Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Neurosurg Focus ; 54(6): E4, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37283447

RESUMEN

OBJECTIVE: Gliomas exhibit high intratumor and interpatient heterogeneity. Recently, it has been shown that the microenvironment and phenotype differ significantly between the glioma core (inner) and edge (infiltrating) regions. This proof-of-concept study differentiates metabolic signatures associated with these regions, with the potential for prognosis and targeted therapy that could improve surgical outcomes. METHODS: Paired glioma core and infiltrating edge samples were obtained from 27 patients after craniotomy. Liquid-liquid metabolite extraction was performed on the samples and metabolomic data were obtained via 2D liquid chromatography-mass spectrometry/mass spectrometry. To gauge the potential of metabolomics to identify clinically relevant predictors of survival from tumor core versus edge tissues, a boosted generalized linear machine learning model was used to predict metabolomic profiles associated with O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. RESULTS: A panel of 66 (of 168) metabolites was found to significantly differ between glioma core and edge regions (p ≤ 0.05). Top metabolites with significantly different relative abundances included DL-alanine, creatine, cystathionine, nicotinamide, and D-pantothenic acid. Significant metabolic pathways identified by quantitative enrichment analysis included glycerophospholipid metabolism; butanoate metabolism; cysteine and methionine metabolism; glycine, serine, alanine, and threonine metabolism; purine metabolism; nicotinate and nicotinamide metabolism; and pantothenate and coenzyme A biosynthesis. The machine learning model using 4 key metabolites each within core and edge tissue specimens predicted MGMT promoter methylation status, with AUROCEdge = 0.960 and AUROCCore = 0.941. Top metabolites associated with MGMT status in the core samples included hydroxyhexanoycarnitine, spermine, succinic anhydride, and pantothenic acid, and in the edge samples metabolites included 5-cytidine monophosphate, pantothenic acid, itaconic acid, and uridine. CONCLUSIONS: Key metabolic differences are identified between core and edge tissue in glioma and, furthermore, demonstrate the potential for machine learning to provide insight into potential prognostic and therapeutic targets.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Ácido Pantoténico/genética , Ácido Pantoténico/metabolismo , Metilación de ADN , Glioma/genética , Glioma/cirugía , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Metabolómica , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Niacinamida , Microambiente Tumoral
2.
Eur J Med Genet ; 66(8): 104808, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37391029

RESUMEN

The sodium-dependent multivitamin transporter (hSMVT) encoded by the SLC5A6 gene is required for the intestinal absorption of biotin, pantothenic acid and lipoate, three micronutrients essential for normal growth and development. Systemic deficiency of these elements, either occurring from nutritional causes or genetic defects, is associated with neurological disorders, growth delay, skin and hair changes, metabolic and immunological abnormalities. A few patients with biallelic variants of SLC5A6 have been reported, exhibiting a spectrum of neurological and systemic clinical features with variable severity. We describe three patients from a single family carrying a homozygous p.(Leu566Valfs*33) variant of SLC5A6 disrupting the frame of the C-terminal portion of the hSMVT. In these patients, we documented a severe disorder featuring developmental delay, sensory polyneuropathy, optic atrophy, recurrent infections, and repeated episodes of intestinal pseudo-obstruction. Two patients who did not receive multivitamin supplementation therapy died in early infancy. In a third patient, early supplementation of biotin and pantothenic acid stabilized the clinical picture changing the course of the disease. These findings extend genotype-phenotype correlations and show how a timely and lifelong multivitamin treatment may be crucial to reduce the risk of life-threatening events in patients with pathogenic variants of the SLC5A6 gene.


Asunto(s)
Biotina , Simportadores , Humanos , Estudios de Seguimiento , Ácido Pantoténico/genética , Ácido Pantoténico/metabolismo , Fenotipo , Simportadores/genética
3.
J Agric Food Chem ; 71(19): 7408-7417, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37154424

RESUMEN

Vitamin B5, also called d-pantothenic acid, is an essential vitamin in the human body and is widely used in pharmaceuticals, nutritional supplements, food, and cosmetics. However, few studies have investigated the microbial production of d-pantothenic acid, especially in Saccharomyces cerevisiae. By employing a systematic optimization strategy, we screened seven key genes in d-pantothenic acid biosynthesis from diverse species, including bacteria, yeast, fungi, algae, plants, animals, etc., and constructed an efficient heterologous d-pantothenic acid pathway in S. cerevisiae. By adjusting the copy number of the pathway modules, knocking out the endogenous bypass gene, balancing NADPH utilization, and regulating the GAL inducible system, a high-yield d-pantothenic acid-producing strain, DPA171, which can regulate gene expression using glucose, was constructed. By optimizing fed-batch fermentation, DPA171 produced 4.1 g/L d-pantothenic acid, which is the highest titer in S. cerevisiae to date. This study provides guidance for the development of vitamin B5 microbial cell factories.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Pantoténico/genética , Ácido Pantoténico/metabolismo , Ingeniería Metabólica , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentación
4.
Microb Cell Fact ; 22(1): 3, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609377

RESUMEN

BACKGROUND: Corynebacterium glutamicum has industrial track records for producing a variety of valuable products such as amino acids. Although CRISPR-based genome editing technologies have undergone immense developments in recent years, the suicide-plasmid-based approaches are still predominant for C. glutamicum genome manipulation. It is crucial to develop a simple and efficient CRISPR genome editing method for C. glutamicum. RESULTS: In this study, we developed a RecombinAtion Prior to Induced Double-strand-break (RAPID) genome editing technology for C. glutamicum, as Cpf1 cleavage was found to disrupt RecET-mediated homologous recombination (HR) of the donor template into the genome. The RAPID toolbox enabled highly efficient gene deletion and insertion, and notably, a linear DNA template was sufficient for gene deletion. Due to the simplified procedure and iterative operation ability, this methodology could be widely applied in C. glutamicum genetic manipulations. As a proof of concept, a high-yield D-pantothenic acid (vitamin B5)-producing strain was constructed, which, to the best of our knowledge, achieved the highest reported titer of 18.62 g/L from glucose only. CONCLUSIONS: We developed a RecET-assisted CRISPR-Cpf1 genome editing technology for C. glutamicum that harnessed CRISPR-induced DSBs as a counterselection. This method is of great importance to C. glutamicum genome editing in terms of its practical applications, which also guides the development of CRISPR genome editing tools for other microorganisms.


Asunto(s)
Corynebacterium glutamicum , Edición Génica , Humanos , Edición Génica/métodos , Ácido Pantoténico/genética , Ácido Pantoténico/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Plásmidos/genética , Sistemas CRISPR-Cas
5.
J Biotechnol ; 364: 40-49, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36708995

RESUMEN

D-Pantothenic acid (D-PA) is an essential vitamin with wide applications. However, the biotechnological production of D-PA is still not competitive with the chemical synthesis in terms of production cost. Ketopantoate hydroxymethyltransferase is a crucial enzyme in the D-PA synthetic pathway in Escherichia coli encoded by the panB gene. Here a hot spots study was applied to a ketopantoate hydroxymethyltransferase from Corynebacterium glutamicum (CgKPHMT) to relieve the product inhibitory effect and thus improve the D-PA production. Compared with the wild type, the double-site variant CgKPHMT-K25A/E189S showed 1.8 times higher enzyme activity and 2.1 times higher catalytic efficiency, 1.88 and 3.32 times higher inhibitory constant of α-ketoisovalerate and D-PA, respectively. The D-PA yield using E. coli W3110 adopted the double-site variant was 41.17 g·L-1 within 48 h, a 9.80 g·L-1 increase. Structural analysis of K25A/E189S revealed the expansion of the entry channel and the change of the electric charge from negative to uncharged due to the substitution from glutamic acid to serine at site 189. Our study emphasized the positive roles of ketopantoate hydroxymethyltransferase in D-PA production and paved the way by analyzing critical enzymes in the synthetic pathway of E. coli to increase the D-PA yield.


Asunto(s)
Transferasas de Hidroximetilo y Formilo , Ácido Pantoténico , Ácido Pantoténico/química , Ácido Pantoténico/genética , Escherichia coli/metabolismo , Secuencia de Bases , Transferasas de Hidroximetilo y Formilo/genética , Transferasas de Hidroximetilo y Formilo/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo
6.
J Inherit Metab Dis ; 46(2): 358-368, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36502486

RESUMEN

Mutations in the Transport and Golgi Organization 2 (TANGO2) gene are associated with intellectual deficit, neurodevelopmental delay and regression. Individuals can also present with an acute metabolic crisis that includes rhabdomyolysis, cardiomyopathy, and cardiac arrhythmias, the latter of which are potentially lethal. While preventing metabolic crises has the potential to reduce mortality, no treatments currently exist for this condition. The function of TANGO2 remains unknown but is suspected to be involved in some aspect of lipid metabolism. Here, we describe a model of TANGO2-related disease in the fruit fly Drosophila melanogaster that recapitulates crucial disease traits. Pairing a new fly model with human cells, we examined the effects of vitamin B5, a coenzyme A (CoA) precursor, on alleviating the cellular and organismal defects associated with TANGO2 deficiency. We demonstrate that vitamin B5 specifically improves multiple defects associated with TANGO2 loss-of-function in Drosophila and rescues membrane trafficking defects in human cells. We also observed a partial rescue of one of the fly defects by vitamin B3, though to a lesser extent than vitamin B5. Our data suggest that a B complex supplement containing vitamin B5/pantothenate may have therapeutic benefits in individuals with TANGO2-deficiency disease. Possible mechanisms for the rescue are discussed that may include restoration of lipid homeostasis.


Asunto(s)
Coenzima A , Ácido Pantoténico , Animales , Humanos , Ácido Pantoténico/genética , Ácido Pantoténico/metabolismo , Coenzima A/genética , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster , Fenotipo
7.
Bioprocess Biosyst Eng ; 45(5): 843-854, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35175424

RESUMEN

High-yielding chemical and chemo-enzymatic methods of D-pantothenic acid (DPA) synthesis are limited by using poisonous chemicals and DL-pantolactone racemic mixture formation. Alternatively, the safe microbial fermentative route of DPA production was found promising but suffered from low productivity and precursor supplementation. In this study, Bacillus megaterium was metabolically engineered to produce DPA without precursor supplementation. In order to provide a higher supply of precursor D-pantoic acid, key genes involved in its synthesis are overexpressed, resulting strain was produced 0.53 ± 0.08 g/L DPA was attained in shake flasks. Cofactor CH2-THF was found to be vital for DPA biosynthesis and was regenerated through the serine-glycine degradation pathway. Enhanced supply of another precursor, ß-alanine was achieved by codon optimization and dosing of the limiting L-asparate-1-decarboxylase (ADC). Co-expression of Pantoate-ß-alanine ligase, ADC, phosphoenolpyruvate carboxylase, aspartate aminotransferase and aspartate ammonia-lyase enhanced DPA concentration to 2.56 ± 0.05 g/L at shake flasks level. Fed-batch fermentation in a bioreactor with and without the supplementation of ß-alanine increased DPA concentration to 19.52 ± 0.26 and 4.78 ± 0.53 g/L, respectively. This present study successfully demonstrated a rational approach combining precursor supply engineering with cofactor regeneration for the enhancement of DPA titer in recombinant B. megaterium.


Asunto(s)
Bacillus megaterium , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Fermentación , Ingeniería Metabólica/métodos , Ácido Pantoténico/genética , Ácido Pantoténico/metabolismo , beta-Alanina/genética , beta-Alanina/metabolismo
8.
J Insect Physiol ; 126: 104092, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32763248

RESUMEN

Various insects that utilize vitamin-deficient diets derive a supplementary supply of these micronutrients from their symbiotic microorganisms. Here, we tested the inference from genome annotation that the symbiotic bacterium Buchnera aphidicola in the pea aphid Acyrthosiphon pisum provides the insect with vitamins B2 and B5 but no other B-vitamins. Contrary to expectation, aphid survival over five days of larval development on artificial diets individually lacking each B-vitamin not synthesized by Buchnera was not significantly reduced, despite significantly lower carcass B1, B3, B6 and B7 concentrations in the aphids on diets lacking each of these B-vitamins than on the vitamin-complete diet. Aphid survival was, however, significantly reduced on diet containing low concentrations (≤0.2 mM) or no pantothenate (B5). Complementary transcriptome analysis revealed low abundance of the sense-transcript, but high abundance of the antisense transcript, of the Buchnera gene panC encoding the enzyme mediating the terminal reaction in pantothenate synthesis. We hypothesize that metabolic constraints or antisense transcripts may reduce Buchnera-mediated production of pantothenate, resulting in poor aphid performance on pantothenate-free diets. The discrepancy between predictions from genome data and empirical data illustrates the need for physiological study to test functional inferences made from genome annotations.


Asunto(s)
Áfidos , Buchnera/metabolismo , Simbiosis/fisiología , Complejo Vitamínico B/metabolismo , Animales , Áfidos/metabolismo , Áfidos/microbiología , Buchnera/genética , Perfilación de la Expresión Génica , Genes Bacterianos , Genoma Bacteriano , Ácido Pantoténico/genética , Ácido Pantoténico/metabolismo , Complejo Vitamínico B/genética
9.
Biochem J ; 475(4): 813-825, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29382740

RESUMEN

The pantothenate (vitamin B5) synthesis pathway in plants is not fully defined because the subcellular site of its ketopantoate → pantoate reduction step is unclear. However, the pathway is known to be split between cytosol, mitochondria, and potentially plastids, and inferred to involve mitochondrial or plastidial transport of ketopantoate or pantoate. No proteins that mediate these transport steps have been identified. Comparative genomic and transcriptomic analyses identified Arabidopsis thaliana BASS1 (At1g78560) and its maize (Zea mays) ortholog as candidates for such a transport role. BASS1 proteins belong to the bile acid : sodium symporter family and share similarity with the Salmonella enterica PanS pantoate/ketopantoate transporter and with predicted bacterial transporters whose genes cluster on the chromosome with pantothenate synthesis genes. Furthermore, Arabidopsis BASS1 is co-expressed with genes related to metabolism of coenzyme A, the cofactor derived from pantothenate. Expression of Arabidopsis or maize BASS1 promoted the growth of a S. enterica panB panS mutant strain when pantoate, but not ketopantoate, was supplied, and increased the rate of [3H]pantoate uptake. Subcellular localization of green fluorescent protein fusions in Nicotiana tabacum BY-2 cells demonstrated that Arabidopsis BASS1 is targeted solely to the plastid inner envelope. Two independent Arabidopsis BASS1 knockout mutants accumulated pantoate ∼10-fold in leaves and had smaller seeds. Taken together, these data indicate that BASS1 is a physiologically significant plastidial pantoate transporter and that the pantoate reduction step in pantothenate biosynthesis could be at least partly localized in plastids.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Redes y Vías Metabólicas/genética , Ácido Pantoténico/genética , Proteínas de Plantas/genética , Plastidios/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Citosol/enzimología , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Proteínas Fluorescentes Verdes/genética , Mitocondrias/genética , Proteínas Mitocondriales , Transportadores de Ácidos Monocarboxílicos , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Ácido Pantoténico/biosíntesis , Salmonella enterica/genética , Zea mays/genética
10.
FEMS Microbiol Lett ; 364(13)2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28655181

RESUMEN

The bacterium Zymomonas mobilis naturally produces ethanol at near theoretical maximum yields, making it of interest for industrial ethanol production. Zymomonas mobilis requires the vitamin pantothenate for growth. Here we characterized the genetic basis for the Z. mobilis pantothenate auxotrophy. We found that this auxotrophy is due to the absence of a single gene, panD, encoding aspartate-decarboxylase. Heterologous expression of Escherichia coli PanD in Z. mobilis or supplementation of the growth medium with the product of PanD activity, ß-alanine, eliminated the need for exogenous pantothenate. We also determined that Z. mobilis IlvC, an enzyme better known for branched-chain amino acid synthesis, is required for pantothenate synthesis in Z. mobilis, as it compensates for the absence of PanE, another pantothenate synthesis pathway enzyme. In addition to contributing to an understanding of the nutritional requirements of Z. mobilis, our results have led to the design of a more cost-effective growth medium.


Asunto(s)
Carboxiliasas/metabolismo , Etanol/metabolismo , Ácido Pantoténico/deficiencia , Zymomonas/enzimología , Zymomonas/crecimiento & desarrollo , Aminoácidos de Cadena Ramificada/biosíntesis , Aminoácidos de Cadena Ramificada/genética , Carboxiliasas/genética , Medios de Cultivo/economía , Medios de Cultivo/metabolismo , Proteínas de Escherichia coli/genética , Fermentación , Expresión Génica , Vectores Genéticos/genética , Ácido Pantoténico/genética , Zymomonas/genética , beta-Alanina/metabolismo
11.
G3 (Bethesda) ; 4(11): 2189-95, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25213693

RESUMEN

The obligate-heritable endosymbionts of insects possess some of the smallest known bacterial genomes. This is likely due to loss of genomic material during symbiosis. The mode and rate of this erosion may change over evolutionary time: faster in newly formed associations and slower in long-established ones. The endosymbionts of human and anthropoid primate lice present a unique opportunity to study genome erosion in newly established (or young) symbionts. This is because we have a detailed phylogenetic history of these endosymbionts with divergence dates for closely related species. This allows for genome evolution to be studied in detail and rates of change to be estimated in a phylogenetic framework. Here, we sequenced the genome of the chimpanzee louse endosymbiont (Candidatus Riesia pediculischaeffi) and compared it with the closely related genome of the human body louse endosymbiont. From this comparison, we found evidence for recent genome erosion leading to gene loss in these endosymbionts. Although gene loss was detected, it was not significantly greater than in older endosymbionts from aphids and ants. Additionally, we searched for genes associated with B-vitamin synthesis in the two louse endosymbiont genomes because these endosymbionts are believed to synthesize essential B vitamins absent in the louse's diet. All of the expected genes were present, except those involved in thiamin synthesis. We failed to find genes encoding for proteins involved in the biosynthesis of thiamin or any complete exogenous means of salvaging thiamin, suggesting there is an undescribed mechanism for the salvage of thiamin. Finally, genes encoding for the pantothenate de novo biosynthesis pathway were located on a plasmid in both taxa along with a heat shock protein. Movement of these genes onto a plasmid may be functionally and evolutionarily significant, potentially increasing production and guarding against the deleterious effects of mutation. These data add to a growing resource of obligate endosymbiont genomes and to our understanding of the rate and mode of genome erosion in obligate animal-associated bacteria. Ultimately sequencing additional louse p-endosymbiont genomes will provide a model system for studying genome evolution in obligate host associated bacteria.


Asunto(s)
Enterobacteriaceae/genética , Evolución Molecular , Genoma Bacteriano , Simbiosis/genética , Animales , Enterobacteriaceae/patogenicidad , Eliminación de Gen , Proteínas de Choque Térmico/genética , Humanos , Pan troglodytes/parasitología , Ácido Pantoténico/biosíntesis , Ácido Pantoténico/genética , Phthiraptera/microbiología , Phthiraptera/patogenicidad , Tiamina/biosíntesis , Tiamina/genética
12.
Metab Eng ; 25: 215-26, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25076380

RESUMEN

We observed that removing pantothenate (vitamin B5), a precursor to co-enzyme A, from the growth medium of Saccharomyces cerevisiae engineered to produce ß-farnesene reduced the strain׳s farnesene flux by 70%, but increased its viability, growth rate and biomass yield. Conversely, the growth rate and biomass yield of wild-type yeast were reduced. Cultivation in media lacking pantothenate eliminates the growth advantage of low-producing mutants, leading to improved production upon scale-up to lab-scale bioreactor testing. An omics investigation revealed that when exogenous pantothenate levels are limited, acyl-CoA metabolites decrease, ß-oxidation decreases from unexpectedly high levels in the farnesene producer, and sterol and fatty acid synthesis likely limits the growth rate of the wild-type strain. Thus pantothenate supplementation can be utilized as a "metabolic switch" for tuning the synthesis rates of molecules relying on CoA intermediates and aid the economic scale-up of strains producing acyl-CoA derived molecules to manufacturing facilities.


Asunto(s)
Mejoramiento Genético/métodos , Inestabilidad Genómica/genética , Ingeniería Metabólica/métodos , Ácido Pantoténico/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Sesquiterpenos/metabolismo , Ácido Pantoténico/genética
13.
Mol Biol Evol ; 21(7): 1242-51, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15014152

RESUMEN

Coenzyme A (CoA) holds a central position in cellular metabolism and therefore can be assumed to be an ancient molecule. Starting from the known E. coli and human enzymes required for the biosynthesis of CoA, phylogenetic profiles and chromosomal proximity methods enabled an almost complete reconstruction of archaeal CoA biosynthesis. This includes the identification of strong candidates for archaeal pantothenate synthetase and pantothenate kinase, which are unrelated to the corresponding bacterial or eukaryotic enzymes. According to this reconstruction, the topology of CoA synthesis from common precursors is essentially conserved across the three domains of life. The CoA pathway is conserved to varying degrees in eukaryotic pathogens like Giardia lamblia or Plasmodium falciparum, indicating that these pathogens have individual uptake-mechanisms for different CoA precursors. Phylogenetic analysis and phyletic distribution of the CoA biosynthetic enzymes suggest that the enzymes required for the synthesis of phosphopantothenate were recruited independently in the bacterial and archaeal lineages by convergent evolution, and that eukaryotes inherited the genes for the synthesis of pantothenate (vitamin B5) from bacteria. Homologues to bacterial enzymes involved in pantothenate biosynthesis are present in a subset of archaeal genomes. The phylogenies of these enzymes indicate that they were acquired from bacterial thermophiles through horizontal gene transfer. Monophyly can be inferred for each of the enzymes catalyzing the four ultimate steps of CoA synthesis, the conversion of phosphopantothenate into CoA. The results support the notion that CoA was initially synthesized from a prebiotic precursor, most likely pantothenate or a related compound.


Asunto(s)
Archaea/genética , Coenzima A/biosíntesis , Evolución Molecular , Genómica , Filogenia , Archaea/enzimología , Carboxiliasas/genética , Coenzima A/genética , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Ácido Pantoténico/biosíntesis , Ácido Pantoténico/genética , Péptido Sintasas/genética
14.
J Biotechnol ; 104(1-3): 261-72, 2003 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-12948644

RESUMEN

A first generation genetically modified strain of Corynebacterium glutamicum has been assessed for its potential to synthesise and accumulate the vitamin pantothenic acid in the medium using fed-batch cultivation technology, with biomass concentration controlled by isoleucine limitation. Kinetic analysis of specific rates throughout the process has been used to model carbon flux through both central metabolism and the specific pathways involved in product formation. Flux towards pantothenic acid is potentially high but much of this flux is dissipated as by-products within associated pathways, notably linked to amino acid synthesis. The major limitation of vitamin production in this strain is linked to the tenfold higher flux of keto-isovalerate towards valine rather than pantothenic acid. Attempts to modify this ratio by imposing nitrogen limitation provoked carbon overflow as unidentified non-nitrogenous compounds. The observed accumulation of glycine suggests that the flux towards pantothenate production may by limited by the rate of the pathway intermediate (5,10-methylene-tetrahydrofolate) regeneration.


Asunto(s)
Reactores Biológicos/microbiología , Técnicas de Cultivo de Célula/métodos , Corynebacterium/crecimiento & desarrollo , Corynebacterium/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Mejoramiento Genético/métodos , Ácido Pantoténico/biosíntesis , Técnicas Químicas Combinatorias , Corynebacterium/genética , Metabolismo/fisiología , Ácido Pantoténico/genética , Proyectos Piloto
15.
Environ Microbiol ; 1(3): 243-57, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11207743

RESUMEN

Saprophytic Pseudomonas are common root-colonizing bacteria that can improve plant health. Efficient exploitation of these bacteria in agriculture requires knowledge of traits that enhance ecological performance in the rhizosphere. Here, I describe the development and application of a promoter-trapping technology (IVET) that enables the isolation of Pseudomonas fluorescens genes that show elevated levels of expression in the rhizosphere. Using IVET, 20 P. fluorescens genes were identified that are induced during rhizosphere colonization, and their patterns of expression were analysed in laboratory media and in the rhizosphere. Fourteen genes showed significant homology to sequences in GenBank that are involved in nutrient acquisition, stress response, or secretion; six showed no homology. Seven of the rhizosphere-induced (rhi) genes have homology to known non-Pseudomonas genes. One of the rhi genes (hrcC) is a component of a type III secretion pathway, not previously known in non-parasitic bacteria. Together, these genes provide a view of the rhizosphere environment as perceived by a rhizosphere colonist, and suggest that the nature of the association between P. fluorescens and the plant root may be more complex and intimate than previously thought.


Asunto(s)
Adaptación Fisiológica/genética , Fusión Artificial Génica/métodos , Proteínas Bacterianas/genética , Raíces de Plantas/microbiología , Pseudomonas fluorescens/genética , Proteínas Bacterianas/metabolismo , Cósmidos , Medios de Cultivo , Elementos Transponibles de ADN , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Biblioteca Genómica , Mutagénesis Insercional , Ácido Pantoténico/genética , Ácido Pantoténico/metabolismo , Plásmidos , Pseudomonas fluorescens/fisiología , Proteínas Recombinantes de Fusión/metabolismo , beta-Galactosidasa/metabolismo
16.
J Bacteriol ; 170(2): 872-6, 1988 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-3123465

RESUMEN

Strains containing the conditional-lethal dfp-707 mutation, which have a defect in DNA synthesis at 42 degrees C, were found to require either pantothenate or its precursor, beta-alanine, for growth at 30 degrees C. The auxotrophy and conditional lethality were corevertible. Through localized mutagenesis of the dfp-pyrE region of Escherichia coli, another mutation, dfp-1, was obtained. It conferred the auxotrophy but not the conditional lethality of dfp-707. Complementation analysis, performed with a set of plasmid-borne deletion and insertion mutations, revealed a correspondence between the complementation of each mutant phenotype and the production of the dfp gene product, previously identified as a 45-kilodalton flavoprotein. The dfp mutants had a normal level of aspartate-1-decarboxylase, which is the only enzyme known to produce beta-alanine in E. coli and which is specified by the distant panD gene. A prototrophic pseudorevertant of a dfp-1 strain was found to have retained the dfp mutation, to be genetically unstable, and to have an elevated level of aspartate-1-decarboxylase, suggesting that it had acquired a duplication of panD. It is not known what steps in pantothenate or DNA metabolism are affected by the mutant dfp product or how its flavin moiety may be involved.


Asunto(s)
Alanina/metabolismo , ADN Bacteriano/genética , Escherichia coli/genética , Genes Bacterianos , beta-Alanina/metabolismo , Replicación del ADN , ADN Bacteriano/biosíntesis , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Prueba de Complementación Genética , Glutamato Descarboxilasa/genética , Mutación , Ácido Pantoténico/genética , Ácido Pantoténico/metabolismo , Plásmidos , Temperatura , beta-Alanina/genética
17.
J Bacteriol ; 149(3): 916-22, 1982 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-7037743

RESUMEN

Pantothenate (pan) auxotrophs of Escherichia coli K-12 and Salmonella typhimurium LT2 were characterized by enzymatic and genetic analyses. The panB mutants of both organisms and the pan-6 ("panA") mutant of S. typhimurium are deficient in ketopantoate hydroxymethyltransferase, whereas the panC mutants lack pantothenate synthetase. panD mutants of E. coli K-12 were previously shown to be deficient in aspartate 1-decarboxylase. All mutants showed only a single enzyme defect. The finding that the pan-6 mutant was deficient in ketopantoate hydroxymethyltransferase indicates that the genetic lesion is a panB allele. The pan-6 mutant therefore is deficient in the utilization of alpha-ketoisovalerate rather than the synthesis of alpha-ketoisovalerate, as originally proposed. The order of the pan genes of E. coli K-12 was determined by phage P1-mediated three-factor crosses. The clockwise order was found to be aceF panB panD panC tonA on the genetic map of E. coli K-12. The three-factor crosses were greatly facilitated by use of a closely linked Tn10 transposon as the outside marker. We also found that supplementation of E. coli K-12 auxotrophs with a high concentration of pantothenate or beta-alanine increased the intracellular coenzyme A level two- to threefold above the normal level. Supplementation with pantoate or ketopantoate resulted in smaller increases.


Asunto(s)
Escherichia coli/metabolismo , Genes Bacterianos , Transferasas de Hidroximetilo y Formilo , Ácido Pantoténico/biosíntesis , Salmonella typhimurium/metabolismo , Carboxiliasas/genética , Mapeo Cromosómico , Cromosomas Bacterianos , Coenzima A/metabolismo , Escherichia coli/genética , Ácido Pantoténico/genética , Péptido Sintasas/genética , Salmonella typhimurium/genética , Transferasas
18.
Mol Gen Genet ; 163(1): 23-7, 1978 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-355840

RESUMEN

Three unlinked genes where mutation can lead to D(+)-pantothenic acid auxotrophy in Aspergillus nidulans have been identified. pantoA is probably the structural gene for pantothenate synthetase (EC 6.3.2.1) whilst pantoB and pantoC are involved in the syntheses of D-pantoic acid and beta-alanine, respectively. A pantoC- mutant is tentatively considered to be blocked in conversion of 5,6-dihydrouracil to beta-ureidopropionate. An alternative route of beta-alanine biosynthesis occurs by the transamination of malonic semialdehyde, catalysed by GABA transaminase. The possibility that beta-alanine can be replaced by certain structurally related compounds and yet nevertheless yield biologically active coenzyme A analogues is discussed.


Asunto(s)
4-Aminobutirato Transaminasa/metabolismo , Alanina/biosíntesis , Aspergillus nidulans/genética , Genes , Transaminasas/metabolismo , Aspergillus nidulans/enzimología , Mutación , Ácido Pantoténico/genética , Ácido gamma-Aminobutírico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA