Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 619
Filtrar
1.
ACS Sens ; 9(8): 3921-3927, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39133300

RESUMEN

Luminescence-based sensing provides a method for the rapid detection of nerve agents. Previous approaches have generally focused on sensing materials containing a nucleophilic group that can react with the electrophilic phosphorus atom found in nerve agents. Herein we report an alternative approach for the detection of phosphonofluoridate-based G-series nerve agents that utilizes the fact they contain hydrogen fluoride. We have developed silylated sensing materials based on an excited-state intramolecular proton transfer (ESIPT) reporter compound, 2-[benzo[d]thiazol-2-yl]phenol. Thin films of differently silylated 2-[benzo[d]thiazol-2-yl]phenol were found to react with the hydrogen fluoride found in di-iso-propyl fluorophosphate (DFP), a simulant of sarin (G-series nerve agent), and turn on the ESIPT emission of the reporter compound. The use of the ESIPT emission reduced the impact of background fluorescence and improved the sensitivity of the detection. The effectiveness of the approach was dependent on the stability of the silyl protecting group used, with the least sterically hindered (trimethylsilyl) found to be too unstable to the ambient environment while the most sterically hindered, e.g., tri-iso-propylsilyl and tert-butyldiphenylsilyl were found to be insufficiently reactive to be useful in a real detection scenario. The sensing material composed of the tert-butyl dimethylsilyl protected 2-[benzo[d]thiazol-2-yl]phenol was found to have the best balance between stability under ambient conditions, and reactivity and selectivity to hydrogen fluoride. In a 3 s exposure, it could detect hydrogen fluoride down to a concentration of around 23 ppm in DFP with 99% purity.


Asunto(s)
Ácido Fluorhídrico , Agentes Nerviosos , Protones , Ácido Fluorhídrico/química , Agentes Nerviosos/análisis , Agentes Nerviosos/química , Éteres/química
2.
Methods Mol Biol ; 2835: 261-267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105921

RESUMEN

MXenes are two-dimensional (2D) transition metal-based carbides, nitrides, and carbonitrides that are synthesized from its precursor MAX phase. The selective etching of the "A" from the MAX phase yields multi-functional MXenes that hold promise in a wide range of energy-based applications and biomedical applications. Based on its intended application, MXenes are prepared as multilayered sheets, monolayer flakes, and quantum dots. Conventionally, MXenes are prepared using hydrofluoric (HF) acid etching; however, the use of HF impedes its effective use in biomedical applications. This calls for the use of nontoxic HF-free synthesis protocols to prepare MXenes safe for biological use. Therefore, we have discussed a facile process to synthesize biocompatible, HF-free MXene nanosheets and quantum dots.


Asunto(s)
Nanoestructuras , Puntos Cuánticos , Tantalio , Puntos Cuánticos/química , Tantalio/química , Nanoestructuras/química , Ácido Fluorhídrico/química
3.
Int Orthod ; 22(3): 100897, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991249

RESUMEN

PURPOSE: The primary objective of this study was to determine which single-shade composite surface yielded clinically acceptable shear bond strength (SBS) to metal orthodontics brackets. The secondary objectives were to identify the best composite surface treatment to enhance SBS and determine which surface treatment produced the least surface damage at debond. METHODS: Forty dental composite samples were selected from four different manufacturers (n=160) and grouped by manufacturer, one standard multi-shade dental system (FilTek™ Supreme Ultra) and three single-shade dental composites systems (OmniChroma®, SimpliShade™ and Venus® Diamond One). Each group of forty samples was randomly divided into four sub-groups (n=10). Each sub-group was identified by the surface treatment used, hydrofluoric acid (HFA), micro-etching (MIC), or phosphoric acid (PA). Shear bond strength testing and adhesive remnant index (ARI) were performed. Statistical analyses included Kruskal-Wallis, Wilcoxon rank-sum, and two-factorial ANOVA. RESULTS: OmniChroma® had statistically significant lower shear bond strength than the other composite materials tested. The control groups had statistically significant lower shear bond strength than Group 1/HFA (P<0.001) and Group 2/MIC (P<0.001). Group 1/HFA had the lowest distribution ARI score overall, while MIC had the highest ARI score distributions. CONCLUSIONS: The results of this in-vitro study found that all tested composite materials achieved clinically acceptable shear bond strengths. The utilization of micro-etching produced higher SBS. Significant Adhesive Remnant Index scores (< 0.001) were only found for OmniChroma® without any surface preparation.


Asunto(s)
Resinas Compuestas , Recubrimiento Dental Adhesivo , Ensayo de Materiales , Soportes Ortodóncicos , Resistencia al Corte , Propiedades de Superficie , Resinas Compuestas/química , Recubrimiento Dental Adhesivo/métodos , Grabado Ácido Dental , Ácidos Fosfóricos/química , Análisis del Estrés Dental , Humanos , Ácido Fluorhídrico/química , Grabado Dental/métodos , Cementos de Resina/química
4.
Braz Dent J ; 35: 5669, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045984

RESUMEN

This study evaluated the influence of hydrofluoric acid (HF) concentration and thermal cycling on the microshear bond strength (µSBS) of a resin luting agent to IPS e.max® CAD and Rosetta® SM. Ceramic specimens (12.0 x 14.0 x 1.5mm) were randomized into 8 groups (n=10) according to HF concentration, commercial brand, and aging. Immediately after polishing, and etching, all specimens were silanized and a layer of adhesive was applied. A PVS mold of 3 mm thickness and 10mm diameter with (four) 1.0mm holes was fabricated, placed on each specimen, and then filled with a resin luting agent. Half of the specimens were subjected to the µSBS test using an Instron at a speed of 1.0 mm/min, following a 24-hour storage in deionized water at 37ºC. The remaining specimens were subjected to thermal cycling (5ºC-55ºC, 30 seconds per bath) and µSBS. The data were evaluated utilizing a three-way ANOVA and Tukey's post-hoc test (α=0.05). Significant differences were found for HF concentration and aging (p<0.0001). No significant difference in µSBS was found for commercial brands (p=0.085). The interaction between brand and HF concentration (p=0.358), brand and aging (p=0.135), and HF concentration and aging (p=0.138) were not statistically significant. The triple interaction among these factors was not statistically significant (p=0.610). In conclusion, the bond strength is affected by the HF concentration. No statistical difference was observed between the two ceramics. Thermal cycling significantly reduced µSBS.


Asunto(s)
Cerámica , Recubrimiento Dental Adhesivo , Ácido Fluorhídrico , Cementos de Resina , Ácido Fluorhídrico/química , Cementos de Resina/química , Cerámica/química , Ensayo de Materiales , Análisis del Estrés Dental
5.
Dent Mater J ; 43(4): 504-516, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825449

RESUMEN

The surface treatment of glass-ceramic-based materials, namely, lithium disilicate glass (IPS e.max CAD), feldspar porcelain (VITABLOCS Mark II), and a polymer-infiltrated ceramic network (VITA ENAMIC), using aqueous fluoride solutions and their influence on luting agent bonding were investigated. Six experimental aqueous fluoride solutions were applied to these materials, and their effects were assessed by surface topological analysis. The obtained results were compared using non-parametric statistical analyses. Ammonium hydrogen fluoride (AHF) etchant demonstrated the greatest etching effect. Subsequent experiments focused on evaluating different concentrations of the AHF etchant for the bonding pretreatment of glass-ceramic-based materials with a luting agent (PANAVIA V5). AHF, particularly at concentrations above 5 wt%, effectively roughened the surfaces of the materials and improved the bonding performance. Notably, AHF at a concentration of 30 wt% exhibited a more pronounced effect on both etching and bonding capabilities compared to hydrofluoric acid.


Asunto(s)
Cerámica , Diseño Asistido por Computadora , Porcelana Dental , Fluoruros , Ácido Fluorhídrico , Ensayo de Materiales , Propiedades de Superficie , Fluoruros/química , Cerámica/química , Porcelana Dental/química , Ácido Fluorhídrico/química , Recubrimiento Dental Adhesivo/métodos , Grabado Ácido Dental , Silicatos de Aluminio/química , Compuestos de Potasio/química , Compuestos de Amonio/química
6.
J Contemp Dent Pract ; 25(3): 226-230, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38690694

RESUMEN

AIM: To assess the effectiveness of various surface treatments and adhesives on the bond strength of zirconia-based ceramic to dentin. MATERIALS AND METHODS: Eighty samples of zirconia were subjected to the four-surface treatment protocols (sandblasting, 48% hydrofluoric acid (HF), 48% hydrofluoric acid + 70% nitric acid (HNO3) and no treatment (control) following which the samples from each group were subdivided into two subgroups (n = 10) based on the resin cement employed for cementation (RelyX U200 and G-Cem Linkforce). The bonded specimens were subjected to shear stress to measure the bond strength using Universal testing machine. To test the difference in bond strength among the eight study groups, the Kruskal-Wallis ANOVA test was applied and for comparison between cements in each group, Mann-Whitney U test was applied. RESULTS: The highest bond strength values were observed for 48% HF group cemented with G-Cem Linkforce resin cement (16.220 ± 1.574) and lowest for control group-RelyX (4.954 ± 0.972). G-Cem cement showed higher bond strength than RelyX for all surface treatments except 48% HF + 70% nitric acid. CONCLUSION: It can be inferred that 48% HF can etch zirconia and generate a porous structure that proves to be beneficial for bonding. CLINICAL SIGNIFICANCE: The increasing demand for esthetics has led to the replacement of metal-ceramic materials with zirconia-based ceramics. However, the chemical inertness of zirconia to various conventional surface treating agents has continuously challenged researchers to discover a new surface treatment protocol that could enhance the bond strength of zirconia. How to cite this article: Yenamandra MS, Joseph A, Singh P, et al. Effect of Various Surface Treatments of Zirconia on its Adhesive Properties to Dentin: An In Vitro Study. J Contemp Dent Pract 2024;25(3):226-230.


Asunto(s)
Recubrimiento Dental Adhesivo , Dentina , Ensayo de Materiales , Cementos de Resina , Propiedades de Superficie , Circonio , Cementos de Resina/química , Recubrimiento Dental Adhesivo/métodos , Técnicas In Vitro , Humanos , Análisis del Estrés Dental , Resistencia al Corte , Ácido Fluorhídrico/química , Ácido Nítrico/química , Cerámica/química
7.
Braz Dent J ; 35: e245641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38537017

RESUMEN

This study verified the effect of the combination of preheated hydrofluoric acid/silane/electric current in the adhesion of the resin cement to ceramic. IPS E.max Press ceramic discs embedded in PVC rigid tubes were divided into four groups associating preheated hydrofluoric acid and silane applied with electrical current (n=10): Ha+S (Heated acid + silane); Ha+S+Ec (Heated acid + silane + electrical current); A+S (Acid + silane) and A+S+Ec (Acid + silano + electrical current). Resin cement/ceramic samples were stored in water at 37°C for 24h. After storage, they were submitted to the microshear test, fracture analysis, and contact angle at 24h or after thermocycling (10,000 cycles/5-55ºC). Bond strength data were evaluated by two-way ANOVA. For comparison between evaluation times (24h or thermocycling) was applied unpaired t-test. A significance post-hoc test of p=0.05 was assumed for analyses and graphs (GraphPad Prism 9.0 software). At 24h, the microshear strength showed similar values between Ha+S, Ha+S+Ec, and A+S+Ec groups, while A+S showed the lowest value with a statistical difference. After thermocycling, Ha+S and Ha+S+Ec were similar, as well as A+S and A+S+Ec. There was a significant difference in all groups comparing 24h (highest value) with after thermocycling (lowest value). Adhesive fracture was predominant in all groups and evaluation times. Ha+S and A+S groups showed higher contact angle values compared to the Ha+S+Ec and A+S+Ec with lower values. In conclusion, the association of preheated hydrofluoric acid/silane applied or not with electric current promoted different microshear strength values, fracture types, and contact angles in the resin cement/ceramic bond.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos de Resina , Cementos de Resina/química , Silanos/química , Ácido Fluorhídrico/química , Propiedades de Superficie , Grabado Ácido Dental , Cerámica/química , Porcelana Dental/química , Ensayo de Materiales
8.
J Esthet Restor Dent ; 36(1): 47-55, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37772362

RESUMEN

OBJECTIVE: To evaluate the effect of different hydrofluoric acid concentrations and etching times on the surface, chemical composition and microstructure of lithium disilicate. MATERIAL AND METHODS: Ninety specimens of pressed lithium disilicate (LDS) were obtained (IPS e.max Press, Rosetta SP and LiSi Press). The specimens of each material were divided in two groups according to the hydrofluoric acid concentration: 5% and 10% (n = 15/group), and subdivided according to the etching time: 20, 40 and 60 s (n = 5/group). Crystalline evaluations and chemical composition were performed through x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), respectively. Microstructural analyses were performed by scanning electron microscope (SEM), surface roughness (Ra), and material thickness removal evaluation. Thickness removal and Ra data were analyzed by ANOVA and Tukey test (p < 0.05). RESULTS: XRD demonstrated characteristic peaks of lithium disilicate crystals, lithium phosphate and of a vitreous phase for all materials. EDS identified different compositions and SEM confirmed different surface responses to acid etching protocols. Material and etching time influenced Ra and material thickness removal (p < 0.05). CONCLUSION: Hydrofluoric acid concentration and etching time affect the surface characteristics of LDS differently. LiSi Press presented higher resistance to hydrofluoric acid etching compared to e.max Press and Rosetta SP. CLINICAL SIGNIFICANCE: Applying the appropriate etching protocol is pivotal to avoid excessive material removal and to prevent jeopardize the mechanical and optical properties of the material.


Asunto(s)
Recubrimiento Dental Adhesivo , Ácido Fluorhídrico , Ácido Fluorhídrico/química , Ensayo de Materiales , Porcelana Dental/química , Cerámica/química , Propiedades de Superficie , Recubrimiento Dental Adhesivo/métodos , Cementos de Resina/química
9.
Dent Mater J ; 43(1): 52-57, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38044145

RESUMEN

This study investigated the degree of phase transformation, surface roughness, and bond strength of zirconia immersed for various times in a 40% hydrofluoric acid (HF) solution. Non-etched sintered zirconia specimens were used as the control, while experimental groups were etched with a 40% HF solution for 5, 10, 20, 40, 80, 160 and 320 min. In each of the control and experimental groups, five specimens for X-ray diffraction analysis, four for surface morphology and surface roughness analysis, and ten for bonding strength measurement were used. As a result, the surface roughness of zirconia increased as the application time increased during the 40% HF etching, but the bond strength between zirconia and resin cement did not increase proportionally. The phase transformation from tetragonal to monoclinic also gradually increased with application time.


Asunto(s)
Recubrimiento Dental Adhesivo , Ácido Fluorhídrico , Ácido Fluorhídrico/química , Inmersión , Circonio/química , Propiedades de Superficie , Cementos de Resina/química , Ensayo de Materiales , Cerámica/química
10.
J Adhes Dent ; 25(1): 231-240, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37975312

RESUMEN

PURPOSE: To conduct a systematic review and meta-analysis of in-vitro bond strength to glass-ceramics using hydrofluoric acid (HF) at lower (<5%) and higher (>5%) concentrations ([HF]) to treat ceramic surfaces. METHODS: Systematic searches were carried out in PubMed, Scopus, LILACS, and Web of Science for articles published through July 2021, and a meta-analysis was performed to estimate the combined effect by comparing the differences between the standardized means of the bond strengths of the evaluated materials. RESULTS: In total, 943 articles were found, of which 17 studies were selected for qualitative analysis and 12 for quantitative analysis. The bond strength to glass-ceramics using 4% to 5% HF did not differ from that using 7% to 10% HF for the following HF etching times and glass-ceramic materials: 20 s for lithium-disilicate (Z = 0.65, p = 0.51), 60 s for feldspathic (Z = 0.53, p = 0.60), and 60 s for leucite (Z = 0.72, p = 0.35). CONCLUSION: The lower concentration HF (<5%) etchant is a reliable surface treatment for adhesive bonding to glass-ceramics with satisfactory bond strength in short-term evaluations.


Asunto(s)
Recubrimiento Dental Adhesivo , Ácido Fluorhídrico , Ácido Fluorhídrico/química , Grabado Ácido Dental , Cementos de Resina/química , Propiedades de Superficie , Ensayo de Materiales , Cerámica/química , Porcelana Dental/química
11.
Oper Dent ; 48(6): 700-710, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881098

RESUMEN

OBJECTIVES: To evaluate the surface topography/roughness and bond strength of a resin luting agent to a lithium disilicate glass ceramic after etching with different concentrations of hydrofluoric acid (HF) and commercial brands. METHODS: For bond strength evaluation, 260 lithium disilicate glass ceramic (EMX) discs were randomly distributed into 13 groups based on concentrations of HF and commercial brands (n=20): 5% and 10%, Lysanda (LY5 and LY10); 5% and 10%, Maquira (MA5 and MA10); 5% and 10%, FGM (FG5 and FG10); 4.8%, Ivoclar Vivadent (IV5); 5% and 10%, PHS do Brasil (PH5 and PH10); 5% and 10%, BM4 (BM5 and BM10); 9%, Ultradent Inc (UL10); and Dentsply (DE10). A further random distribution (n=10) was made based on the application (+) or absence (-) of an adhesive layer. Resin luting agent cylinders (1 mm in diameter) were added on EMX surfaces, light-cured, and stored for 24 hours in deionized water at 37°C. On a universal testing machine (DL 500, EMIC), specimens were submitted to a microshear bond strength test at a crosshead speed of 1 mm/min until failure. A representative etched EMX disc from each group underwent surface topography analysis using field-emission scanning electron microscopy (n=1), and five (n=5) etched EMX discs from each group were tested for surface roughness. Data were statistically analyzed using analysis of variance and Tukey test (α=0.05). RESULTS: A less conditioned and smoother surface was observed for 5% HF compared to 10%. Additionally, commercial brands of HF were shown to affect bond strength. When the adhesive layer was not used (-), a 10% concentration promoted higher bond strengths to EMX. However, when adhesive was applied (+), the concentrations of HF and commercial brands had no effect on bond strength results. CONCLUSIONS: A 10% concentration of HF results in higher bond strength than a 5% concentration. If an adhesive layer is applied, neither this distinction nor the influence of commercial brands is observed.


Asunto(s)
Recubrimiento Dental Adhesivo , Ácido Fluorhídrico , Ácido Fluorhídrico/química , Cementos Dentales , Propiedades de Superficie , Recubrimiento Dental Adhesivo/métodos , Ensayo de Materiales , Cerámica/química , Porcelana Dental/química , Cementos de Resina/química , Silanos
12.
J Mech Behav Biomed Mater ; 148: 106169, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37837872

RESUMEN

When partial and/or non-retentive preparation, such as those for occlusal veneers, is indicated, a proper and stable adhesion is essential. Therefore, the aim of this in vitro study was to evaluate the effect of loss of adhesion in different regions of the bonding interface on the fatigue behavior of simplified lithium disilicate restorations. For this, lithium disilicate (IPS e.max CAD) discs (1 mm thick and Ø = 10 mm) were fabricated, polished with #400-, #600-, #1200-grit silicon carbide (SiC) papers, and crystallized. As substrate, fiber-reinforced resin epoxy discs (2.5 mm thick and Ø = 10 mm) were fabricated and polished with #600-grit SiC paper. The ceramic bonding surface was treated with 5% hydrofluoric acid and a silane-containing primer (Monobond N), while the substrate was etched with 10% hydrofluoric acid followed by the application of the bonding system primers (Primer A + B). A lacquer (nail polish) was used to simulate the loss of adhesion in specific areas according to the study design to compose the testing groups: bonded (control; did not received nail polish application); - non-bonded (loss of adhesion in the whole specimen area); - margin (loss of adhesion in the ceramic margin); - center (loss of adhesion in the ceramic central area). The adhesive area of partially bonded groups was 50% of the adhesive surface. Then, the discs (n = 12) were bonded to the respective substrate using a resin cement (Multilink N), light-cured, water-stored for 90 days, and subjected to thermocycling (25,000 cycles, 5° to 55 °C) before testing. A cyclic fatigue test was run (20 Hz, initial load of 200 N for 5000 cycles, 50 N step size for 10,000 cycles each until specimen failure), and the fatigue failure load and number of cycles for failure were recorded. As complementary analysis, finite element analysis (FEA) and scanning electron microscopy analysis were performed. Kaplan-Meier log-rank (Mantel-Cox) was conducted for survival analysis. The results showed that as the loss of adhesion reaches the central area, the worse is the fatigue behavior and the higher is the stress peak concentration in the ceramic bonding surface. The bonded specimens presented better fatigue behavior and stress distribution compared to the others. In conclusion in a non-retentive preparation situation, proper adhesion is a must for the restoration fatigue behavior even after aging; while the loss of adhesion reaches central areas the mechanical functioning is compromised.


Asunto(s)
Cerámica , Cementos de Resina , Cerámica/química , Cementos de Resina/química , Ácido Fluorhídrico/química , Propiedades de Superficie , Ensayo de Materiales , Análisis del Estrés Dental , Porcelana Dental
13.
J Esthet Restor Dent ; 35(8): 1322-1331, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37680089

RESUMEN

OBJECTIVE: To specify the effects of self-etching ceramic primer, Monobond Etch and Prime (MEP), and universal adhesive (UA) on repair bond strength between CAD/CAM blocks and resin composite. MATERIALS AND METHODS: Vita Mark II (VM), IPS e.max CAD (EMAX), Shofu Block HC (SHC), and Tetric CAD (TET) blocks were sliced and thermocycled. They were divided into four groups according to surface treatments (n = 24): control, sandblasting (AL), hydrofluoric acid etching (HF), and MEP application. SEM analysis assessed surface topography. Subdivided, specimens followed distinct adhesive protocols (n = 12): control (silane + adhesive [SA] or adhesive [A] only for MEP group) and UA. Microshear bond strength (µSBS) was measured following resin composite repair. Data were analyzed using two-way ANOVA and Tukey tests (p < 0.05). RESULTS: The µSBS of CAD/CAM blocks was significantly influenced by surface treatment type and adhesive protocol. The highest µSBS values for each block, considering surface treatment + adhesive protocol, were VM, HF + SA, or HF + UA; EMAX, MEP + A; and SHC and TET, AL + SA, or AL + UA. CONCLUSIONS: Except for EMAX, it was not the adhesive protocol that made the significant difference in bond strength for each CAD/CAM block, but the surface treatment. MEP + UA application on glass ceramics lowered µSBS values significantly, so it is not recommended in clinical conditions. CLINICAL SIGNIFICANCE: Repair is an essential therapeutic option, particularly in esthetic restorations, to swiftly repair the impaired esthetics caused by fracture. Repair protocol is dependent on the restorative material, and to have a reliable repair bond strength, the following surface treatment and adhesive protocol combinations are recommended for each CAD/CAM block: VM, HF + SA, or HF + UA; EMAX, MEP + A; and SHC and TET, AL + SA, or AL + UA.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos Dentales , Cementos de Resina/química , Propiedades de Superficie , Ensayo de Materiales , Ácido Fluorhídrico/química , Porcelana Dental/química , Cerámica/química , Silanos/química
14.
J Adhes Dent ; 25(1): 159-166, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37551926

RESUMEN

PURPOSE: To evaluate the bond strength between alternative or conventional luting agents and indirect restorative materials. MATERIALS AND METHODS: Blocks of a polymer-infiltrated ceramic network (PICN, Vita Enamic) and a feldspathic ceramic (FEL, Vita Mark II) were sliced and divided according to the luting agent: resin cement (PICN-RC, FEL-RC), flowable composite (PICN-FC, FEL-FC), or preheated composite (PICN-PH, FEL-PH). The ceramic surfaces were polished, etched with 5% hydrofluoric acid for 60 s, and then a silane layer was applied. Cylinders of the luting agents were built up on the ceramic surfaces. In half the samples, the microshear bond strength (µSBS) was tested after 24 h (baseline). The other half was tested after 5000 thermocycles (5°C-55°C) (aging). The failure modes were determined using a stereomicroscope, and the ceramic surfaces were analyzed using a scanning electron microscope. Data were statistically analyzed with two-way ANOVA. RESULTS: Thermocycling reduced the bond strength values of all experimental groups. Regarding FEL, the preheated composite obtained the highest results. Resin cement showed results similar to the flowable composite at baseline and after aging. The highest results of PICN were obtained from the preheated composite followed by resin cement and flowable composite. Significant differences among the three luting agents were observed before and after aging. The most frequent failures among the experimental groups were adhesive and cohesive in the ceramic. CONCLUSION: Bond strength results indicate that the preheated composite can be an alternative for adhesive cementation when applied on the tested feldspathic ceramic or PICN.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos de Resina , Cementos de Resina/química , Propiedades de Superficie , Grabado Ácido Dental/métodos , Cerámica/química , Porcelana Dental/química , Cementos Dentales , Silanos/química , Ensayo de Materiales , Ácido Fluorhídrico/química
15.
J Mech Behav Biomed Mater ; 145: 106030, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473575

RESUMEN

OBJECTIVE: This in-vitro study is planned to analyze the effect of different thicknesses of ceramic occlusal veneers and different surface treatments on fracture resistance. MATERIALS AND METHODS: A total of 48 sound mandibular molars are anatomically prepared from the occlusal surface with two different thicknesses (1.0 and 0.5 mm). CAD/CAM zirconia-reinforced glass ceramic blocks (Vita Suprinity) are used for fabricating occlusal veneers. The teeth are randomly divided into two primary groups A and B (n=24) according to occlusal veneer thickness. Each group is subdivided according to surface conditioning into three equal subgroups (n=8)-subgroup HF: etching with hydrofluoric acid and ceramic primer application; subgroup APF: etching with acidulated phosphate fluoride and ceramic primer application; subgroup EP: conditioning with etch and prime only. Dual-cure adhesive resin cement (Multilink Automix) is utilized to adhesively bond the veneers. All specimens are subjected to 240,000 cycles of dynamic load aging prior to the fracture resistance test. The fracture resistance is measured in Newton (N). The Failure mode patterns are analyzed and categorized using a scanning electron microscope (SEM). The results are analyzed using a two-way ANOVA with Bonferroni's Post-Hoc test, followed by a one-way ANOVA for each factor. That is in addition to one-way ANOVA for surface treatment under each thickness, each followed by Bonferroni's Post-Hoc test. Then, a T-test is used to compare the two thicknesses under each surface treatment. All tests are set at 0.05 significance level. RESULTS: The two-way ANOVA test revealed that restoration thickness and surface treatment both significantly affect the fracture resistance values (p<0.05). The highest fracture resistance mean (2672±216N) is obtained from HF at 1.0 mm thickness, while the lowest mean (2104±299N) is obtained from APF at 0.5 mm thickness. CONCLUSION: All test groups, regardless of thickness, demonstrated fracture resistance values that exceeded both normal and parafunctional bite forces. The veneers that bonded after hydrofluoric acid etching followed by ceramic primer application showed more favourable fracture patterns.


Asunto(s)
Ácido Fluorhídrico , Cementos de Resina , Humanos , Cerámica/química , Porcelana Dental , Ácido Fluorhídrico/química , Ensayo de Materiales , Diente Molar , Cementos de Resina/química , Propiedades de Superficie
16.
Photodiagnosis Photodyn Ther ; 43: 103693, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37419190

RESUMEN

AIMS: To evaluate the impact of various pretreatment regimes (LLLT, Ti-sapphire laser, CO2, and HFA-S) on hybrid ceramics, specifically focusing on their ability to enhance repair strength and minimize surface roughness (Ra). MATERIAL AND METHODS: Discs were made from hybrid ceramics and after disinfection were randomly divided into four groups based on different surface conditioning techniques. Each group consisted of 15 discs, resulting in a total sample size of 60. dics in group 1 was surface treated with Low-level laser therapy (LLLT) using methylene blue (MB), Discs in group 2 with Ti-sapphire laser, Discs in group 3 with CO2 laser, and discs in group 4 with HFA-S. Five samples from each group were assessed for Ra. The remaining 10 samples from each group underwent repair using a porcelain repair kit in adherence to the planned instructions. The bond strength of each sample in all groups was measured using a universal testing machine. Following the bond strength testing, the specimens from all study groups were analyzed to determine the mode of failure. To evaluate the data, a two-way analysis of variance (ANOVA) was used, followed by post hoc multiple comparisons. RESULTS: The highest repair bond strength was observed in group 4 hybrid ceramics pretreated with HFA-S (19.05±0.79 MPa). The lowest repair bond scores were observed in group 1 hybrid ceramics preconditioned with LLLT in the presence of Photosensitizer (13.41±0.36 MPa). The highest Ra scores were exhibited in group 2 surface treated with Ti-sapphire laser (0.0515±0.16 µm) and the lowest Ra scores were observed in Group 4 HFA-S (0.0311±0.79 µm). Predominant bond failure among different investigated groups was cohesive. CONCLUSION: The current gold standard for hybrid ceramic conditioning is the use of hydrofluoric acid (HFA) combined with a silane coupling agent. Low-level laser therapy with methylene blue photosensitizer is not recommended for the treatment of hybrid ceramics.


Asunto(s)
Láseres de Gas , Terapia por Luz de Baja Intensidad , Fotoquimioterapia , Dióxido de Carbono , Azul de Metileno , Propiedades de Superficie , Fármacos Fotosensibilizantes , Resistencia al Corte , Titanio , Fotoquimioterapia/métodos , Óxido de Aluminio , Láseres de Gas/uso terapéutico , Cerámica/química , Ácido Fluorhídrico/química , Silanos/química , Ensayo de Materiales
17.
Photodiagnosis Photodyn Ther ; 42: 103619, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37209762

RESUMEN

AIM: To assess and compare the antimicrobial efficacy of disinfectants on lithium disilicate ceramic (LDC) used in dental applications and shear bond strength (SBS) of LDC after using different conditioners hydrofluoric acid (HF), self-etching ceramic primers (SECP) and Neodymium-doped yttrium orthovanadate (Nd: YVO4). MATERIALS AND METHODS: One hundred and twenty LDC discs were fabricated by auto-polymerizing acrylic resin using the lost wax technique. S. aureus, S. mutans, and C. albican were inoculated on thirty discs (n = 30 each). Each group was further divided into three subgroups based on different disinfecting agents used (n = 30) Group 1: Garlic extract, Group 2: Rose Bengal (RB) activated by PDT, and Group 3: Sodium hypochlorite (NaOCl). An assessment of the survival rate of microorganisms was performed. The remaining thirty samples were surface treated using three different LDC surface conditioners (n = 10) Group 1: HF + Silane (S), group 2: SECP, and Group 3: Nd: YVO4 laser+S. SBS and failure mode analysis were performed using a universal testing machine and stereomicroscope at 40x magnification, The statistical analysis was conducted using one-way ANOVA and Post Hoc Tukey test. RESULTS: Garlic extract, RB, and 2% NaOCl sample displayed comparable outcomes of antimicrobial potency against C. albicans, S aureus, and S. mutans (p > 0.05). Furthermore, SBS analysis showed HF+S, SECP, and Nd: YVO4+S exhibited comparable outcomes of bond strength (p > 0.05). CONCLUSION: Garlic extract and Rose bengal activated by PDT can be contemplated as alternatives to the chemical agent NaOCl used for LDC disinfection. Similarly, SECP and Nd: YVO4 possess the potential to be used for the surface conditioning of LDC to improve the bond integrity with resin cement.


Asunto(s)
Desinfectantes , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Propiedades de Superficie , Descontaminación , Rosa Bengala , Staphylococcus aureus , Fotoquimioterapia/métodos , Cerámica/química , Ácido Fluorhídrico/química , Ensayo de Materiales
18.
J Adhes Dent ; 25(1): 63-70, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920254

RESUMEN

PURPOSE: This study investigated the effect of different surface treatments and the effect of silane heat treatment with laser on the shear bond strength (SBS) of a nanoceramic composite to repaired hybrid CAD/CAM blocks. MATERIALS AND METHODS: 60 hybrid CAD/CAM specimens (Cerasmart, GC) were prepared and randomly divided into six groups according to the different surface treatments (n = 10): group ER: Er:YAG laser+silane (Monobond Plus, Ivoclar Vivadent); group ER+SHT: Er:YAG laser+silane heat treatment; group B: bur+silane; group B+SHT: bur+silane heat treatment; group HF: hydrofluoric acid+silane; group HF+SHT: hydrofluoric acid+silane heat treatment. Afterwards, a universal adhesive (Universal Bond Quick, Kuraray) was applied, and nanoceramic resin composite (Zenit, President) cylinders were bonded to the Cerasmart specimens. They were thermocycled for 10,000 cycles (5-55°C) and subjected to SBS testing using a universal testing machine. Failure modes were examined with a stereomicroscope (15X). Scanning electron microscopy (SEM) was used to evaluate the surface topography (n = 2). The data were statistically analyzed using the Mann-Whitney U-test and the Kruskal-Wallis test (p < 0.05). RESULTS: Regarding the surface treatments, group ER showed significantly lower SBS than groups B and HF (p < 0.05). Regarding the presence of silane heat treatment by laser, groups ER+SHT and B+SHT showed significantly lower SBS than group HF+SHT(p < 0.05). In addition, group B+SHT showed significantly lower SBS than did group B (p < 0.05). CONCLUSION: Er:YAG laser treatment for repairing hybrid CAD/CAM blocks was not as effective as bur roughening or hydrofluoric acid etching. Silane heated by Er:YAG laser was incapable of significantly increasing the bond strength to repaired hybrid CAD/CAM blocks.


Asunto(s)
Recubrimiento Dental Adhesivo , Láseres de Estado Sólido , Cementos de Resina , Silanos , Calor , Ácido Fluorhídrico/química , Ensayo de Materiales , Cementos de Resina/química , Cementos de Resina/efectos de la radiación , Resistencia al Corte , Propiedades de Superficie
19.
Oper Dent ; 48(2): 186-195, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656314

RESUMEN

OBJECTIVE: To evaluate the influence of different surface treatments on topography, surface roughness, surface energy, and microtensile bond strength stability of resin cement to lithium disilicate glass ceramic. METHODS AND MATERIALS: Seventy disc-shaped specimens of IPS e.max Press were divided into seven groups according to the surface treatment: NT - non-treated (control); FSil - hydrofluoric acid (HF) + silane; FPSil - HF + phosphoric acid (HP) + silane; FUSil - HF + ultrasonic bath (U) + silane; FPUSil - HF + HP + U + silane; MEP - Monobond Etch and Prime (MEP); and MEPH - MEP + heating. Topography and surface roughness were evaluated using a 3D laser confocal microscope (3DLCM) and scanning electron microscopy (SEM) and surface energy with a goniometer. The microtensile bond strength (µTBS) was evaluated after storage in distilled water at 37°C for 24 hours and after thermocycling (5,000 cycles, 5°-55° C, 30-second dwell time). Data were analyzed using one-way ANOVA (surface roughness and surface energy), two-way ANOVA (µTBS), Tukey's HSD post-hoc test, and Student t-test (α=0.05). RESULTS: FUSil, FPSil, and FSil presented similar and highest surface roughness, whereas NT, FPUSil, MEP, and MEPH showed similar, and lowest, roughness values (p<0.05). FPUSil, FPSil, FUSil, and FSil presented a similar and highest surface energy. NT, MEP, and MEPH showed similar and lowest surface energy. CONCLUSION: Only FSil, FPSil, and MEPH maintained bond strength stability after thermocycling, with FPSil leading to less bond strength reduction, suggesting this protocol is more reliable for bonding resin cements to lithium disilicate glass ceramics.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos de Resina , Humanos , Cementos de Resina/química , Silanos/química , Recubrimiento Dental Adhesivo/métodos , Propiedades de Superficie , Grabado Ácido Dental/métodos , Porcelana Dental/química , Cerámica/química , Ensayo de Materiales , Ácido Fluorhídrico/química
20.
Clin Oral Investig ; 27(2): 787-796, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36576566

RESUMEN

OBJECTIVES: Photo- and dual-polymerized resin-based luting agent was evaluated for elastic moduli effects on ultra-thin lithium disilicate (LD) glass-ceramic strengthening, structural reliability, and stress distribution. MATERIALS AND METHODS: One hundred-sixty LD discs (IPS e.max CAD, Ivoclar/Vivadent) were produced in ultra-thin thicknesses (half with 0.3 mm and the other half with 0.5 mm). The ultra-thin ceramic disks were coated with two different cement types (Variolink Veneer - V and Panavia F 2.0 - P). Two positive control groups were tested following hydrofluoric (HF) acid etching (LDt3, LDt5) and two negative control groups were tested for untreated ceramic (LD 3, LD 5). Biaxial flexural strength (BFS), characteristic strength (σ0) and Weibull modulus (m) were the response variables (n = 20) at the ceramic/resin cement interface (z = 0). Finite element analysis (FEA) was used to calculate maximum principal stress. Data were analyzed using two-way ANOVA, and Tukey's test. Scanning electron microscopy (SEM) was used to analyze the failed specimens using fractography and surface morphology. RESULTS: The BFS of LD at either thickness was not affected by cement types, as also demonstrated by FEA. Structural reliability significantly improved in the positive control group (LDt5). CONCLUSION: The cementation of ultra-thin LD with a resin-cement of varying elastic moduli did not influence BFS. LD surface modification by HF acid-etching increased the reliability. CLINICAL RELEVANCE: Ultra-thin anterior veneer designs made from lithium disilicate have been widely proposed and the apparent success of LD ultra-thin veneers was not influenced by the cement choice in the current studies albeit the elastic moduli luting agents used were of similar values.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos de Resina , Cementos de Resina/química , Resistencia Flexional , Módulo de Elasticidad , Reproducibilidad de los Resultados , Ensayo de Materiales , Propiedades de Superficie , Porcelana Dental/química , Cerámica/química , Cementos Dentales , Ácido Fluorhídrico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA