Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
J Sep Sci ; 47(12): e2400247, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39031562

RESUMEN

Glutathione (GSH) is an important antioxidant that is generated and degraded via the GSH cycle. Quantification of the main components in the GSH cycle is necessary to evaluate the process of GSH. In this study, a robust ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of 10 components (GSH; γ-glutamylcysteine; cysteinyl-glycine; n-acetylcysteine; homocysteine; cysteine; cystine; methionine; glutamate; pyroglutamic acid) in GSH cycle was developed. The approach was optimized in terms of derivative, chromatographic, and spectrometric conditions as well as sample preparation. The unstable thiol groups of GSH, γ-glutamylcysteine, cysteinyl-glycine, n-acetylcysteine, cysteine, and homocysteine were derivatized by n-ethylmaleimide. The derivatized and underivatized analytes were separated on an amino column with gradient elution. The method was further validated in terms of selectivity (no interference), linearity (R2 > 0.99), precision (% relative standard deviation [RSD%] range from 0.57 to 10.33), accuracy (% relative error [RE%] range from -3.42 to 10.92), stability (RSD% < 5.68, RE% range from -2.54 to 4.40), recovery (RSD% range from 1.87 to 7.87) and matrix effect (RSD% < 5.42). The validated method was applied to compare the components in the GSH cycle between normal and oxidative stress cells, which would be helpful in clarifying the effect of oxidative stress on the GSH cycle.


Asunto(s)
Glutatión , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Glutatión/análisis , Cromatografía Líquida de Alta Presión/métodos , Humanos , Homocisteína/análisis , Cisteína/análisis , Ácido Pirrolidona Carboxílico/análisis , Ácido Pirrolidona Carboxílico/química , Ácido Pirrolidona Carboxílico/metabolismo , Dipéptidos/análisis , Acetilcisteína/análisis , Acetilcisteína/química , Cistina/análisis
2.
Proteins ; 92(7): 842-853, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38436541

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by the formation of extracellular amyloid-ß (Aß) plaques. The underlying cause of AD is unknown, however, post-translational modifications (PTMs) of Aß have been found in AD patients and are thought to play a role in protein aggregation. One such PTM is pyroglutamylation, which can occur at two sites in Aß, Glu3 and Glu11. This modification of Aß involves the truncation and charge-neutralization of N-terminal glutamate, causing Aß to become more hydrophobic and prone to aggregation. The molecular mechanism by which the introduction of pyroglutamate (pE) promotes aggregation has not been determined. To gain a greater understanding of the role that charge neutralization and truncation of the N-terminus plays on Aß conformational sampling, we used the Drude polarizable force field (FF) to perform molecular dynamics simulations on AßpE3-42 and AßpE11-42 and comparing their properties to previous simulations of Aß1-42. The Drude polarizable FF allows for a more accurate representation of electrostatic interactions, therefore providing novel insights into the role that charge plays in protein dynamics. Here, we report the parametrization of pE in the Drude polarizable FF and the effect of pyroglutamylation on Aß. We found that AßpE3-42 and AßpE11-42 alter the permanent and induced dipoles of the peptide. Specifically, we found that AßpE3-42 and AßpE11-42 have modification-specific backbone and sidechain polarization response and perturbed solvation properties that shift the Aß conformational ensemble.


Asunto(s)
Péptidos beta-Amiloides , Simulación de Dinámica Molecular , Procesamiento Proteico-Postraduccional , Ácido Pirrolidona Carboxílico , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Humanos , Ácido Pirrolidona Carboxílico/química , Ácido Pirrolidona Carboxílico/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Electricidad Estática
3.
Chemistry ; 30(10): e202303007, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38100216

RESUMEN

Extracellular amyloid-ß (Aß) plaques, primarily formed by Aß(1-40) and Aß(1-42) fibrils, are a hallmark of Alzheimer's disease. The Aß peptide can undergo a high variety of different post-translational modifications including formation of a pyroglutamate (pGlu, pE) at N-terminal Glu3 or Glu11 of truncated Aß(3-x) or Aß(11-x), respectively. Here we studied structural similarities and differences between pEAß(3-42) and LS-shaped Aß(1-42) fibrils grown under identical conditions (pH 2) using solid-state NMR spectroscopy. We show that the central region of pEAß(3-42) fibrils including the turn region around V24 is almost identical to Aß(1-42) showing similar ß-strands also at the N-terminus. The missing N-terminal residues D1-A2 along with pE3 formation in pEAß(3-42) preclude a salt bridge between K28-D1' as in Aß(1-42) fibrils. G37 and G38 act as highly sensitive internal sensors for the modified N-terminus, which remains rigid over ~five pH units.


Asunto(s)
Enfermedad de Alzheimer , Ácido Pirrolidona Carboxílico , Humanos , Ácido Pirrolidona Carboxílico/química , Péptidos beta-Amiloides/química , Espectroscopía de Resonancia Magnética , Fragmentos de Péptidos/química
4.
Molecules ; 28(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37959820

RESUMEN

Venous thromboembolism is a serious problem because it significantly increases the risk of developing vascular complications in elderly patients with obesity or immobilization, cancer, and many other diseases. Thus, there is a need to study new therapeutic strategies, including new medicinal agents for the efficient and safe correction of thrombus disorders. In this work, we have synthesized a number of new amides and peptides of 4-amino-5-oxoprolines and studied their antiplatelet and antithrombotic activity in experiments in vitro and in vivo. It has been found that the newly obtained compounds slow down the process of thrombus formation in a model of arterial and venous thrombosis, without affecting plasma hemostasis parameters. (2S,4S)-4-Amino-1-(4-fluorophenyl)-5-oxoprolyl-(S)-phenylalanine proved to be the most efficient among the studied derivatives. The results obtained indicate the advisability of further studies on 5-oxoproline derivatives in order to design pharmaceutical agents for the prevention and treatment of the consequences of thrombosis.


Asunto(s)
Ácido Pirrolidona Carboxílico , Trombosis , Humanos , Anciano , Ácido Pirrolidona Carboxílico/química , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Amidas/farmacología , Trombosis/tratamiento farmacológico , Péptidos/farmacología , Péptidos/uso terapéutico , Inhibidores de Agregación Plaquetaria/química
5.
Arch Insect Biochem Physiol ; 113(3): e22016, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37073494

RESUMEN

Previous studies had shown that the corpora cardiaca (CC) of the Indian stick insect, Carausius morosus, synthesizes two hypertrehalosemic hormones (HrTHs)-decapeptides which differ in the way that the chromatographically less-hydrophobic form, code-named Carmo-HrTH-I, is modified by an unique C-mannosylated tryptophan residue at position 8. The availability of milligram amounts of this modified peptide in synthetic form now makes it possible to study physico-chemical and physiological properties. This study revealed that the synthetic peptide co-elutes with the natural peptide from the CC chromatographically, is heat stable for at least 30 min at 100°C, and causes hyperlipemia in acceptor locusts (a heterologous bioassay) and hypertrehalosemia in ligated stick insects (conspecific bioassay). In vitro incubation of Carmo-HrTH-I together with stick insect hemolymph (a natural source of peptidases) demonstrated clearly via chromatographic separation that the C-mannosylated Trp bond is stable and is not broken down to Carmo-HrTH-II (the more-hydrophobic decapeptide with an unmodified Trp residue). This notwithstanding, breakdown of Carmo-HrTH-I did take place, and the half-life of the compound was calculated as about 5 min. Finally, the natural peptide is releasable when CC are treated in vitro with a depolarizing saline (high potassium concentration) suggesting its role as true HrTHs in the stick insect. In conclusion, the results indicate that Carmo-HrTH-I which is synthesized in the CC is released into the hemolymph, binds to a HrTH receptor in the fat body, activates the carbohydrate metabolism pathway and is quickly inactivated in the hemolymph by (an) as yet unknown peptidase(s).


Asunto(s)
Hormonas de Insectos , Neuropéptidos , Animales , Secuencia de Aminoácidos , Oligopéptidos/farmacología , Oligopéptidos/química , Neuropéptidos/metabolismo , Insectos/metabolismo , Péptidos , Neoptera/metabolismo , Hormonas de Insectos/metabolismo , Ácido Pirrolidona Carboxílico/química
6.
Mol Psychiatry ; 27(4): 1880-1885, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34880449

RESUMEN

One of the central aims in Alzheimer's disease (AD) research is the identification of clinically relevant drug targets. A plethora of potential molecular targets work very well in preclinical model systems both in vitro and in vivo in AD mouse models. However, the lack of translation into clinical settings in the AD field is a challenging endeavor. Although it is long known that N-terminally truncated and pyroglutamate-modified Abeta (AßpE3) peptides are abundantly present in the brain of AD patients, form stable and soluble low-molecular weight oligomers, and induce neurodegeneration in AD mouse models, their potential as drug target has not been generally accepted in the past. This situation has dramatically changed with the report that passive immunization with donanemab, an AßpE3-specific antibody, cleared aymloid plaques and stabilized cognitive deficits in a group of patients with mild AD in a phase II trial. This review summarizes the current knowledge on the molecular mechanisms of generation of AßpE, its biochemical properties, and the intervention points as a drug target in AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Placa Amiloide , Ácido Pirrolidona Carboxílico/química
7.
Chem Biol Drug Des ; 98(5): 850-856, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34423556

RESUMEN

Secretory glutaminyl cyclase (sQC) plays an important role in the formation of the pyroglutamate-amyloid beta (pGlu-Aß) peptide, one of the most abundant variants of Aß found in the Alzheimer's disease (AD) brain. This post-translationally modified pGlu-Aß possesses high toxicity and rapid aggregation propensity when compared to the wild-type Aß (WT-Aß). Since pGlu-Aß acts as seed for WT-Aß, the inhibition of sQC limits the formation of pGlu-Aß and reduces the overall load of Aß plaques in the AD brain. PQ912 is a potent inhibitor of sQC and has been enrolled in phase 2b clinical trial of the AD drug development pipeline; however, the binding mode of PQ912 against sQC is not elucidated yet. Understanding the binding mode of PQ912 is important as it helps in the discovery against AD where sQC as a target. To explore the binding mode of PQ912, we employed ensemble docking towards 9 sQC structures that differ either in active site geometry or in the bound ligands. Further pose clustering and binding energy calculations yielded three possible binding modes for PQ912. Finally, all atom molecular dynamics simulations determined the most energetically favorable binding mode for PQ912, in the active site of sQC, which is similar to that of LSB-09, a recently reported sQC inhibitor containing benzimidazole-6-carboxamide moiety.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Aminoaciltransferasas/antagonistas & inhibidores , Péptidos beta-Amiloides/química , Bencimidazoles/química , Inhibidores Enzimáticos/química , Imidazolinas/química , Fármacos Neuroprotectores/química , Secuencia de Aminoácidos , Bencimidazoles/farmacología , Dominio Catalítico , Inhibidores Enzimáticos/farmacología , Humanos , Imidazolinas/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fármacos Neuroprotectores/farmacología , Unión Proteica , Conformación Proteica , Ácido Pirrolidona Carboxílico/química , Relación Estructura-Actividad
8.
Mol Pharm ; 18(8): 3116-3124, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34232660

RESUMEN

N-terminal glutamate can cyclize to form pyroglutamate (pGlu) in pharmaceutically relevant peptides and proteins. The reaction occurs nonenzymatically during storage for monoclonal antibodies and shows a strong 'pH' dependence in solution, but the solid-state reaction has not been studied in detail. This work investigates the effect of 'pH' and buffer species on pGlu formation for a model peptide (EVQLVESGGGLVQPGGSLR) in lyophilized solids and in solution. The model peptide was formulated from 'pH' 4 to 'pH' 9 in citrate, citrate-phosphate, phosphate, and carbonate buffers and stored at 50 °C for at least 10 weeks. pGlu formation and loss of the parent peptide were monitored by reversed-phase high-performance liquid chromatography. The apparent 'pH' dependence of the reaction rate in the solid state differed markedly from that in solution. Interestingly, in the 'pH' range often used to formulate mAbs ('pH' 5.5-6), the rate of pGlu formation in the solid state was greater than that in solution. The results have implications for the rational design of stable formulations of peptides and proteins, and for the transition from solid to solution formulations during development.


Asunto(s)
Concentración de Iones de Hidrógeno , Péptidos/química , Ácido Pirrolidona Carboxílico/química , Anticuerpos Monoclonales/química , Tampones (Química) , Catálisis , Química Farmacéutica/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Ciclización , Estabilidad de Medicamentos , Liofilización , Cinética , Estabilidad Proteica , Soluciones
9.
Biomolecules ; 11(5)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068800

RESUMEN

The validation of a previously developed model of the interaction between the red pigment-concentrating hormone of Daphnia pulex and its cognate receptor (Jackson et al., IJBM 106, 969-978, 2018) was undertaken. Single amino acid replacements, noticeably an Ala scan, of the ligand, Dappu-RPCH, were docked to the receptor, and the binding energies calculated and compared to the one with Dappu-RPCH. As a second step, the same molecules were docked using molecular dynamics (MD) in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane. Changes in binding energy were compared to previous results on in vitro receptor activation (Marco et al., Sci. Rep. 7, 6851, 2017). Residue scanning and MD simulations both gave comparable results for binding energy. For most mutants, there was a good inverse correlation between in vitro activity and binding. There were, however, exceptions; for example: [Ala4]Dappu-RPCH bound as tightly as the cognate ligand but had little activity. This seeming discrepancy was explained when the MD data were analyzed in detail, showing that, although [Ala4]Dappu-RPCH had multiple interactions with the receptor accounting for the high binding energy, the interacting residues of the receptor were quite different to those of Dappu-RPCH. The MD calculations show clearly that the strong binding affinity of the ligand to the receptor is not sufficient for activation. Interaction of the binding of the ligand to two residues of the receptor, Ser 155 and Gln 237, is also essential. A comparison of our computational results with the experimental results of Marco et al. and comparison with the extensive data on GnRH supports the validity of our Dappu-RPCH R model.


Asunto(s)
Cladóceros/metabolismo , Daphnia/metabolismo , Oligopéptidos/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Animales , Cladóceros/química , Daphnia/química , Simulación de Dinámica Molecular , Oligopéptidos/química , Ácido Pirrolidona Carboxílico/química , Ácido Pirrolidona Carboxílico/metabolismo , Receptores Acoplados a Proteínas G/química , Relación Estructura-Actividad
10.
J Biol Chem ; 296: 100263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33837744

RESUMEN

The development of a targeted therapy would significantly improve the treatment of periodontitis and its associated diseases including Alzheimer's disease, rheumatoid arthritis, and cardiovascular diseases. Glutaminyl cyclases (QCs) from the oral pathogens Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia represent attractive target enzymes for small-molecule inhibitor development, as their action is likely to stabilize essential periplasmic and outer membrane proteins by N-terminal pyroglutamination. In contrast to other microbial QCs that utilize the so-called type I enzymes, these oral pathogens possess sequences corresponding to type II QCs, observed hitherto only in animals. However, whether differences between these bacteroidal QCs and animal QCs are sufficient to enable development of selective inhibitors is not clear. To learn more, we recombinantly expressed all three QCs. They exhibit comparable catalytic efficiencies and are inhibited by metal chelators. Crystal structures of the enzymes from P. gingivalis (PgQC) and T. forsythia (TfQC) reveal a tertiary structure composed of an eight-stranded ß-sheet surrounded by seven α-helices, typical of animal type II QCs. In each case, an active site Zn ion is tetrahedrally coordinated by conserved residues. Nevertheless, significant differences to mammalian enzymes are found around the active site of the bacteroidal enzymes. Application of a PgQC-selective inhibitor described here for the first time results in growth inhibition of two P. gingivalis clinical isolates in a dose-dependent manner. The insights gained by these studies will assist in the development of highly specific small-molecule bacteroidal QC inhibitors, paving the way for alternative therapies against periodontitis and associated diseases.


Asunto(s)
Aminoaciltransferasas/química , Periodontitis/microbiología , Porphyromonas gingivalis/enzimología , Prevotella intermedia/enzimología , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/genética , Aminoaciltransferasas/ultraestructura , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Humanos , Periodontitis/tratamiento farmacológico , Periodontitis/genética , Porphyromonas gingivalis/patogenicidad , Prevotella intermedia/patogenicidad , Estructura Terciaria de Proteína/efectos de los fármacos , Ácido Pirrolidona Carboxílico/química , Ácido Pirrolidona Carboxílico/metabolismo , Tannerella forsythia/enzimología , Tannerella forsythia/patogenicidad
11.
Anal Biochem ; 607: 113862, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32771374

RESUMEN

α-Ketoglutaramic acid (KGM, α-ketoglutaramate), also known as 2-oxoglutaramic acid (OGM, 2-oxoglutaramate), is a substrate of ω-amidase, also known as Nitrilase 2 (NIT2), and is essential for studying the canonical role of ω-amidase, as well as its role in multiple diseases. Until now, KGM used for biological studies has been prepared most often by the enzymatic oxidation of l-glutamine using snake venom l-amino acid oxidase, which provides KGM as an aqueous solution, containing by-products including 5-oxoproline and α-ketoglutarate. The enzymatic method for KGM preparation, therefore, cannot provide pure product or an accurate percent yield evaluation. Here, we report a synthetic method for the preparation of this important substrate, KGM, in 3 steps, from l-2-hydroxyglutaramic acid, in pure form, in 53% overall yield.


Asunto(s)
Ácidos Cetoglutáricos/síntesis química , Ácidos Cetoglutáricos/metabolismo , Amidohidrolasas/metabolismo , Aminohidrolasas/metabolismo , Animales , Catálisis , Glutamatos/química , Glutamina/química , L-Aminoácido Oxidasa/metabolismo , Ácido Pirrolidona Carboxílico/química , Venenos de Serpiente/química
12.
PLoS One ; 15(7): e0235543, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32645028

RESUMEN

Senile plaques frequently contain Aß-pE(3), a N-terminally truncated Aß species that is more closely linked to AD compared to other Aß species. Tau protein is highly phosphorylated at several residues in AD, and specifically phosphorylation at Ser202/Thr205 is known to be increased in AD. Several studies suggest that formation of plaques and tau phosphorylation might be linked to each other. To evaluate if Aß-pE(3) and ptau Ser202/Thr205 levels correlate in human and transgenic AD mouse models, we analyzed human cortical and hippocampal brain tissue of different Braak stages as well as murine brain tissue of two transgenic mouse models for levels of Aß-pE(3) and ptau Ser202/Thr205 and correlated the data. Our results show that Aß-pE(3) formation is increased at early Braak stages while ptau Ser202/Thr205 mostly increases at later stages. Further analyses revealed strongest correlations between the two pathologies in the temporal, frontal, cingulate, and occipital cortex, however correlation in the hippocampus was weaker. Evaluation of murine transgenic brain tissue demonstrated a slow but steady increase of Aß-pE(3) from 6 to 12 months of age in the cortex and hippocampus of APPSL mice, and a very early and strong Aß-pE(3) increase in 5xFAD mice. ptau Ser202/Thr205 levels increased at the age of 9 months in APPSL mice and at 6 months in 5xFAD mice. Our results show that Aß-pE(3) and ptau Ser202/Thr205 levels strongly correlate in human as well as murine tissues, suggesting that tau phosphorylation might be amplified by Aß-pE(3).


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Fosforilación , Ácido Pirrolidona Carboxílico/química , Especificidad de la Especie , Proteínas tau/genética
13.
Phys Chem Chem Phys ; 22(29): 16887-16895, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32666970

RESUMEN

Neuronal plaques of amyloid ß (Aß) peptides of varying length carrying different posttranslational modifications represent a molecular hallmark of Alzheimer's disease. It is believed that transient oligomeric Aß assemblies associating in early fibrillation events represent particularly cytotoxic peptide aggregates. Also, N-terminally truncated (in position 3 or 11) and pyroglutamate modified peptides exhibited an increased toxicity compared to the wildtype. In the current study, the molecular structure of oligomeric species of pGlu3-Aß(3-40) and pGlu11-Aß(11-40) was investigated using solid-state NMR spectroscopy. On the secondary structure level, for both modified peptides a large similarity between oligomers and mature fibrils of the modified peptides was found mainly based on 13C NMR chemical shift data. Some smaller structural differences were detected in the vicinity of the respective modification site. Also, the crucial early folding molecular contact between residues Phe19 and Leu34 could be observed for the oligomers of both modified peptide species. Therefore, it has to be concluded that the major secondary structure elements of Aß are already present in oligomers of pGlu3-Aß(3-40) and pGlu11-Aß(11-40). These posttranslationally modified peptides arrange in a similar fashion as observed for wild type Aß(1-40).


Asunto(s)
Péptidos beta-Amiloides/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Ácido Pirrolidona Carboxílico/química , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/ultraestructura , Humanos , Microscopía Electrónica de Rastreo , Estructura Secundaria de Proteína
14.
Artículo en Inglés | MEDLINE | ID: mdl-32296388

RESUMEN

Nineteen species of various families of the order Diptera and one species from the order Mecoptera are investigated with mass spectrometry for the presence and primary structure of putative adipokinetic hormones (AKHs). Additionally, the peptide structure of putative AKHs in other Diptera are deduced from data mining of publicly available genomic or transcriptomic data. The study aims to demonstrate the structural biodiversity of AKHs in this insect order and also possible evolutionary trends. Sequence analysis of AKHs is achieved by liquid chromatography coupled to mass spectrometry. The corpora cardiaca of almost all dipteran species contain AKH octapeptides, a decapeptide is an exception found only in one species. In general, the dipteran AKHs are order-specific- they are not found in any other insect order with two exceptions only. Four novel AKHs are revealed by mass spectrometry: two in the basal infraorder of Tipulomorpha and two in the brachyceran family Syrphidae. Data mining revealed another four novel AKHs: one in various species of the infraorder Culicumorpha, one in the brachyceran superfamily Asiloidea, one in the family Diopsidae and in a Drosophilidae species, and the last of the novel AKHs is found in yet another Drosophila. In general, there is quite a biodiversity in the lower Diptera, whereas the majority of the cyclorraphan Brachycera produce the octapeptide Phote-HrTH. A hypothetical molecular peptide evolution of dipteran AKHs is suggested to start with an ancestral AKH, such as Glomo-AKH, from which all other AKHs in Diptera to date can evolve via point mutation of one of the base triplets, with one exception.


Asunto(s)
Dípteros/metabolismo , Evolución Molecular , Hormonas de Insectos/metabolismo , Oligopéptidos/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Dípteros/química , Dípteros/clasificación , Dípteros/genética , Femenino , Hormonas de Insectos/análisis , Hormonas de Insectos/química , Hormonas de Insectos/genética , Masculino , Espectrometría de Masas , Oligopéptidos/análisis , Oligopéptidos/química , Oligopéptidos/genética , Péptidos/análisis , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Ácido Pirrolidona Carboxílico/análisis , Ácido Pirrolidona Carboxílico/química , Ácido Pirrolidona Carboxílico/metabolismo , Relación Estructura-Actividad
15.
Acc Chem Res ; 53(3): 690-702, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32142245

RESUMEN

In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,ß-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.


Asunto(s)
Compuestos Heterocíclicos/química , Metano/análogos & derivados , Compuestos Orgánicos/química , Ácido Pirrolidona Carboxílico/química , Catálisis , Metano/química , Estereoisomerismo
16.
Sci Rep ; 10(1): 3294, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32094456

RESUMEN

In clinical trials with early Alzheimer's patients, administration of anti-amyloid antibodies reduced amyloid deposits, suggesting that immunotherapies may be promising disease-modifying interventions against Alzheimer's disease (AD). Specific forms of amyloid beta (Aß) peptides, for example post-translationally modified Aß peptides with a pyroglutamate at the N-terminus (pGlu3, pE3), are attractive antibody targets, due to pGlu3-Aß's neo-epitope character and its propensity to form neurotoxic oligomeric aggregates. We have generated a novel anti-pGlu3-Aß antibody, PBD-C06, which is based on a murine precursor antibody that binds with high specificity to pGlu3-Aß monomers, oligomers and fibrils, including mixed aggregates of unmodified Aß and pGlu3-Aß peptides. PBD-C06 was generated by first grafting the murine antigen binding sequences onto suitable human variable light and heavy chains. Subsequently, the humanized antibody was de-immunized and site-specific mutations were introduced to restore original target binding, to eliminate complement activation and to improve protein stability. PBD-C06 binds with the same specificity and avidity as its murine precursor antibody and elimination of C1q binding did not compromise Fcγ-receptor binding or in vitro phagocytosis. Thus, PBD-C06 was specifically designed to target neurotoxic aggregates and to avoid complement-mediated inflammatory responses, in order to lower the risk for vasogenic edemas in the clinic.


Asunto(s)
Enfermedad de Alzheimer/terapia , Anticuerpos Monoclonales Humanizados/farmacología , Activación de Complemento , Inmunoterapia , Ácido Pirrolidona Carboxílico/química , Alelos , Enfermedad de Alzheimer/inmunología , Péptidos beta-Amiloides/química , Animales , Complemento C1q/inmunología , Regiones Determinantes de Complementariedad , Edema/prevención & control , Endocitosis , Epítopos/química , Humanos , Inflamación , Ratones , Mutación , Fagocitosis , Unión Proteica , Procesamiento Proteico-Postraduccional
17.
Int J Toxicol ; 38(2_suppl): 5S-11S, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31522652

RESUMEN

The Cosmetic Ingredient Review Expert Panel (Panel) reassessed the safety of 2-pyrrolidone-5-carboxylic acid (PCA) and sodium PCA; the Panel added 3 previously unreviewed salts (calcium, magnesium, and potassium) of PCA to this safety assessment. 2-Pyrrolidone-5-carboxylic acid and its salts are reported to function in cosmetics as skin conditioning agents-humectants. The Panel reviewed the data from the 1999 report of PCA and sodium PCA, as well as additional data included in this report, to determine the safety of these ingredients. The Panel concluded that PCA and its salts are safe in cosmetics in the present practices of use and concentration; additionally, these ingredients should not be used in cosmetic products in which N-nitroso compounds can be formed.


Asunto(s)
Cosméticos/toxicidad , Ácido Pirrolidona Carboxílico/toxicidad , Animales , Seguridad de Productos para el Consumidor , Humanos , Compuestos Nitrosos/química , Ácido Pirrolidona Carboxílico/química , Ácido Pirrolidona Carboxílico/farmacocinética , Sales (Química) , Pruebas de Toxicidad , Toxicocinética
18.
Biochem Mol Biol Educ ; 47(6): 620-631, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31520514

RESUMEN

Bioinformatics was recently introduced as a module for both undergraduate and postgraduate biological sciences students at our institution. Our experience shows that inquiry-based hands-on exercises provide the most efficient approach to bioinformatic straining. In this article, we report a structural bioinformatics project carried out by Master degree students to determine structure-function relationships of the uncharacterized prokaryotic 5-oxoprolinase subunit A (PxpA). PxpA associates with the PxpBC complex to form a functional 5-oxoprolinase enzyme for conversion of 5-oxoproline to L-glutamate. Although the exact role of PxpA is yet to be determined, it has been demonstrated that PxpBC catalyses the first step of the reaction, which is phosphorylation of 5-oxoproline. Here, we provide evidence that PxpA is involved in the last two steps of the reaction:decyclization of the labile phosphorylated 5-oxoproline to the equally labile γ-glutamylphosphate, and subsequent dephosphorylation to L-glutamate. Structural bioinformatics analysis of four putative PxpA structures revealed that PxpA adopts a non-canonical TIM barrel fold with well-characterized TIM barrel enzyme features. These include a C-terminal groove comprising potentially essential conserved amino acid residues organized into putative motifs. Phylogenetic analysis suggests a relationship between taxonomic grouping and PxpA oligomerization. PxpA forms a tunnel upon ligand binding, thus suggesting that the PxpABC complex employs the mechanism of substrate channeling to protect labile intermediates. Ultimately, students were able to form a testable hypothesis on the function of PxpA, an achievement we consider encouraging other students to emulate. © 2019 International Union of Biochemistry and Molecular Biology, 47(6):620-631, 2019.


Asunto(s)
Disciplinas de las Ciencias Biológicas/educación , Biología Computacional/educación , Piroglutamato Hidrolasa/química , Piroglutamato Hidrolasa/metabolismo , Curriculum , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Humanos , Modelos Moleculares , Ácido Pirrolidona Carboxílico/química , Ácido Pirrolidona Carboxílico/metabolismo , Relación Estructura-Actividad , Estudiantes
19.
Int J Mol Sci ; 20(19)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557968

RESUMEN

Among various homing devices, gonadotropin-releasing hormone-III (GnRH-III) peptide represents a suitable targeting moiety for drug delivery systems. The anti-tumor activity of the previously developed GnRH-III-[4Lys(Bu),8Lys(Dau=Aoa)] conjugate and the novel synthesized GnRH-III-[2ΔHis,3d-Tic,4Lys(Bu),8Lys(Dau=Aoa)] conjugate, containing the anti-cancer drug daunorubicin, were evaluated. Here, we demonstrate that both GnRH-III-Dau conjugates possess an efficient growth inhibitory effect on more than 20 cancer cell lines, whereby the biological activity is strongly connected to the expression of gonadotropin-releasing hormone receptors (GnRH-R). The novel conjugate showed a higher in vitro anti-proliferative activity and a higher uptake capacity. Moreover, the treatment with GnRH-III-Dau conjugates cause a significant in vivo tumor growth and metastases inhibitory effect in three different orthotopic models, including 4T1 mice and MDA-MB-231 human breast carcinoma, as well as HT-29 human colorectal cancer bearing BALB/s and SCID mice, while toxic side-effects were substantially reduced in comparison to the treatment with the free drug. These findings illustrate that our novel lead compound is a highly promising candidate for targeted tumor therapy in both colon cancer and metastatic breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Daunorrubicina/análogos & derivados , Daunorrubicina/farmacología , Hormona Liberadora de Gonadotropina , Ácido Pirrolidona Carboxílico/análogos & derivados , Animales , Antineoplásicos/química , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Daunorrubicina/química , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Hormona Liberadora de Gonadotropina/química , Humanos , Masculino , Ratones , Estructura Molecular , Ácido Pirrolidona Carboxílico/química , ARN Mensajero/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Pruebas de Toxicidad , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Arch Insect Biochem Physiol ; 102(4): e21611, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31471923

RESUMEN

Seventeen species of the coleopteran series Cucujiformia are investigated for the presence and sequence of putative adipokinetic hormones (AKHs). Cucujiformia includes species from the major superfamilies, that is, Chrysomeloidea, Curculionoidea, Cucujoidea, and Tenebrionoidea. The clade Phytophaga in which the Chrysomeloidea and Curculionoidea reside, harbor very detrimental species for agriculture and forestry. Thus, this study aims not only to demonstrate the structural biodiversity of AKHs in these beetle species and possible evolutionary trends but also to determine whether the AKHs from harmful pest species can be used as lead substances for a future putative insecticide that is harmless to beneficial insects. Sequence analysis of AKHs is achieved by liquid chromatography coupled to mass spectrometry. Most of the investigated species contain AKH octapeptides in their corpora cardiaca, although previously published work also found a few decapeptides, which we comment on. The signature and sole AKH in cerambycidae Chrysomeloidea and Curculionoidea is Peram-CAH-I (pEVNFSPNW amide), which is also found in the majority of chrysomelidae Chrysomeloidea and in the one investigated species of Cucujoidea albeit in a few cases associated with a second AKH which can be either Peram-CAH-II (pELTFTPNW amide), Emppe-AKH (pEVNFTPNW amide), or Micvi-CC (pEINFTPNW amide). The most often encountered AKH in Tenebrionoidea, family Meloidae as well as family Tenebrionidae, is Tenmo-HrTH (pELNFSPNW amide) followed by Pyrap-AKH (pELNFTPNW amide) and a Tenmo-HrTH extended decapeptide (in Meloidae). Finally, we examine AKH sequences from 43 species of cucujiform beetles, including the superfamily Coccinelloidea for a possible lead compound for producing a cucujiform-specific pesticide.


Asunto(s)
Escarabajos/química , Hormonas de Insectos/química , Oligopéptidos/química , Ácido Pirrolidona Carboxílico/análogos & derivados , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Corpora Allata/química , Hormonas de Insectos/análisis , Espectrometría de Masas , Oligopéptidos/análisis , Péptidos/análisis , Péptidos/química , Ácido Pirrolidona Carboxílico/análisis , Ácido Pirrolidona Carboxílico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA