Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
World J Microbiol Biotechnol ; 40(10): 321, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279003

RESUMEN

Laccases act as green catalysts for oxidative cross-coupling of phenolic antioxidnt compounds, but low stability and non-recyclability limit its application. To address that, metal-organic frameworks Cu-BTC and Cr-MOF were synthesized as supports to immobilize the efficient laccase from Cerrena sp. HYB07. The Brunauer-Emmett-Teller surface area of Cu-BTC and Cr-MOF were 1213.2 and 907.1 m2/g, respectively. The two carriers respectively presented pore diameters of 1.2-10 nm and 1.4-12 nm as octahedron, indicating nano-scale mesoporosity. These Cu-BTC and Cr-MOF carriers could adsorb laccase with enzyme loading of 1933.2 and 1564.4 U/g carrier, respectively. The stability and organic solvent tolerance of Cu-BTC-laccase and Cr-MOF-laccase were both obviously improved compared to free laccase. Thermal inactivation kinetics showed that both the two immobilized laccases displayed lower thermal inactivation rate constants. Importantly, the Cu-BTC-laccase and Cr-MOF-laccase both showed much higher activity for cross-coupling of ethyl ferulate than free laccase, which had 2.5-fold higher cross-coupling efficiency than that by free laccase. The ethyl ferulate coupling product was also analyzed by mass spectroscopy and the synthesis pathway of ethyl ferulate dimer was proposed. The cross coupling of ethyl ferulate required the formation of radical intermediates of ethyl ferulate generated by laccase mediated oxidation. This work paved the way for MOFs immobilized laccase for cross coupling of antioxidant phenols.


Asunto(s)
Ácidos Cafeicos , Enzimas Inmovilizadas , Lacasa , Estructuras Metalorgánicas , Lacasa/química , Lacasa/metabolismo , Estructuras Metalorgánicas/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Estabilidad de Enzimas , Cobre/química , Porosidad , Cinética , Cromo/química , Adsorción , Oxidación-Reducción , Antioxidantes/química
2.
J Agric Food Chem ; 72(34): 19016-19027, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39145698

RESUMEN

Lipophenols, phenolic compounds esterified with fatty alcohols or fatty acids, provide greater health benefits upon dietary ingestion of plant-based foods than unesterified (poly)phenols. Based on this premise, the present study aimed to demonstrate the role of gastrointestinal enzymes (pepsin, pancreatin, and pancreatic lipase) in releasing alkyl gallates and trans-caffeates from wine lees, providing bioactive compounds with enhanced capacities against oxidative stress (OS) and para-inflammation. The UHPLC-ESI-QqQ-MS/MS-based analysis revealed ethyl gallate and ethyl trans-caffeate as the most prominent compounds (1.675 and 0.872 µg/g dw, respectively), while the bioaccessibility of the derivatives of gallic and caffeic acids was dependent on the alkyl chain properties. The de novo formation of alkyl gallates during gastric and intestinal digestion resulted from intestinal enzyme activity. Moreover, the in vitro capacity of bioaccessible alkyl esters of gallic and trans-caffeic acids to reduce cyclooxygenase-2 concentration and modulate oxilipins related to OS (8-iso-PGF2α) and inflammation (PGF2α and PGE2) was demonstrated in a time-dependent manner. In conclusion, the presence of alkyl esters of gallic and trans-caffeic acids in wine lees and their subsequent formation during digestion of this byproduct emphasize their value as a source of antioxidant and anti-inflammatory compounds, encouraging the consideration of wine lees as a valuable ingredient for health-promoting coproducts.


Asunto(s)
Ciclooxigenasa 2 , Ésteres , Estrés Oxidativo , Fenoles , Vino , Estrés Oxidativo/efectos de los fármacos , Vino/análisis , Fenoles/química , Fenoles/metabolismo , Ésteres/química , Ésteres/metabolismo , Ciclooxigenasa 2/metabolismo , Humanos , Inflamación/metabolismo , Vitis/química , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo
3.
Appl Environ Microbiol ; 90(9): e0060224, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39177329

RESUMEN

The acetogen Acetobacterium woodii couples caffeate reduction with ferredoxin reduction and NADH oxidation via electron bifurcation, providing additional reduced ferredoxin for energy conservation and cell synthesis. Caffeate is first activated by an acyl-CoA synthetase (CarB), which ligates CoA to caffeate at the expense of ATP. After caffeoyl-CoA is reduced to hydrocaffeoyl-CoA, the CoA moiety in hydrocaffeoyl-CoA could be recycled for caffeoyl-CoA synthesis by an ATP-independent CoA transferase (CarA) to save energy. However, given that CarA and CarB are co-expressed, it was not well understood how ATP could be saved when both two competitive pathways of caffeate activation are present. Here, we reported a dual feedback inhibition of the CarB-mediated caffeate activation by the intermediate hydrocaffeoyl-CoA and the end-product hydrocaffeate. As the product of CarA, hydrocaffeate inhibited CarB-mediated caffeate activation by serving as another substrate of CarB with hydrocaffeoyl-CoA produced. It effectively competed with caffeate even at a concentration much lower than caffeate. Hydrocaffeoyl-CoA formed in this process can also inhibit CarB-mediated caffeate activation. Thus, the dual feedback inhibition of CarB, together with the faster kinetics of CarA, makes the ATP-independent CarA-mediated CoA loop the major route for caffeoyl-CoA synthesis, further saving ATP in the caffeate-dependent electron-bifurcating pathway. A genetic architecture similar to carABC has been found in other anaerobic bacteria, suggesting that the feedback inhibition of acyl-CoA ligases could be a widely employed strategy for ATP conservation in those pathways requiring substrate activation by CoA. IMPORTANCE: This study reports a dual feedback inhibition of caffeoyl-CoA synthetase by two downstream products, hydrocaffeate and hydrocaffeoyl-CoA. It elucidates how such dual feedback inhibition suppresses ATP-dependent caffeoyl-CoA synthesis, hence making the ATP-independent route the main pathway of caffeate activation. This newly discovered mechanism contributes to our current understanding of ATP conservation during the caffeate-dependent electron-bifurcating pathway in the ecologically important acetogen Acetobacterium woodii. Bioinformatic mining of microbial genomes revealed contiguous genes homologous to carABC within the genomes of other anaerobes from various environments, suggesting this mechanism may be widely used in other CoA-dependent electron-bifurcating pathways.


Asunto(s)
Acetobacterium , Adenosina Trifosfato , Ácidos Cafeicos , Ácidos Cafeicos/metabolismo , Adenosina Trifosfato/metabolismo , Acetobacterium/genética , Acetobacterium/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Retroalimentación Fisiológica , Oxidación-Reducción , Transporte de Electrón
4.
J Agric Food Chem ; 72(23): 13297-13307, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38830127

RESUMEN

2-(2-Phenylethyl)chromones (PECs) are the primary constituents responsible for the promising pharmacological activities and unique fragrance of agarwood. However, the O-methyltransferases (OMTs) involved in the formation of diverse methylated PECs have not been reported. In this study, we identified one Mg2+-dependent caffeoyl-CoA-OMT subfamily enzyme (AsOMT1) and three caffeic acid-OMT subfamily enzymes (AsOMT2-4) from NaCl-treated Aquilaria sinensis calli. AsOMT1 not only converts caffeoyl-CoA to feruloyl-CoA but also performs nonregioselective methylation at either the 6-OH or 7-OH position of 6,7-dihydroxy-PEC. On the other hand, AsOMT2-4 preferentially utilizes PECs as substrates to produce structurally diverse methylated PECs. Additionally, AsOMT2-4 also accepts nonPEC-type substrates such as caffeic acid and apigenin to generate methylated products. Protein structure prediction and site-directed mutagenesis revealed that residues of L313 and I318 in AsOMT3, as well as S292 and F313 in AsOMT4 determine the distinct regioselectivity of these two OMTs toward apigenin. These findings provide important biochemical evidence of the remarkable structural diversity of PECs in agarwood.


Asunto(s)
Metiltransferasas , Proteínas de Plantas , Thymelaeaceae , Metiltransferasas/genética , Metiltransferasas/química , Metiltransferasas/metabolismo , Thymelaeaceae/enzimología , Thymelaeaceae/química , Thymelaeaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Madera/química , Especificidad por Sustrato , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Metilación , Flavonoides
5.
Plant Physiol Biochem ; 214: 108884, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38945096

RESUMEN

The phytohormones cytokinins are essential mediators of developmental and environmental signaling, primarily during cell division and endophytic interactions, among other processes. Considering the limited understanding of the regulatory mechanisms that affect the growth and bioactivity of the medicinal plant Nepeta nuda (Lamiaceae), our study aimed to explore how cytokinins influence the plant's metabolic status. Exogenous administration of active cytokinin forms on in vitro N. nuda internodes stimulated intensive callus formation and de novo shoot regeneration, leading to a marked increase in biomass. This process involved an accumulation of oxidants, which were scavenged by peroxidases using phenolics as substrates. The callus tissue formed upon the addition of the cytokinin 6-benzylaminopurine (BAP) acted as a sink for sugars and phenolics during the allocation of nutrients between the culture medium and regenerated plants. In accordance, the cytokinin significantly enhanced the content of polar metabolites and their respective in vitro biological activities compared to untreated in vitro and wild-grown plants. The BAP-mediated accumulation of major phenolic metabolites, rosmarinic acid (RA) and caffeic acid (CA), corresponded with variations in the expression levels of genes involved in their biosynthesis. In contrast, the accumulation of iridoids and the expression of corresponding biosynthetic genes were not significantly affected. In conclusion, our study elucidated the mechanism of cytokinin action in N. nuda in vitro culture and demonstrated its potential in stimulating the production of bioactive compounds. This knowledge could serve as a basis for further investigations of the environmental impact on plant productivity.


Asunto(s)
Citocininas , Citocininas/metabolismo , Purinas/metabolismo , Compuestos de Bencilo/farmacología , Cinamatos/metabolismo , Cinamatos/farmacología , Ácido Rosmarínico , Ácidos Cafeicos/metabolismo , Depsidos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
6.
Plant J ; 119(1): 252-265, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38596892

RESUMEN

Chicoric acid is the major active ingredient of the world-popular medicinal plant purple coneflower (Echinacea purpurea (L.) Menoch). It is recognized as the quality index of commercial hot-selling Echinacea products. While the biosynthetic pathway of chicoric acid in purple coneflower has been elucidated recently, its regulatory network remains elusive. Through co-expression and phylogenetic analysis, we found EpMYB2, a typical R2R3-type MYB transcription factor (TF) responsive to methyl jasmonate (MeJA) simulation, is a positive regulator of chicoric acid biosynthesis. In addition to directly regulating chicoric acid biosynthetic genes, EpMYB2 positively regulates genes of the upstream shikimate pathway. We also found that EpMYC2 could activate the expression of EpMYB2 by binding to its G-box site, and the EpMYC2-EpMYB2 module is involved in the MeJA-induced chicoric acid biosynthesis. Overall, we identified an MYB TF that positively regulates the biosynthesis of chicoric acid by activating both primary and specialized metabolic genes. EpMYB2 links the gap between the JA signaling pathway and chicoric acid biosynthesis. This work opens a new direction toward engineering purple coneflower with higher medicinal qualities.


Asunto(s)
Ácidos Cafeicos , Echinacea , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Succinatos , Factores de Transcripción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Succinatos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácidos Cafeicos/metabolismo , Echinacea/genética , Echinacea/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Filogenia , Acetatos/farmacología
7.
Cell Biochem Funct ; 42(2): e3942, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379263

RESUMEN

Colorectal cancer (CRC) is among the most prevalent gastrointestinal cancers of epithelial origin worldwide, with over 2 million cases detected every year. Emerging evidence suggests a significant increase in the levels of inflammatory and stress-related markers in patients with CRC, indicating that oxidative stress and lipid peroxidation may influence signalling cascades involved in the progression of the disease. However, the precise molecular and cellular basis underlying CRC and their modulations during bioactive compound exposure have not yet been deciphered. This study examines the effect of caffeic acid phenethyl ester (CAPE), a natural bioactive compound, in HT29 CRC cells grown under serum-supplemented and serum-deprived conditions. We found that CAPE inhibited cell cycle progression in the G2/M phase and induced apoptosis. Migration assay confirmed that CAPE repressed cancer invasiveness. Protein localisation by immunofluorescence microscopy and protein expression by western blot analysis reveal increased expressions of key inflammatory signalling mediators such as p38α, Jun N-terminal kinase and extracellular signal-regulated kinase (ERK) proteins. Molecular docking data demonstrates that CAPE shows a higher docking score of -5.35 versus -4.59 to known p38 inhibitor SB203580 as well as a docking score of -4.17 versus -3.86 to known ERK1/2 inhibitor AZD0364. Co-immunoprecipitation data reveals that CAPE treatment effectively downregulates heat shock protein (HSP) expression in both sera-supplemented and limited conditions through its interaction with mitogen-activated protein kinase 14 (MAPK14). These results suggest that stress induction via serum starvation in HT29 CRC cells leads to the induction of apoptosis and co-ordinated activation of MAPK-HSP pathways. Molecular docking studies support that CAPE could serve as an effective inhibitor to target p38 and MAPK compared to their currently known inhibitors.


Asunto(s)
Neoplasias del Colon , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Humanos , Línea Celular Tumoral , Proteínas de Choque Térmico , Simulación del Acoplamiento Molecular , Apoptosis , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/metabolismo , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/metabolismo , Neoplasias del Colon/tratamiento farmacológico
8.
Iran J Med Sci ; 48(5): 493-500, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37786469

RESUMEN

Background: Tobacco smoke contains various toxins that negatively affect the human reproductive system. Caffeic acid phenethyl ester (CAPE), a potent antioxidant, has protective effects on the reproductive system against oxygen-free radicals, methotrexate, and pesticides. Herein, the effect of CAPE on some key markers of endometrial receptivity has been evaluated. Methods: A cross-sectional study was conducted during 2018-2019 in the Department of Clinical Biochemistry, School of Medicine, Fasa University of Medical Sciences (Fasa, Iran). Primary endometrial cells were divided into five groups, namely control, nicotine, CAPE, vehicle, and nicotine+CAPE. Real-time polymerase chain reaction (PCR) and methylation-specific PCR were performed to evaluate gene expressions and methylation, respectively. Appropriate doses of CAPE and nicotine were determined using the MTT assay. Data were analyzed using SPSS software (version 16.0) with a one-way analysis of variance. P<0.01 was considered statistically significant. The fold change was calculated using the 2-∆ΔCT method. Results: Treatment of cells with nicotine significantly reduced the expression of C-X-C motif chemokine ligand 12 (CXCL12), fibroblast growth factor 2 (FGF2), and vascular endothelial growth factor A (VEGF-A) genes (P<0.0001). However, the expression levels increased significantly when treated with nicotine+CAPE (P<0.0001). Despite the reduced CXCL12 gene expression in cells treated with nicotine, CXCL12 was unmethylated in all study groups, indicating that the methylation status of the CXCL12 gene was not affected by nicotine or CAPE. Conclusion: CAPE can be a suitable agent to protect female smokers from the harmful effects of nicotine. This manuscript is available as a preprint on the Research Gate website.


Asunto(s)
Nicotina , Factor A de Crecimiento Endotelial Vascular , Femenino , Humanos , Nicotina/efectos adversos , Nicotina/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Estudios Transversales , Endometrio/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Ácidos Cafeicos/metabolismo
9.
Molecules ; 28(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37175366

RESUMEN

Echinacea purpurea is a perennial plant that belongs to the Asteraceae family. It has a wide range of applications mainly in the treatment and prevention of inflammations in the respiratory system. The current study aimed to perform a phytochemical characterization of purple coneflower (Echinacea purpurea) roots and their extracts (water, 40%, 50%, 60% ethanol, and 60% glycerol). Phytochemical characterization was carried out by gravimetric, spectrophotometric, and chromatographic methods. Echinacea roots were characterized by a low lipid (0.8%) content. In contrast, carbohydrates (45%) and proteins (20%) occupied a large part of the dry matter. Amongst the extracts, the highest yield was obtained using water as a solvent (53%). Water extract was rich in protein and carbohydrates as fructans (inulin) were the most abundant carbohydrate constituent. The most exhaustive recovery of the phenolic components was conducted by extraction with 40% ethanol and 60% glycerol. It was found that water is the most suitable extractant for obtaining a polysaccharide-containing complex (PSC) (8.87%). PSC was composed mainly of fructans (inulin) and proteins with different molecular weight distributions. The yield of PSC decreased with an increasing ethanol concentration (40% > 50% > 60%) but the lowest yield was obtained from 60% glycerol extract. The obtained results showed that Echinacea roots contained a large amount of biologically active substances-phenolic components and polysaccharides and that glycerol was equally efficient to ethanol in extracting caffeic acid derivatives from purple coneflower roots. The data can be used for the preparation of extracts having different compositions and thus easily be incorporated into commercial products.


Asunto(s)
Echinacea , Echinacea/química , Inulina/metabolismo , Glicerol/metabolismo , Extractos Vegetales/análisis , Raíces de Plantas/química , Fenoles/análisis , Fructanos/análisis , Agua/análisis , Etanol/metabolismo , Ácidos Cafeicos/metabolismo
10.
J Agric Food Chem ; 71(23): 8981-8990, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37254503

RESUMEN

Caffeic acid is a phenolic acid compound widely applied in the food and pharmaceutical fields. Currently, one of the reasons for the low yield of caffeic acid biosynthesis is that the carbon flow enters mainly into the TCA cycle via pyruvate, which leads to low concentrations of erythrose 4-phosphate (E4P) and phosphoenolpyruvate (PEP), the precursors of caffeic acid synthesis. Here, we developed a growth-coupled dual-layered dynamic regulation system. This system controls intracellular pyruvate supply in real time by responding to intracellular pyruvate and p-coumaric acid concentrations, autonomously coordinates pathway gene expression, and redirects carbon metabolism to balance cell growth and caffeic acid synthesis. Finally, our constructed engineered strain based on the dual-layered dynamic regulation system achieved a caffeic acid titer of 559.7 mg/L in a 5 L bioreactor. Thus, this study demonstrated the efficiency and potential of this system in boosting the yield of aromatic compounds.


Asunto(s)
Ácidos Cafeicos , Ácido Pirúvico , Ácidos Cafeicos/metabolismo , Carbono
11.
Enzyme Microb Technol ; 164: 110193, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36621069

RESUMEN

Caffeic acid (3,4-dihydroxycinnamic acid) is a precursor for high-valued compounds with anticancer, antiviral activities, and anti-inflammatory making it an important substance in the food additive, cosmetics, and pharmaceutical industries. Here, we developed an engineered Escherichia coli strain capable of directly producing high levels of caffeic acid from glucose. Tyrosine ammonia-lyase from Rhodotorula glutinis (RgTAL) and p-coumaric acid 3-hydroxylase from Saccharothrix espanaensis (SeC3H) were expressed. Next, feedback-resistant chorismate mutase/prephenate dehydrogenase, was introduced to promote l-tyrosine synthesis. This engineered strain CA3 produced 1.58 g/L of caffeic acid from glucose without tyrosine supplemented to the medium. Furthermore, to reduce p-coumaric acid accumulation, 4-hydroxyphenylacetate 3-hydroxylase from Pseudomonas aeruginosa (PaHpaBC) was introduced. Finally, an engineered strain CA8 directly produced 6.17 g/L of caffeic acid from glucose using a jar fermenter. The E. coli developed in this study would be helpful as a chassis strain to produce value-added caffeic acid-derivatives.


Asunto(s)
Ácidos Cafeicos , Escherichia coli , Glucosa , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Oxigenasas de Función Mixta , Ácidos Cafeicos/metabolismo
12.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674952

RESUMEN

Coffee presents beneficial health properties, including antiobesity effects. However, its effects on inflammation are controversial. Hydroxycinnamic acids are the main coffee phenolic bioactive compounds. In human bioavailability studies carried out with coffee, among the most abundant compounds found in urine and plasma were the colonic metabolites, dihydrocaffeic (DHCA), dihydroferulic (DHFA), and hydroxyhippuric (HHA) acids. To understand the hepato-protective potential of these three compounds, we tested whether treatment with realistic concentrations (0.5-10 µM) were effective to counteract inflammatory process and oxidative status induced by tumor necrosis factor α (TNF-α). First, we established a novel model of inflammation/oxidation using TNF-α and HepG2 cells. Afterwards, we evaluated the activity of DHCA, DHFA, and HHA against the inflammatory/oxidative challenge through the determination of the inflammatory mediators, interleukins (IL)-6, and IL-8 and chemokines, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1, as well as the levels of biomarkers of oxidative stress, such as reactive oxygen species, reduced glutathione, and the antioxidant enzymes glutathione peroxidase and reductase. Results showed that all three compounds have a potential hepato-protective effect against the induced inflammatory/oxidative insult.


Asunto(s)
Café , Fenoles , Humanos , Fenoles/farmacología , Fenoles/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Hepatocitos/metabolismo , Glutatión Peroxidasa/metabolismo , Interleucina-6/metabolismo , Inflamación
13.
Drug Chem Toxicol ; 46(3): 491-502, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35373681

RESUMEN

We aimed to determine the phytochemical contents of the aerial part M. neglectum aerial part (MAP) and M. neglectum bulb (MB) ethanolic extract of Muscari neglectum and to investigate their protective effects on gastric damage induced by carbon tetrachloride (CCl4) in rats. After the toxicity testing, 42 female Wistar albino rats were divided into 7 groups, Control, MAP, MB, CCl4, CCl4 + MAP, CCl4 + MB, and CCl4 + Silymarin groups. At the end of the experiment, the serum biochemical parameters, antioxidant defense enzymes, and malondialdehyde (MDA) contents in the stomach tissue were evaluated to determine the antioxidant role of the M. neglectum extracts. According to the gas chromatography-mass spectroscopy, fatty acid analysis, octadecadienoic, and 9,12,15 octadecatrienoic fatty acids were found as major fatty acids in the MAP, whereas 9,12 octadecadienoic and octadecanoic acids were the major fatty acids in the MB. According to the liquid chromatography-tandem mass spectrometry, quinic acid, fumaric acid, gentisic acid, caffeic acid, kaempferol, and apigenin were found in the MAP, while quinic acid, fumaric acid, caffeic acid, and kaempferol were found in the MB. The total phenolic and flavonoid contents in the extract were determined in the MAP and MB. The MAP and MB extracts generally caused a statistically significant decrease in the MDA content and increase in the antioxidant parameters in the stomach tissue. It was concluded that MAP and MB extracts may have antioxidant and gastric protective effects due to the phytochemical content of M. neglectum.HighlightsAccording to LC-MS/MS results, quinic acid, fumaric acid, chemferol, apigenin, and caffeic acid were determined as major compounds in M. neglectum extracts.According to GC-MS results, octadecadienoic, octadecatrienoic, and octadecanoic methyl esters were the major fatty acids of the M. neglectum extracts.The M. neglectum extracts regulated the levels of stomach damage and biochemical parameters.The M. neglectum extracts extract might have pharmaceutical-nutritional potential.


Asunto(s)
Antioxidantes , Hyacinthus , Animales , Ratas , Antioxidantes/metabolismo , Tetracloruro de Carbono/toxicidad , Quempferoles/metabolismo , Quempferoles/farmacología , Extractos Vegetales/química , Hyacinthus/metabolismo , Cromatografía Liquida , Apigenina/metabolismo , Apigenina/farmacología , Ácido Quínico/metabolismo , Ácido Quínico/farmacología , Ratas Wistar , Espectrometría de Masas en Tándem , Estrés Oxidativo , Fitoquímicos/farmacología , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Ácidos Cafeicos/metabolismo , Hígado
14.
J Plant Physiol ; 279: 153836, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36244262

RESUMEN

Irrational use of pesticides may lead to physiological and metabolic disorders in different crops. However, there are limited investigations on impacts of insecticides on physiology and biochemistry, secondary metabolic pathways, and associated quality of medicinal plants such as peppermint (Mentha × piperita L.). In this study, target metabolites in peppermint were monitored following foliar spraying of five insecticides: imidacloprid, pyriproxyfen, acetamiprid, chlorantraniliprole, and chlorfenapyr. Compared with the control, all insecticide treatments caused a significant loss of soluble protein (decreased by 22.3-38.7%) in peppermint leaves. Insecticides induced an increase in the levels of phytohormones jasmonic acid and abscisic acid in response to these chemical stresses. Among them, imidacloprid increased jasmonic acid by 388.3%, and pyriproxyfen increased abscisic acid by 98.8%. The contents of phenylpropanoid metabolites, including rutin, quercetin, apigenin, caffeic acid, 4-hydroxybenzoic acid, ferulic acid, syringic acid, and sinapic acid showed a decreasing trend, with pyriproxyfen decreasing the levels of quercetin and 4-hydroxybenzoic acid by 78.8% and 72.6%, respectively. Combined with correlation analysis, the content of lignin in leaves shows different degrees of negative correlations with several phenolic acids. It could be inferred that insecticides may trigger plant defense mechanisms that accumulate lignin (increased by 24.6-49.1%) in leaves by consuming phenolic acids to barricade absorption of insecticides. Through constructing networks between phytohormones and secondary metabolites, peppermint may regulate the contents of caffeic acid, 4-hydroxybenzoic acid, and sinapic acid by the antagonistic effect between salicylic acid and abscisic acid in response to insecticidal stresses. Principal component analysis and systemic cluster analysis revealed that the most pronounced changes in physiological indexes and metabolites were caused by the pyriproxyfen treatment. In conclusion, this study improves our understanding of the mechanism by which insecticides affect plant physiological and metabolic processes, thus potentially altering the quality and therapeutic value of peppermint as an example.


Asunto(s)
Insecticidas , Mentha piperita , Mentha piperita/metabolismo , Insecticidas/farmacología , Insecticidas/análisis , Insecticidas/metabolismo , Lignina/metabolismo , Parabenos/análisis , Parabenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Quercetina/análisis , Hojas de la Planta/metabolismo , Ácidos Cafeicos/análisis , Ácidos Cafeicos/metabolismo
15.
Adv Exp Med Biol ; 1401: 213-225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35831675

RESUMEN

Cancer is a complex pathology of great heterogeneity and difficulty that makes the constant search for new therapies necessary. A major advance on the subject has been made by focusing on the development of new drugs aimed to alter the metabolism of cancer cells, by generating a disruption of mitochondrial function. For this purpose, several new compounds with specific mitochondrial action have been tested, leading successfully to cell death. Recently, attention has centered on a group of natural compounds present in plants named polyphenols, among which is caffeic acid, a polyphenol that has proven to be a powerful antitumoral agent and a prominent compound for studies focused on the development of new therapies against cancer.In this review, we revised the antitumoral capacity and mechanisms of action of caffeic acid and its derivatives, with special emphasis in a new class of caffeic acid derivatives that target mitochondria by chemical binding to the lipophilic cation triphenylphosphonium.


Asunto(s)
Mitocondrias , Neoplasias , Humanos , Mitocondrias/metabolismo , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Ácidos Cafeicos/farmacología , Neoplasias/metabolismo , Antioxidantes/farmacología , Polifenoles/farmacología
16.
Nat Chem Biol ; 18(5): 520-529, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35484257

RESUMEN

Advances in synthetic biology enable microbial hosts to synthesize valuable natural products in an efficient, cost-competitive and safe manner. However, current engineering endeavors focus mainly on enzyme engineering and pathway optimization, leaving the role of cofactors in microbial production of natural products and cofactor engineering largely ignored. Here we systematically engineered the supply and recycling of three cofactors (FADH2, S-adenosyl-L-methion and NADPH) in the yeast Saccharomyces cerevisiae, for high-level production of the phenolic acids caffeic acid and ferulic acid, the precursors of many pharmaceutical molecules. Tailored engineering strategies were developed for rewiring biosynthesis, compartmentalization and recycling of the cofactors, which enabled the highest production of caffeic acid (5.5 ± 0.2 g l-1) and ferulic acid (3.8 ± 0.3 g l-1) in microbial cell factories. These results demonstrate that cofactors play an essential role in driving natural product biosynthesis and the engineering strategies described here can be easily adopted for regulating the metabolism of other cofactors.


Asunto(s)
Productos Biológicos , Saccharomyces cerevisiae , Productos Biológicos/metabolismo , Ácidos Cafeicos/metabolismo , Hidroxibenzoatos , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409218

RESUMEN

The induction of apoptosis is one of the main goals of the designed anti-cancer therapies. In recent years, increased attention has been paid to the physical factors such as magnetic fields and to the natural bioactive compounds and the possibilities using them in medicine. Hence, the aim of this study was to evaluate the anti-tumor effect of caffeic or chlorogenic acid in combination with a moderate-strength static magnetic field on C32 melanoma cells by assessing the effect of both factors on the apoptotic process. The apoptosis of the C32 cells was evaluated using a flow cytometry analysis. The expression of the apoptosis-associated genes was determined using the RT-qPCR technique. The caspase activity and the concentration of the oxidative damage markers were also measured. It was found that phenolic acids and a static magnetic field trigger the apoptosis of the C32 cells and also affect the expression of the genes encoding the apoptosis regulatory proteins. In conclusion, our study indicated that both of the phenolic acids and a static magnetic field can be used supportively in the treatment of melanoma and that caffeic acid is more pro-apoptotic than chlorogenic acid.


Asunto(s)
Ácido Clorogénico , Melanoma , Antioxidantes/farmacología , Ácidos Cafeicos/metabolismo , Ácidos Cafeicos/farmacología , Ácido Clorogénico/metabolismo , Ácido Clorogénico/farmacología , Humanos , Campos Magnéticos , Melanoma/terapia , Estrés Oxidativo
18.
Molecules ; 26(18)2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34577004

RESUMEN

The present work was aimed at studying the potential of elicitation on the accumulation of phenolic compounds in in vitro shoot cultures of Eryngium alpinum L., a protected plant from the Apiaceae family. The study examined the influence of (+)-usnic acid on the biomass growth as well as on the biosynthesis of the desired flavonoids and phenolic acids in the cultured microshoots. The phenolic compound content was determined by HPLC-DAD. The flavonoid of the highest concentration was isoquercetin, and the phenolic acids of the highest amount were rosmarinic acid, caffeic acid and 3,4-dihydroxyphenylacetic acid, both in the non-elicited and elicited biomass. Isoquercetin accumulation was efficiently increased by a longer elicitation with a lower concentration of lichenic compound (107.17 ± 4.67 mg/100 g DW) or a shorter elicitation with a higher concentration of acid (127.54 ± 11.34 and 108.37 ± 12.1 mg/100 g DW). Rosmarinic acid production generally remained high in all elicited and non-elicited microshoots. The highest content of this acid was recorded at 24 h of elicitation with 3.125 µM usnic acid (512.69 ± 4.89 mg/100 g DW). The process of elicitation with (+)-usnic acid, a well-known lichenic compound with allelopathic nature, may therefore be an effective technique of enhancing phenolic compound accumulation in alpine eryngo microshoot biomass.


Asunto(s)
Benzofuranos/farmacología , Eryngium/química , Flavonoides/metabolismo , Hidroxibenzoatos/metabolismo , Brotes de la Planta/química , Ácido 3,4-Dihidroxifenilacético/análisis , Ácido 3,4-Dihidroxifenilacético/metabolismo , Biomasa , Ácidos Cafeicos/análisis , Ácidos Cafeicos/metabolismo , Cromatografía Líquida de Alta Presión , Cinamatos/análisis , Cinamatos/metabolismo , Depsidos/análisis , Depsidos/metabolismo , Eryngium/efectos de los fármacos , Eryngium/crecimiento & desarrollo , Eryngium/metabolismo , Flavonoides/análisis , Hidroxibenzoatos/análisis , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Quercetina/análogos & derivados , Quercetina/análisis , Quercetina/metabolismo , Ácido Rosmarínico
19.
FEBS Open Bio ; 11(12): 3293-3303, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34510823

RESUMEN

It is well documented that caffeic acid (3,4-dihydroxycinnamic acid) (CA) interacts with and inhibits the oxidative reactions of myoglobin (Mb) and hemoglobin (Hb), and this interaction underlies its antioxidative action in meat. Sickle cell hemoglobin (HbS) is known for its tendency to oxidize more readily than normal HbA in the presence of hydrogen peroxide (H2 O2 ), which leads to a more persistent and highly oxidizing ferryl Hb (HbFe4+ ). We have investigated the effects of CA on HbS oxidation intermediates, specifically on the ferric/ferryl forms. At a low concentration of H2 O2 (0.5-fold over heme), we observed a fivefold reduction in the amount of HbFe4+ accumulated in a mixture of ferric and H2 O2 solution. Higher levels of H2 O2 (onefold and twofold over heme) led to a lesser threefold and twofold reduction in the content of HbFe4+ , respectively, possibly due to the saturation of the binding sites on the Hb molecule. The most intriguing finding was that when 5-molar excess CA over heme was used, and a considerable increase in the delay time of HbS polymerization to approximately 200 s was observed. This delay in polymerization of HbS is theoretically sufficient to avoid microcapillary blockage and prevent vasoconstrictions in vivo. Mass spectrometry analysis indicated that CA was more extensively covalently bonded to ßCys93 than to ßCys112 and αCys104 . The dual antioxidant and antisickling properties of CA may be explored further to maximize its therapeutic potential in SCD.


Asunto(s)
Ácidos Cafeicos/metabolismo , Ácidos Cafeicos/farmacología , Hemoglobina Falciforme/metabolismo , Antioxidantes/metabolismo , Ácidos Cafeicos/química , Hemoglobina Falciforme/química , Hemoglobina Falciforme/efectos de los fármacos , Hemoglobinas/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Hierro/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
20.
Sci Rep ; 11(1): 15202, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312445

RESUMEN

Medicinal plants are considered as one of the most important sources of chemical compounds, so preparing a suitable culture media for medicinal plant growth is a critical factor. The present study is aimed to improve the caffeic acid derivatives and alkylamides percentages of Echinacea purpurea root extract in hydroponic culture media with different perlite particle size and NO3-/NH4+ ratios. Perlite particle size in the growing media was varied as very coarse perlite (more than 2 mm), coarse perlite (1.5-2 mm), medium perlite (1-1.5 mm), fine perlite (0.5-1 mm), and very fine perlite (less than 0.5 mm) in different ratios to peat moss (including pure perlite, 50:50 v/v, 30:70 v/v, and pure peat moss). Two NO3-/NH4+ ratios (90:10 and 70:30) were tested in each growing media. All phytochemical analyses were performed according to standard methods using high performance liquid chromatography (HPLC). It was found that the E. purpurea grown in the medium containing very fine-grade perlite with 50:50 v/v perlite to peat moss ratio had the maximum caffeic acid derivatives, including chicoric acid (17 mg g-1 DW), caftaric acid (6.3 mg g-1 DW), chlorogenic acid (0.93 mg g-1 DW), cynarin (0.84 mg g-1 DW), and echinacoside (0.73 mg g-1 DW), as well as, alkylamides (54.21%). The percentages of these phytochemical compounds increased by decreasing perlite particle size and increasing of NO3-/NH4+ ratio. The major alkylamide in the E. purpurea root extract was dodeca-2E, 4E, 8Z-10 (E/Z)-tetraenoic acid isobutylamide in all treatments, ranging from 31.12 to 54.21% of total dry weight. It can be concluded that optimizing hydroponic culture media and nutrient solution has significant effects on E. purpurea chemical compounds.


Asunto(s)
Óxido de Aluminio , Ácidos Cafeicos/metabolismo , Echinacea/metabolismo , Hidroponía , Compuestos de Nitrógeno , Dióxido de Silicio , Amidas/metabolismo , Medios de Cultivo , Echinacea/crecimiento & desarrollo , Tamaño de la Partícula , Fenoles/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA