids both influence hepatic energy balance via metabolite mobilization through glycogenolysis and gluconeogenesis. Elasmobranchs have a metabolic organization that appears to prioritize the mobilization of hepatic lipid as ketone bodies (e.g. 3-hydroxybutyrate [3-HB]), which adds complexity in determining the hormonal impact on hepatic energy balance in this taxon. Here, a liver perfusion was used to investigate catecholamine (epinephrine [E]) and corticosteroid (corticosterone [B] and 11-deoxycorticosterone [DOC]) effects on the regulation of hepatic glucose and 3-HB balance in the North Pacific Spiny dogfish, Squalus suckleyi. Further, hepatic enzyme activity involved in ketogenesis (3-hydroxybutyrate dehydrogenase), glycogenolysis (glycogen phosphorylase), and gluconeogenesis (phosphoenolpyruvate carboxykinase) were assessed in perfused liver tissue following hormonal application to discern effects on hepatic energy flux. mRNA transcript abundance key transporters of glucose (glut1 and glut4) and ketones (mct1 and mct2) and glucocorticoid function (gr, pepck, fkbp5, and 11ßhsd2) were also measured to investigate putative cellular components involved in hepatic responses. There were no changes in the arterial-venous difference of either metabolite in all hormone perfusions. However, perfusion with DOC increased gr transcript abundance and decreased flow rate of perfusions, suggesting a regulatory role for this corticosteroid. Phosphoenolpyruvate carboxykinase activity increased following all hormone treatments, which may suggest gluconeogenic function; E also increased 3-hydroxybutyrate dehydrogenase activity, suggesting a function in ketogenesis, and decreased pepck and fkbp5 transcript abundance, potentially showing some metabolic regulation. Overall, we demonstrate hormonal control of hepatic energy balance using liver perfusions at various levels of biological organization in an elasmobranch.


Asunto(s)
Squalus acanthias , Squalus , Animales , Glucosa/metabolismo , Squalus/metabolismo , Squalus acanthias/metabolismo , Hidroxibutirato Deshidrogenasa/metabolismo , Fosfoenolpiruvato/metabolismo , Hígado/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Cuerpos Cetónicos/metabolismo , Gluconeogénesis , Hormonas/metabolismo , Corticoesteroides/metabolismo
14.
Am J Physiol Cell Physiol ; 326(6): C1769-C1775, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682238

RESUMEN

We recently demonstrated that acute oral ketone monoester intake induces a stimulation of postprandial myofibrillar protein synthesis rates comparable to that elicited following the ingestion of 10 g whey protein or their coingestion. The present investigation aimed to determine the acute effects of ingesting a ketone monoester, whey protein, or their coingestion on mechanistic target of rapamycin (mTOR)-related protein-protein colocalization and intracellular trafficking in human skeletal muscle. In a randomized, double-blind, parallel group design, 36 healthy recreationally active young males (age: 24.2 ± 4.1 yr) ingested either: 1) 0.36 g·kg-1 bodyweight of the ketone monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KET), 2) 10 g whey protein (PRO), or 3) the combination of both (KET + PRO). Muscle biopsies were obtained in the overnight postabsorptive state (basal conditions), and at 120 and 300 min in the postprandial period for immunofluorescence assessment of protein translocation and colocalization of mTOR-related signaling molecules. All treatments resulted in a significant (Interaction: P < 0.0001) decrease in tuberous sclerosis complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) colocalization at 120 min versus basal; however, the decrease was sustained at 300 min versus basal (P < 0.0001) only in KET + PRO. PRO and KET + PRO increased (Interaction: P < 0.0001) mTOR-Rheb colocalization at 120 min versus basal; however, KET + PRO resulted in a sustained increase in mTOR-Rheb colocalization at 300 min that was greater than KET and PRO. Treatment intake increased mTOR-wheat germ agglutinin (WGA) colocalization at 120 and 300 min (Time: P = 0.0031), suggesting translocation toward the fiber periphery. These findings demonstrate that ketone monoester intake can influence the spatial mechanisms involved in the regulation of mTORC1 in human skeletal muscle.NEW & NOTEWORTHY We explored the effects of a ketone monoester (KET), whey protein (PRO), or their coingestion (KET + PRO) on mTOR-related protein-protein colocalization and intracellular trafficking in human muscle. All treatments decreased TSC2-Rheb colocalization at 120 minutes; however, KET + PRO sustained the decrease at 300 min. Only PRO and KET + PRO increased mTOR-Rheb colocalization; however, the increase at 300 min was greater in KET + PRO. Treatment intake increased mTOR-WGA colocalization, suggesting translocation to the fiber periphery. Ketone bodies influence the spatial regulation of mTOR.


Asunto(s)
Músculo Esquelético , Transporte de Proteínas , Serina-Treonina Quinasas TOR , Proteína de Suero de Leche , Humanos , Proteína de Suero de Leche/metabolismo , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/administración & dosificación , Masculino , Serina-Treonina Quinasas TOR/metabolismo , Adulto Joven , Adulto , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Método Doble Ciego , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Periodo Posprandial , Cetonas/metabolismo , Proteínas Musculares/metabolismo
15.
J Am Heart Assoc ; 13(8): e033628, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38563382

RESUMEN

BACKGROUND: The ketone body 3-hydroxybutyrate (3-OHB) increases cardiac output (CO) by 35% to 40% in healthy people and people with heart failure. The mechanisms underlying the effects of 3-OHB on myocardial contractility and loading conditions as well as the cardiovascular effects of its enantiomeric forms, D-3-OHB and L-3-OHB, remain undetermined. METHODS AND RESULTS: Three groups of 8 pigs each underwent a randomized, crossover study. The groups received 3-hour infusions of either D/L-3-OHB (racemic mixture), 100% L-3-OHB, 100% D-3-OHB, versus an isovolumic control. The animals were monitored with pulmonary artery catheter, left ventricle pressure-volume catheter, and arterial and coronary sinus blood samples. Myocardial biopsies were evaluated with high-resolution respirometry, coronary arteries with isometric myography, and myocardial kinetics with D-[11C]3-OHB and L-[11C]3-OHB positron emission tomography. All three 3-OHB infusions increased 3-OHB levels (P<0.001). D/L-3-OHB and L-3-OHB increased CO by 2.7 L/min (P<0.003). D-3-OHB increased CO nonsignificantly (P=0.2). Circulating 3-OHB levels correlated with CO for both enantiomers (P<0.001). The CO increase was mediated through arterial elastance (afterload) reduction, whereas contractility and preload were unchanged. Ex vivo, D- and L-3-OHB dilated coronary arteries equally. The mitochondrial respiratory capacity remained unaffected. The myocardial 3-OHB extraction increased only during the D- and D/L-3-OHB infusions. D-[11C]3-OHB showed rapid cardiac uptake and metabolism, whereas L-[11C]3-OHB demonstrated much slower pharmacokinetics. CONCLUSIONS: 3-OHB increased CO by reducing afterload. L-3-OHB exerted a stronger hemodynamic response than D-3-OHB due to higher circulating 3-OHB levels. There was a dissocitation between the myocardial metabolism and hemodynamic effects of the enantiomers, highlighting L-3-OHB as a potent cardiovascular agent with strong hemodynamic effects.


Asunto(s)
Hidroxibutiratos , Tomografía Computarizada por Rayos X , Humanos , Porcinos , Animales , Ácido 3-Hidroxibutírico/farmacología , Estudios Cruzados , Hidroxibutiratos/farmacología , Corazón , Cuerpos Cetónicos/metabolismo
16.
Mol Biol Rep ; 51(1): 567, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656394

RESUMEN

BACKGROUND: Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells. METHODS AND RESULTS: A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and ß-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings. CONCLUSION: The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.


Asunto(s)
Ácido 3-Hidroxibutírico , Apoptosis , Glucosa , Neoplasias Pulmonares , Potencial de la Membrana Mitocondrial , Mitocondrias , Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Estrés Oxidativo/efectos de los fármacos , Glucosa/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ácido 3-Hidroxibutírico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Antígeno AC133/metabolismo , Antígeno AC133/genética
17.
Clin Nutr ; 43(6): 1250-1260, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653008

RESUMEN

BACKGROUND & AIM: Dysfunction of skeletal muscle satellite cells might impair muscle regeneration and prolong ICU-acquired weakness, a condition associated with disability and delayed death. This study aimed to elucidate the distinct metabolic effects of critical illness and ß-OH-butyrate on satellite cells isolated from these patients. METHODS: Satellite cells were extracted from vastus lateralis muscle biopsies of patients with ICU-acquired weakness (n = 10) and control group of healthy volunteers or patients undergoing elective hip replacement surgery (n = 10). The cells were exposed to standard culture media supplemented with ß-OH-butyrate to assess its influence on cell proliferation by ELISA, mitochondrial functions by extracellular flux analysis, electron transport chain complexes by high resolution respirometry, and ROS production by confocal microscopy. RESULTS: Critical illness led to a decline in maximal respiratory capacity, ATP production and glycolytic capacity and increased ROS production in ICU patients' cells. Notably, the function of complex II was impaired due to critical illness but restored to normal levels upon exposure to ß-OH-butyrate. While ß-OH-butyrate significantly reduced ROS production in both control and ICU groups, it had no significant impact on global mitochondrial functions. CONCLUSION: Critical illness induces measurable bioenergetic dysfunction of skeletal muscle satellite cells. ß-OH-butyrate displayed a potential in rectifying complex II dysfunction caused by critical illness and this warrants further exploration.


Asunto(s)
Ácido 3-Hidroxibutírico , Enfermedad Crítica , Especies Reactivas de Oxígeno , Células Satélite del Músculo Esquelético , Humanos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Especies Reactivas de Oxígeno/metabolismo , Anciano , Ácido 3-Hidroxibutírico/farmacología , Proliferación Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Adulto , Células Cultivadas , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Adenosina Trifosfato/metabolismo , Debilidad Muscular
18.
Toxicol Appl Pharmacol ; 486: 116943, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677600

RESUMEN

Ulcerative colitis (UC) is an inflammatory condition that affects the colon's lining and increases the risk of colon cancer. Despite ongoing research, there is no identified cure for UC. The recognition of NLRP3 inflammasome activation in the pathogenesis of UC has gained widespread acceptance. Notably, the ketone body ß-hydroxybutyrate inhibits NLRP3 demonstrating its anti-inflammatory properties. Additionally, BD-AcAc 2 is ketone mono ester that increases ß-hydroxybutyrate blood levels. It has the potential to address the constraints associated with exogenous ß-hydroxybutyrate as a therapeutic agent, including issues related to stability and short duration of action. However, the effects of ß-hydroxybutyrate and BD-AcAc 2 on colitis have not been fully investigated. This study found that while both exogenous ß-hydroxybutyrate and BD-AcAc 2 produced the same levels of plasma ß-hydroxybutyrate, BD-AcAc 2 demonstrated superior effectiveness in mitigating dextran sodium sulfate-induced UC in rats. The mechanism of action involves modulating the NF-κB signaling, inhibiting the NLRP3 inflammasome, regulating antioxidant capacity, controlling tight junction protein expression and a potential to inhibit apoptosis and pyroptosis. Certainly, BD-AcAc 2's anti-inflammatory effects require more than just increasing plasma ß-hydroxybutyrate levels and other factors contribute to its efficacy. Local ketone concentrations in the gastrointestinal tract, as well as the combined effect of specific ketone bodies, are likely to have contributed to the stronger protective effect observed with ketone mono ester ingestion in our experiment. As a result, further investigations are necessary to fully understand the mechanisms of BD-AcAc 2 and optimize its use.


Asunto(s)
Ácido 3-Hidroxibutírico , Colitis Ulcerosa , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Ácido 3-Hidroxibutírico/farmacología , Ratas , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Sprague-Dawley , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Sulfato de Dextran/toxicidad , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , FN-kappa B/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Cetonas/farmacología
19.
Tissue Cell ; 87: 102343, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442546

RESUMEN

The hyperpermeability of intestinal epithelium is a key contributor to the occurrence and development of systemic inflammation. Although D-beta-hydroxybutyrate (BHB) exhibits various protective effects, whether it affects the permeability of intestinal epithelium in systemic inflammation has not been clarified. In this study, we investigated the effects of BHB on the intestinal epithelial permeability, the epithelial marker E-cadherin and the tight junction protein Claudin-1 in colon in the lipopolysaccharide (LPS)-induced systemic inflammation mouse model. Intraperitoneal injection of LPS was used to induce systemic inflammation and BHB was given by oral administration. The permeability of intestinal epithelium, the morphological changes of colonic epithelium, the distribution and generation of colon E-cadherin, and the Claudin-1 generation and its epithelial distribution in colon were detected. The results confirmed the intestinal epithelial hyperpermeability and inflammatory changes in colonic epithelium, with disturbed E-cadherin distribution in LPS-treated mice. Besides, colon Claudin-1 generation was decreased and its epithelial distribution in colon was weakened in LPS-treated mice. However, BHB treatments alleviated the LPS-induced hyperpermeability of intestinal epithelium, attenuated the colonic epithelial morphological changes and promoted orderly distribution of E-cadherin in colon. Furthermore, BHB up-regulated colon Claudin-1 generation and promoted its colonic epithelial distribution and content in LPS-treated mice. In conclusion, BHB may alleviate the hyperpermeability of intestinal epithelium via up-regulation of Claudin-1 in colon in LPS-treated mice.


Asunto(s)
Inflamación , Lipopolisacáridos , Ratones , Animales , Claudina-1 , Lipopolisacáridos/toxicidad , Ácido 3-Hidroxibutírico/farmacología , Cadherinas/metabolismo
20.
Biomed Pharmacother ; 172: 116320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387134

RESUMEN

BACKGROUND: Mitochondrial redox imbalance underlies the pathophysiology of type2 diabetes mellitus (T2DM), and is closely related to tissue damage and dysfunction. Studies have shown the beneficial effects of dietary strategies that elevate ß-hydroxybutyrate (BHB) levels in alleviating T2DM. Nevertheless, the role of BHB has not been clearly elucidated. METHODS: We performed a spectral study to visualize the preventive effects of BHB on blood and multiorgan mitochondrial redox imbalance in T2DM mice via using label-free resonance Raman spectroscopy (RRS), and further explored the impact of BHB therapy on the pathology of T2DM mice by histological and biochemical analyses. FINDINGS: Our data revealed that RRS-based mitochondrial redox states assay enabled clear and reliable identification of the improvement of mitochondrial redox imbalance by BHB, evidenced by the reduction of Raman peak intensity at 750 cm-1, 1128 cm-1 and 1585 cm-1 in blood, tissue as well as purified mitochondria of db/db mice and the increase of tissue mitochondrial succinic dehydrogenase (SDH) staining after BHB treatment. Exogenous supplementation of BHB was also found to attenuate T2DM pathology related to mitochondrial redox states, involving organ injury, blood glucose control, insulin resistance and systemic inflammation. INTERPRETATION: Our findings provide strong evidence for BHB as a potential therapeutic strategy targeting mitochondria for T2DM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones , Animales , Espectrometría Raman , Ácido 3-Hidroxibutírico/farmacología , Mitocondrias , Oxidación-Reducción , Diabetes Mellitus Tipo 2/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA