Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.699
Filtrar
1.
Food Res Int ; 186: 114355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729701

RESUMEN

In this study, five C18 fatty acids (FA) with different numbers of double bonds and configurations including stearic acid (SA), oleic acid (OA), elaidic acid (EA), linoleic acid (LA), and α-linolenic acid (ALA), were selected to prepare highland barely starch (HBS)-FA complexes to modulate digestibility and elaborate the underlying mechanism. The results showed that HBS-SA had the highest complex index (34.18 %), relative crystallinity (17.62 %) and single helix content (25.78 %). Furthermore, the HBS-C18 FA complexes were formed by EA (C18 FA with monounsaturated bonds) that had the highest R1047/1022 (1.0509) and lowest full width at half-maximum (FWHM, 20.85), suggesting good short-range ordered structure. Moreover, all C18 FAs could form two kinds of V-type complexes with HBS, which can be confirmed by the results of CLSM and DSC measurements, and all of them showed significantly lower digestibility. HBS-EA possessed the highest resistant starch content (20.17 %), while HBS-SA had the highest slowly digestible starch content (26.61 %). In addition, the inhibition of HBS retrogradation by fatty acid addition was further proven, where HBS-SA gel firmness (37.80 g) and aging enthalpy value were the lowest, indicating the most effective. Overall, compounding with fatty acids, especially SA, could be used as a novel way to make functional foods based on HBS.


Asunto(s)
Digestión , Ácidos Grasos , Hordeum , Ácido Oléico , Almidón , Almidón/química , Ácidos Grasos/análisis , Ácidos Grasos/química , Hordeum/química , Ácido Oléico/química , Ácidos Esteáricos/química , Ácido Linoleico/química , Ácido alfa-Linolénico/química , Ácidos Oléicos
2.
Food Res Int ; 187: 114357, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763641

RESUMEN

The oxidation of fish lipids and proteins is interconnected. The LOX (lipoxygenase)-catalyzed LA (linoleic acid) oxidation system on MPs (myofibrillar proteins) was established in vitro, to investigate the impact of lipoxidation on the physicochemical properties of fish MPs. By detecting HNE (4-hydroxy-2-nonenal) concentration during LA oxidation, the HNE treatment system was established to investigate the role of HNE in this process. In addition, the site specificity of modification on MPs was detected utilizing LC-MS/MS. Both treatments could induce sidechain modification, increase particle size, and cause loss of nutritional value through the reduction in amino acid content of MPs. The HNE group is more likely to alter the MPs' surface hydrophobicity compared to the LA group. By increasing the exposure of modification sites in MPs, the HNE group has more types and number of modifications compared to the LA group. LA group mainly induced the modification of single oxygen addition on MPs instead, which accounted for over 50 % of all modifications. The LA group induced a more pronounced reduction in the solubility of MPs as compared to the HNE group. In conclusion, HNE binding had a high susceptibility to Lys on MPs. Protein aggregation, peptide chain fragmentation, and decreased solubility occurred in the LA group mainly induced by peroxide generated during lipid oxidation or the unreacted LA instead of HNE. This study fills in the mechanism of lipoxidation on protein oxidation in fish and sheds light on the HNE modification sites of MPs, paving the way for the development of oxidation control technology.


Asunto(s)
Aldehídos , Ácido Linoleico , Oxidación-Reducción , Espectrometría de Masas en Tándem , Aldehídos/metabolismo , Animales , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Cromatografía Liquida/métodos , Proteínas de Peces/metabolismo , Proteínas Musculares/metabolismo , Peces , Interacciones Hidrofóbicas e Hidrofílicas , Lipooxigenasa/metabolismo , Cromatografía Líquida con Espectrometría de Masas
3.
J Agric Food Chem ; 72(19): 10862-10878, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712687

RESUMEN

Bama County is a world-famous longevity county in the Guangxi Province, China. Bama hemp is a traditional seed used in hemp cultivation in the Bama County. The seeds contain abundant unsaturated fatty acids, particularly linoleic acid (LA) and linolenic acid in the golden ratio. These two substances have been proven to be related to human health and the prevention of various diseases. However, the seed development and seed oil accumulation mechanisms remain unclear. This study employed a combined analysis of physiological, transcriptomic, and metabolomic parameters to elucidate the fatty acid formation patterns in Bama hemp seeds throughout development. We found that seed oil accumulated at a late stage in embryo development, with seed oil accumulation following an "S″-shaped growth curve, and positively correlated with seed size, sugar content, protein content, and starch content. Transcriptome analysis identified genes related to the metabolism of LA, α-linolenic acid (ALA), and jasmonic acid (JA). We found that the FAD2 gene was upregulated 165.26 folds and the FAD3 gene was downregulated 6.15 folds at day 21. Metabolomic changes in LA, ALA, and JA compounds suggested a competitive relationship among these substances. Our findings indicate that the peak period of substance accumulation and nutrient accumulation in Bama hemp seeds occurs during the midstage of seed development (day 21) rather than in the late stage (day 40). The results of this research will provide a theoretical basis for local cultivation and deep processing of Bama hemp.


Asunto(s)
Cannabis , Regulación de la Expresión Génica de las Plantas , Ácido Linoleico , Metabolómica , Proteínas de Plantas , Semillas , Transcriptoma , Ácido alfa-Linolénico , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/química , Ácido alfa-Linolénico/metabolismo , Cannabis/genética , Cannabis/crecimiento & desarrollo , Cannabis/metabolismo , Cannabis/química , Ácido Linoleico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , China , Perfilación de la Expresión Génica
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731907

RESUMEN

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is obtained from the maternal diet during pregnancy, and is essential for normal fetal growth and development. A maternal high-LA (HLA) diet alters maternal and offspring fatty acids, maternal leptin and male/female ratio at embryonic (E) day 20 (E20). We investigated the effects of an HLA diet on embryonic offspring renal branching morphogenesis, leptin signalling, megalin signalling and angiogenesis gene expression. Female Wistar Kyoto rats were fed low-LA (LLA; 1.44% energy from LA) or high-LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring were sacrificed and mRNA from kidneys was analysed by real-time PCR. Maternal HLA decreased the targets involved in branching morphogenesis Ret and Gdnf in offspring, independent of sex. Furthermore, downstream targets of megalin, namely mTOR, Akt3 and Prkab2, were reduced in offspring from mothers consuming an HLA diet, independent of sex. There was a trend of an increase in the branching morphogenesis target Gfra1 in females (p = 0.0517). These findings suggest that an HLA diet during pregnancy may lead to altered renal function in offspring. Future research should investigate the effects an HLA diet has on offspring kidney function in adolescence and adulthood.


Asunto(s)
Riñón , Ácido Linoleico , Morfogénesis , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Femenino , Embarazo , Serina-Treonina Quinasas TOR/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Ácido Linoleico/metabolismo , Masculino , Ratas Endogámicas WKY , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Feto/metabolismo , Feto/efectos de los fármacos
5.
J Agric Food Chem ; 72(20): 11759-11772, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38738668

RESUMEN

This study aimed to investigate alterations in gut microbiota and metabolites mediated by wheat-resistant starch and its repair of gut barrier dysfunction induced by a high-fat diet (HFD). Structural data revealed that chlorogenic acid (CA)/linoleic acid (LA) functioned through noncovalent interactions to form a more ordered structure and fortify antidigestibility in wheat starch (WS)-CA/LA complexes; the resistant starch (RS) contents of WS-CA, WS-LA, and WS-CA-LA complexes were 23.40 ± 1.56%, 21.25 ± 1.87%, and 35.47 ± 2.16%, respectively. Dietary intervention with WS-CA/LA complexes effectively suppressed detrimental alterations in colon tissue morphology induced by HFD and repaired the gut barrier in ZO-1 and MUC-2 levels. WS-CA/LA complexes could augment gut barrier-promoting microbes including Parabacteroides, Bacteroides, and Muribaculum, accompanied by an increase in short-chain fatty acids (SCFAs) and elevated expression of SCFA receptors. Moreover, WS-CA/LA complexes modulated secondary bile acid metabolism by decreasing taurochenodeoxycholic, cholic, and deoxycholic acids, leading to the activation of bile acid receptors. Collectively, this study offered guiding significance in the manufacture of functional diets for a weak gut barrier.


Asunto(s)
Ácido Clorogénico , Dieta Alta en Grasa , Microbioma Gastrointestinal , Ácido Linoleico , Ratones Endogámicos C57BL , Almidón , Triticum , Ácido Clorogénico/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/administración & dosificación , Ácido Clorogénico/química , Dieta Alta en Grasa/efectos adversos , Triticum/química , Triticum/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Masculino , Ratones , Almidón/metabolismo , Almidón/química , Ácido Linoleico/metabolismo , Ácido Linoleico/química , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Humanos , Ácidos Grasos Volátiles/metabolismo , Almidón Resistente/metabolismo
6.
Nutrients ; 16(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38794685

RESUMEN

In response to a perceived epidemic of coronary heart disease, Ancel Keys introduced the lipid-heart hypothesis in 1953 which asserted that high intakes of total fat, saturated fat, and cholesterol lead to atherosclerosis and that consuming less fat and cholesterol, and replacing saturated fat with polyunsaturated fat, would reduce serum cholesterol and consequently the risk of heart disease. Keys proposed an equation that would predict the concentration of serum cholesterol (ΔChol.) from the consumption of saturated fat (ΔS), polyunsaturated fat (ΔP), and cholesterol (ΔZ): ΔChol. = 1.2(2ΔS - ΔP) + 1.5ΔZ. However, the Keys equation conflated natural saturated fat and industrial trans-fat into a single parameter and considered only linoleic acid as the polyunsaturated fat. This ignored the widespread consumption of trans-fat and its effects on serum cholesterol and promoted an imbalance of omega-6 to omega-3 fatty acids in the diet. Numerous observational, epidemiological, interventional, and autopsy studies have failed to validate the Keys equation and the lipid-heart hypothesis. Nevertheless, these have been the cornerstone of national and international dietary guidelines which have focused disproportionately on heart disease and much less so on cancer and metabolic disorders, which have steadily increased since the adoption of this hypothesis.


Asunto(s)
Ácido Linoleico , Política Nutricional , Ácidos Grasos trans , Humanos , Ácidos Grasos trans/efectos adversos , Ácidos Grasos trans/administración & dosificación , Ácido Linoleico/administración & dosificación , Colesterol/sangre , Grasas de la Dieta/administración & dosificación , Dieta
7.
Molecules ; 29(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675515

RESUMEN

The lipoxygenase pathway has a significant influence on the composition of the volatile components of virgin olive oil (VOO). In this work, the influence of the maturity index (MI) on the activity of the lipoxygenase enzyme (LOX) in the fruits of the autochthonous Dalmatian olive cultivars Oblica, Levantinka and Lastovka was studied. The analysis of the primary oxidation products of linoleic acid in the studied cultivars showed that LOX synthesises a mixture of 9- and 13-hydroperoxides of octadecenoic acid in a ratio of about 1:2, which makes it a non-traditional plant LOX. By processing the fruits of MI~3, we obtained VOOs with the highest concentration of desirable C6 volatile compounds among the cultivars studied. We confirmed a positive correlation between MI, the enzyme activity LOX and the concentration of hexyl acetate and hexanol in cultivars Oblica and Lastovka, while no positive correlation with hexanol was observed in the cultivar Levantinka. A significant negative correlation was found between total phenolic compounds in VOO and LOX enzyme activity, followed by an increase in the MI of fruits. This article contributes to the selection of the optimal harvest time for the production of VOOs with the desired aromatic properties and to the knowledge of the varietal characteristics of VOOs.


Asunto(s)
Lipooxigenasa , Olea , Aceite de Oliva , Compuestos Orgánicos Volátiles , Aceite de Oliva/química , Aceite de Oliva/metabolismo , Lipooxigenasa/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Olea/metabolismo , Olea/química , Frutas/química , Frutas/metabolismo , Fenoles/metabolismo , Fenoles/análisis , Fenoles/química , Ácido Linoleico/metabolismo
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124242, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581725

RESUMEN

The regular overconsumption of high-energy food (rich in lipids and sugars) results in elevated nutrient absorption in intestine and consequently excessive accumulation of lipids in many organs e.g.: liver, adipose tissue, muscles. In the long term this can lead to obesity and obesity-associated diseases e.g. type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease, inflammatory bowel disease (IBD). In the presented paper based on RI data we have proved that Raman maps can be used successfully for subcellular structures visualization and analysis of fatty acids impact on morphology and chemical composition of human colon single cells - normal and cancer. Based on Raman data we have investigated the changes related to endoplasmic reticulum, mitochondria, lipid droplets and nucleus. Analysis of ratios calculated based on Raman bands typical for proteins (1256, 1656 cm-1), lipids (1304, 1444 cm-1) and nucleic acids (750 cm-1) has confirmed for endoplasmic reticulum the increased activity of this organelle in lipoproteins synthesis upon FAs supplementation; for LDs the changes of desaturation of accumulated lipids with the highest unsaturation level for CaCo-2 cells upon EPA supplementation; for mitochondria the stronger effect of FAs supplementation was observed for CaCo-2 cells confirming the increased activity of this organelle responsible for energy production necessary for tumor development; the weakest impact of FAs supplementation was observed for nucleus for both types of cells and both types of acids. Fluorescence imaging was used for the investigations of changes in LDs/ER morphology. Our measurements have shown the increased area of LDs/ER for CaCo-2 cancer cells, and the strongest effect was noticed for CaCo-2 cells upon EPA supplementation. The increased participation of lipid structures for all types of cells upon FAs supplementation has been confirmed also by AFM studies. The lowest YM values have been observed for CaCo-2 cells including samples treated with FAs.


Asunto(s)
Neoplasias del Colon , Ácido Eicosapentaenoico , Espectrometría Raman , Humanos , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/química , Células CACO-2 , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Ácido Linoleico/farmacología , Ácido Linoleico/química , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Microscopía Fluorescente
9.
Food Chem ; 449: 139190, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38579653

RESUMEN

Linoleic acid (LA) detection and edible oils discrimination are essential for food safety. Recently, CsPbBr3@SiO2 heterostructures have been widely applied in edible oil assays, while deep insights into solvent effects on their structure and performance are often overlooked. Based on the suitable polarity and viscosity of cyclohexane, we prepared CsPbBr3@SiO2 Janus nanoparticles (JNPs) with high stability in edible oil and fast halogen-exchange (FHE) efficiency with oleylammonium iodide (OLAI). LA is selectively oxidized by lipoxidase to yield hydroxylated derivative (oxLA) capable of reacting with OLAI, thereby bridging LA content to naked-eye fluorescence color changes through the anti-FHE reaction. The established method for LA in edible oils exhibited consistent results with GC-MS analysis (p > 0.05). Since the LA content difference between edible oils, we further utilized chemometrics to accurately distinguish (100%) the species of edible oils. Overall, such elaborated CsPbBr3@SiO2 JNPs enable a refreshing strategy for edible oil discrimination.


Asunto(s)
Ácido Linoleico , Óxidos , Aceites de Plantas , Titanio , Óxidos/química , Aceites de Plantas/química , Ácido Linoleico/química , Compuestos de Calcio/química , Solventes/química , Nanopartículas/química , Dióxido de Silicio/química
10.
Environ Pollut ; 349: 123949, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636836

RESUMEN

Arsenic (As) is a heavy metal known for its detrimental effects on the kidneys, but the precise mechanisms underlying its toxicity remain unclear. In this study, we employed an integrated approach combining traditional toxicology methods with functional metabolomics to explore the nephrotoxicity induced by As in mice. Our findings demonstrated that after 28 days of exposure to sodium arsenite, blood urea nitrogen, serum creatinine levels were significantly increased, and pathological examination of the kidneys revealed dilation of renal tubules and glomerular injury. Additionally, uric acid, total cholesterol, and low-density lipoprotein cholesterol levels were significant increased while triglyceride level was decreased, resulting in renal insufficiency and lipid disorders. Subsequently, the kidney metabolomics analysis revealed that As exposure disrupted 24 differential metabolites, including 14 up-regulated and 10 down-regulated differential metabolites. Ten metabolic pathways including linoleic acid and glycerophospholipid metabolism were significantly enriched. Then, 80 metabolic targets and 168 predicted targets were identified using metabolite network pharmacology analysis. Of particular importance, potential toxicity targets, such as glycine amidinotransferase, mitochondrial (GATM), and nitric oxide synthase, and endothelial (NOS3), were prioritized through the "metabolite-target-pathway" network. Receiver operating characteristics curve and molecular docking analyses suggested that 1-palmitoyl-2-myristoyl-sn-glycero-3-PC, linoleic acid, and L-hydroxyarginine might be functional metabolites associated with GATM and NOS3. Moreover, targeted verification result showed that the level of linoleic acid in As group was 0.4951 µg/mL, which was significantly decreased compared with the control group. And in vivo and in vitro protein expression experiments confirmed that As exposure inhibited the expression of GATM and NOS3. In conclusion, these results suggest that As-induced renal injury may be associated with the inhibition of linoleic acid metabolism through the down-regulation of GATM and NOS3, resulting in decreased levels of linoleic acid, 1-palmitoyl-2-myristoyl-sn-glycero-3-PC, and L-hydroxyarginine metabolites.


Asunto(s)
Arsénico , Agua Potable , Riñón , Ácido Linoleico , Metabolómica , Animales , Ratones , Ácido Linoleico/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos , Arsénico/toxicidad , Arsénico/metabolismo , Agua Potable/química , Masculino , Contaminantes Químicos del Agua/toxicidad , Simulación del Acoplamiento Molecular
11.
Food Res Int ; 184: 114230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609219

RESUMEN

This study explored differences in microbial lipid metabolites among sunflower seeds, soybeans, and walnuts. The matrices were subjected to in vitro digestion and colonic fermentation. Defatted digested materials and fiber/phenolics extracted therefrom were added to sunflower oil (SO) and also fermented. Targeted and untargeted lipidomics were employed to monitor and tentatively identify linoleic acid (LA) metabolites. Walnut fermentation produced the highest free fatty acids (FFAs), LA, and conjugated LAs (CLAs). Defatted digested walnuts added to SO boosted FFAs and CLAs production; the addition of fibre boosted CLAs, whereas the addition of phenolics only increased 9e,11z-CLA and 10e,12z-CLA. Several di-/tri-hydroxy-C18-FAs, reported as microbial LA metabolites for the first time, were annotated. Permutational multivariate analysis of variance indicated significant impacts of food matrix presence and type on lipidomics and C18-FAs. Our findings highlight how the food matrices affect CLA production from dietary lipids, emphasizing the role of food context in microbial lipid metabolism.


Asunto(s)
Microbioma Gastrointestinal , Juglans , Fermentación , Nueces , Grasas de la Dieta , Ácidos Grasos no Esterificados , Ácido Linoleico , Fenoles , Aceite de Girasol , Colon
12.
Food Res Int ; 184: 114243, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609222

RESUMEN

Recent explorations into rice bran oil (RBO) have highlighted its potential, owing to an advantageous fatty acid profile in the context of health and nutrition. Despite this, the susceptibility of rice bran lipids to oxidative degradation during storage remains a critical concern. This study focuses on the evolution of lipid degradation in RBO during storage, examining the increase in free fatty acids (FFAs), the formation of oxylipids, and the generation of volatile secondary oxidation products. Our findings reveal a substantial rise in FFA levels, from 109.55 to 354.06 mg/g, after 14 days of storage, highlighting significant lipid deterioration. Notably, key oxylipids, including 9,10-EpOME, 12,13(9,10)-DiHOME, and 13-oxoODE, were identified, with a demonstrated positive correlation between total oxylipids and free polyunsaturated fatty acids (PUFAs), specifically linoleic acid (LA) and α-linolenic acid (ALA). Furthermore, the study provides a detailed analysis of primary volatile secondary oxidation products. The insights gained from this study not only sheds light on the underlying mechanisms of lipid rancidity in rice bran but also offers significant implications for extending the shelf life and preserving the nutritional quality of RBO, aligning with the increasing global interest in this high-quality oil.


Asunto(s)
Lipidómica , Lipólisis , Ácidos Grasos , Ácidos Grasos no Esterificados , Ácido Linoleico , Aceite de Salvado de Arroz
13.
Food Res Int ; 184: 114255, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609233

RESUMEN

Bile Salts (BS) are responsible for stimulating lipid digestion in our organism. Gut microbiota are responsible for the deconjugation process of primary conjugated to secondary unconjugated BS. We use two structurally distinct BS and characterize the rate of lipolysis as a compound parameter. A static in-vitro digestion model as well as meta-analysis of literature data has been performed to determine the most influential factors affecting the lipid digestion process. The results demonstrate that lipolysis of emulsions using conjugated BS (NaTC, FFA = 60.0 %, CMC in SIF = 5.58 mM, MSR of linoleic acid = 0.21, rate of adsorption = -0.057 mN/m.s) enhances the release of FFA compared to deconjugated BS (NaDC, FFA = 49.5 %, CMC in SIF = 2.49 mM, MSR of linoleic acid = 0.16 rate of adsorption = -0.064 mN/m.s). These results indicate that conjugation plays an important role in controlling the rate of lipolysis in our organism which can be in turn, tuned by the microflora composition of our gut, ultimately controlling the rate of deconjugation of the BS.


Asunto(s)
Bilis , Ácido Linoleico , Emulsiones , Lipólisis , Fenómenos Químicos , Ácidos y Sales Biliares
14.
Plant Cell Rep ; 43(4): 109, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564014

RESUMEN

KEY MESSAGE: The regulatory action of BXs secreted by wheat on the pathogenicity of FOF causing Fusarium wilt in faba bean were analyzed. DIMBOA and MBOA weakened the pathogenicity of FOF. A large number of pathogenic bacteria in continuous cropping soil infect faba bean plants, leading to the occurrence of wilt disease, which restricts their production. Faba bean-wheat intercropping is often used to alleviate this disease. This study investigates the effect of benzoxazinoids (BXs) secreted by wheat root on the pathogenicity of Fusarium oxysporum f. sp. Fabae (FOF) and underlying molecular mechanisms. The effects of DIMBOA(2,4-dihydroxy-7-methoxy-1,4-benzoxazine-4-one) and MBOA(6-methoxybenzoxazolin-2-one) on the activity of cell-wall-degrading enzymes in FOF(cellulase, pectinase, amylase, and protease), FOF Toxin (fusaric acid, FA) content were investigated through indoor culture experiments. The effect of BXs on the metabolic level of FOF was analyzed by metabonomics to explore the ecological function of benzoxazines intercropping control of Fusarium wilt in faba bean. The results show that the Exogenous addition of DIMBOA and MBOA decreased the activity of plant-cell-wall-degrading enzymes and fusaric acid content and significantly weakened the pathogenicity of FOF. DIMBOA and MBOA significantly inhibited the pathogenicity of FOF, and metabolome analysis showed that DIMBOA and MBOA reduced the pathogenicity of FOF by down-regulating related pathways such as nucleotide metabolism and linoleic acid metabolism, thus effectively controlling the occurrence of Fusarium wilt in faba bean.


Asunto(s)
Benzoxazinas , Fusarium , Triticum , Benzoxazinas/farmacología , Ácido Linoleico , Virulencia , Ácido Fusárico , Nucleótidos
15.
Molecules ; 29(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38611912

RESUMEN

This report demonstrates the first asymmetric synthesis of enantiopure structured triacylglycerols (TAGs) of the ABC type presenting three non-identical fatty acids, two of which are unsaturated. The unsaturated fatty acids included monounsaturated oleic acid (C18:1 n-9) and polyunsaturated linoleic acid (C18:2 n-6). This was accomplished by a six-step chemoenzymatic approach starting from (R)- and (S)-solketals. The highly regioselective immobilized Candida antarctica lipase (CAL-B) played a crucial role in the regiocontrol of the synthesis. The synthesis also benefited from the use of the p-methoxybenzyl (PMB) ether protective group, which enabled the incorporation of two different unsaturated fatty acids into the glycerol skeleton. The total of six such TAGs were prepared, four constituting the unsaturated fatty acids in the sn-1 and sn-2 positions, with a saturated fatty acid in the remaining sn-3 position of the glycerol backbone. In the two remaining TAGs, the different unsaturated fatty acids accommodated the sn-1 and sn-3 end positions, with the saturated fatty acid present in the sn-2 position. Enantiopure TAGs are urgently demanded as standards for the enantiospecific analysis of intact TAGs in fats and oils.


Asunto(s)
Ácidos Grasos , Glicerol , Éteres , Ácido Linoleico , Triglicéridos
16.
Sci Rep ; 14(1): 8413, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600137

RESUMEN

Strain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 µL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.


Asunto(s)
Antioxidantes , Probióticos , Streptococcus , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ácido Linoleico , Lipopolisacáridos , Probióticos/metabolismo , Radical Hidroxilo , Superóxido Dismutasa , Ácido Láctico/metabolismo
17.
Sci Adv ; 10(14): eadk8093, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578989

RESUMEN

Trained immunity is one of the mechanisms by which BCG vaccination confers persistent nonspecific protection against diverse diseases. Genomic differences between the different BCG vaccine strains that are in global use could result in variable protection against tuberculosis and therapeutic effects on bladder cancer. In this study, we found that four representative BCG strains (BCG-Russia, BCG-Sweden, BCG-China, and BCG-Pasteur) covering all four genetic clusters differed in their ability to induce trained immunity and nonspecific protection. The trained immunity induced by BCG was associated with the Akt-mTOR-HIF1α axis, glycolysis, and NOD-like receptor signaling pathway. Multi-omics analysis (epigenomics, transcriptomics, and metabolomics) showed that linoleic acid metabolism was correlated with the trained immunity-inducing capacity of different BCG strains. Linoleic acid participated in the induction of trained immunity and could act as adjuvants to enhance BCG-induced trained immunity, revealing a trained immunity-inducing signaling pathway that could be used in the adjuvant development.


Asunto(s)
Vacuna BCG , Tuberculosis , Humanos , Ácido Linoleico , Inmunidad Entrenada , Multiómica , Adyuvantes Inmunológicos/farmacología
18.
Pancreas ; 53(5): e416-e423, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38530954

RESUMEN

OBJECTIVES: Chronic pancreatitis (CP) is an inflammatory disease affecting the absorption of fat-soluble nutrients. Signaling in pancreatic cells that lead to inflammation may be influenced by fatty acids (FAs) through diet and de novo lipogenesis. Here, we investigated the relationship between plasma FA composition in CP with heterogeneity of etiology and complications of CP. MATERIALS AND METHODS: Blood and clinical parameters were collected from subjects with CP (n = 47) and controls (n = 22). Plasma was analyzed for FA composition using gas chromatography and compared between controls and CP and within CP. RESULTS: Palmitic acid increased, and linoleic acid decreased in CP compared with controls. Correlations between age or body mass index and FAs are altered in CP compared with controls. Diabetes, pancreatic calcifications, and substance usage, but not exocrine pancreatic dysfunction, were associated with differences in oleic acid and linoleic acid relative abundance in CP. De novo lipogenesis index was increased in the plasma of subjects with CP compared with controls and in calcific CP compared with noncalcific CP. CONCLUSIONS: Fatty acids that are markers of de novo lipogenesis and linoleic acid are dysregulated in CP depending on the etiology or complication. These results enhance our understanding of CP and highlight potential pathways targeting FAs for treating CP.


Asunto(s)
Ácidos Grasos , Ácido Linoleico , Pancreatitis Crónica , Humanos , Proyectos Piloto , Pancreatitis Crónica/sangre , Pancreatitis Crónica/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Adulto , Ácidos Grasos/sangre , Ácido Linoleico/sangre , Estudios de Casos y Controles , Lipogénesis , Anciano , Ácido Palmítico/sangre , Ácido Oléico/sangre , Biomarcadores/sangre
19.
Food Res Int ; 181: 114119, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448102

RESUMEN

Tara (Caesalpinia spinosa, Leguminosae) seed germ (TSG), a by-product of tara gum (E417) extraction, has been used as a protein- and polyphenol-rich food ingredient for human and animal nutrition. Nevertheless, TSG is the alleged culprit for a recent foodborne outbreak of even severe acute illnesses that have affected hundreds of individuals in the USA, perhaps triggered by nonprotein amino acids such as baikiain. Herein, the composition of TSG has been characterized at molecular level, with a focus on proteins, phenolics, lipids, and mineral composition. TSG contains 43.4 % (w/w) proteins, tentatively identified for the first time by proteomics, and 14 % lipids, consisting of 83.6 % unsaturated fatty acids, especially linoleic acid. Ash is surprising high (6.5 %) because of an elevated concentration of P, K, Ca, and Mg. The detection of a rare earth element such as gadolinium (Gd, 1.6 mg kg-1), likely sourced from anthropogenic pollution, suggests alternative hypotheses for the origin of TSG hazards.


Asunto(s)
Caesalpinia , Harina , Animales , Humanos , Polifenoles , Semillas , Ácido Linoleico
20.
Cancer Biol Ther ; 25(1): 2325130, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38465855

RESUMEN

Emerging evidence has provided considerable insights into the integral function of reprogramming fatty acid metabolism in the carcinogenesis and progression of endometrial cancer. Linoleic acid, an essential fatty acid with the highest consumption in the Western diet regimen, has shown pro-tumorigenic or anti-tumorigenic effects on tumor cell growth and invasion in multiple types of cancer. However, the biological role of linoleic acid in endometrial cancer remains unclear. In the present study, we aimed to investigate the functional impact of linoleic acid on cell proliferation, invasion, and tumor growth in endometrial cancer cells and in a transgenic mouse model of endometrial cancer. The results showed that Linoleic acid significantly inhibited the proliferation of endometrial cancer cells in a dose-dependent manner. The treatment of HEC-1A and KLE cells with linoleic acid effectively increased intracellular reactive oxygen species (ROS) production, decreased mitochondrial membrane potential, caused cell cycle G1 arrest, and induced intrinsic and extrinsic apoptosis pathways. The anti-invasive ability of linoleic acid was found to be associated with the epithelial-mesenchymal transition process in both cell lines, including the decreased expression of N-cadherin, snail, and vimentin. Furthermore, treatment of Lkb1fl/flp53fl/fl transgenic mice with linoleic acid for four weeks significantly reduced the growth of endometrial tumors and decreased the expression of VEGF, vimentin, Ki67, and cyclin D1 in tumor tissues. Our findings demonstrate that linoleic acid exhibits anti-proliferative and anti-invasive activities in endometrial cancer cell lines and the Lkb1fl/flp53fl/fl mouse model of endometrial cancer, thus providing a pre-clinical basis for future dietary interventions with linoleic acid in endometrial cancer.


Asunto(s)
Neoplasias Endometriales , Ácido Linoleico , Humanos , Femenino , Ratones , Animales , Vimentina/metabolismo , Ácido Linoleico/farmacología , Ácido Linoleico/uso terapéutico , Línea Celular Tumoral , Proteína p53 Supresora de Tumor , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Carcinogénesis , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA