Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Int J Biol Macromol ; 273(Pt 2): 132826, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825277

RESUMEN

Using bio-based plasticizers derived from biomass resources to replace traditional phthalates can avoid the biotoxicity and non-biodegradability caused by the migration of plasticizers during the application of plastics. In this study, L-lactic acid and levulinic acid were employed as the major biomass monomer to successfully fabricate L-lactic acid-based plasticizers (LBL-n, n = 1.0, 1.5, 2.0, 2.5) containing a diverse number of lactate groups. The plasticizing mechanism was explained, manifesting that L-lactic acid-based plasticizers containing a substantial number of lactate groups could effectively improve the flexibility of poly (lactic acid) (PLA), and the elongation at break was 590 %-750 %. Compared to LBL-1.5 plasticized-PLA films, the tensile strength and modulus of ketonized-LBL-1.5 (KLBL-1.5) plasticized-PLA films increased to 59 % and 163 %, indicating the ketal functionality of plasticizers enhanced the strength of PLA. Meanwhile, the increment of lactate groups and the introduction of the ketal group in the plasticizer increased the crystallization, migration, and volatilization stability of plasticized-PLA films and also kept their outstanding optical transparency. Besides, the biodegradability of KLBL-1.5 was investigated by active soil and Tenebrio molitor experiments, and its degradation products were characterized. The findings indicated that KLBL-1.5 was fully decomposed. Taken together, this paper offers new promise for developing high-efficiency and biodegradable plasticizers.


Asunto(s)
Plastificantes , Poliésteres , Plastificantes/química , Poliésteres/química , Cristalización , Resistencia a la Tracción , Ácidos Levulínicos/química , Ácido Láctico/química
2.
Bioresour Technol ; 406: 131001, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897549

RESUMEN

Oxygen vacancies (Ov) in metal oxides play a crucial role in modifying the electronic and acidic properties of catalysts, thereby influencing their catalytic activity. This study explores the impact of Ov in MnOx catalysts on their acidic and catalytic properties for the Meerwein-Ponndorf-Verley reduction of levulinic acid (LA) and levulinate to γ-valerolactone (GVL). Various characterization techniques demonstrate that surface Ov significantly modulate the acidic properties of MnOx catalysts, positively correlating with Lewis/Brønsted acid ratio and GVL yield. In situ DRIFTS and DFT calculations further unveil the reaction mechanism, revealing that Ov facilitate the activation and dehydrogenation of isopropanol and subsequent hydrogen transfer and hydrogenation of LA, leading to enhanced GVL production. These insights underscore the pivotal role of Ov in MnOx catalysts for the efficient conversion of LA to GVL, highlighting their importance in improving catalytic performance.


Asunto(s)
Lactonas , Ácidos Levulínicos , Oxidación-Reducción , Óxidos , Oxígeno , Ácidos Levulínicos/química , Catálisis , Lactonas/química , Oxígeno/química , Óxidos/química , Compuestos de Manganeso/química
3.
Chem Res Toxicol ; 37(6): 991-999, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38778043

RESUMEN

Electronic (e-) cigarette formulations containing nicotine salts from a range of organic acid conjugates and pH values have dominated the commercial market. The acids in the nicotine salt formulations may alter the redox environment in e-cigarettes, impacting free radical formation in e-cigarette aerosol. Here, the generation of aerosol mass and free radicals from a fourth-generation e-cigarette device was evaluated at 2 wt % nicotine salts (pH 7, 30:70 mixture propylene glycol to vegetable glycerin) across eight organic acids used in e-liquids: benzoic acid (BA), salicylic acid (SLA), lactic acid (LA), levulinic acid (LVA), succinic acid (SA), malic acid (MA), tartaric acid (TA), and citric acid (CA). Furthermore, 2 wt % BA nicotine salts were studied at the following nicotine to acid ratios: 1:2 (pH 4), 1:1 (pH 7), and 2:1 (pH 8), in comparison with freebase nicotine (pH 10). Radical yields were quantified by spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra of free radicals in the nicotine salt aerosol matched those generated from the Fenton reaction, which are primarily hydroxyl (OH) radicals and other reactive oxygen species (ROS). Although the aerosol mass formation was not significantly different for most of the tested nicotine salts and acid concentrations, notable ROS yields were observed only from BA, CA, and TA under the study conditions. The e-liquids with SLA, LA, LVA, SA, and MA produced less ROS than the 2 wt % freebase nicotine e-liquid, suggesting that organic acids may play dual roles in the production and scavenging of ROS. For BA nicotine salts, it was found that the ROS yield increased with a higher acid concentration (or a lower nicotine to acid ratio). The observation that BA nicotine salts produce the highest ROS yield in aerosol generated from a fourth-generation vape device, which increases with acid concentration, has important implications for ROS-mediated health outcomes that may be relevant to consumers, manufacturers, and regulatory agencies.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina , Vapeo , Nicotina/análisis , Nicotina/química , Radicales Libres/química , Radicales Libres/análisis , Vapeo/efectos adversos , Sales (Química)/química , Sales (Química)/análisis , Soluciones , Ácido Benzoico/química , Ácido Benzoico/análisis , Ácidos Levulínicos/química , Ácidos Levulínicos/análisis , Malatos
4.
Langmuir ; 40(18): 9676-9687, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663019

RESUMEN

Prehydrolysis liquid (PHL) from dissolving pulp and biorefinery industries is rich in saccharides and lignin, being considered as a potential source of value-added materials and platform molecules. This study proposed an environmentally friendly and simple method to prepare morphologically controllable hollow lignin nanoparticles (LNPs) and levulinic acid (LA) from PHL. In the first step, after hydrothermal treatment of PHL with p-toluenesulfonic acid (p-TsOH), lignin with a uniform molecular weight was obtained to prepare LNPs. The prepared LNPs have an obvious hollow structure, with an average size of 490-660 nm, and exhibit good stability during 30 days of storage. When the as-obtained LNPs were used as a sustained-release agent for amikacin sulfate, the encapsulation efficiency reached over 70% and the release efficiency within 40 h reached 69.2% in a pH 5.5 buffer. Subsequently, the remaining PHL that contains saccharides was directly used for LA production under the catalysis of p-TsOH. At 150 °C for 1.5 h, the LA yield reached 58.4% and remained at 56% after 5 cycles of p-TsOH. It is worth noting that only p-TsOH was used as a reactive reagent throughout the entire preparation process. Overall, this study provided a novel pathway for the integrated utilization of PHL and showed the immense potential of the preparation and application of LNPs.


Asunto(s)
Portadores de Fármacos , Ácidos Levulínicos , Lignina , Nanopartículas , Populus , Ácidos Levulínicos/química , Lignina/química , Nanopartículas/química , Populus/química , Portadores de Fármacos/química , Madera/química , Hidrólisis , Tamaño de la Partícula
5.
Int J Biol Macromol ; 240: 124451, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37062379

RESUMEN

The hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) has attracted much attention, as GVL can be used as biofuel, green solvent, and platform chemical. Inspired by Stöber method, various lignin-metal coordinated colloidal nanospheres (LCS) from lignin and cetyltrimethylammonium bromide (CTAB) were synthesized in which the metal ions (Co2+) replace formaldehyde as the crosslinker. The characterization of the catalyst revealed that alkali lignin was first self-assembled with CTAB through electrostatic attraction to form a lignin polymer, the subsequent addition of metal ions (Co2+) promoted the aggregation of lignin polymers and generated the LCS. Increasing calcination temperature for LCS resulted in the Co2+ being reduced to metallic Co. The lignin-metal coordinated colloidal nanospheres calcined at 500 °C possess both CoO and metallic Co active sites, which effectively accelerated the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) than simplex metallic Co active sites. A 99.8 % yield of GVL with 100 % LA conversion was obtained after 60 min reaction time at 200 °C and 2 MPa H2.


Asunto(s)
Lignina , Nanosferas , Hidrogenación , Lignina/química , Agua , Cetrimonio , Ácidos Levulínicos/química , Metales
6.
Int J Biol Macromol ; 237: 124149, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965554

RESUMEN

The circular economy considers waste to be a new raw material for the development of value-added products. In this context, agroindustrial lignocellulosic waste represents an outstanding source of new materials and platform chemicals, such as levulinic acid (LA). Herein we study the microwave (MW)-assisted acidic conversion of microcrystalline cellulose (MCC) into LA. The influence of acidic catalysts, inorganic salt addition and ball-milling pre-treatment of MCC on LA yield was assessed. Depolymerization and disruption of cellulose was monitored by FTIR, TGA and SEM, whereas the products formed were analyzed by HPLC and NMR spectroscopy. The parameters that afforded the highest LA yield (48 %, 100 % selectivity) were: ball-milling pre-treatment of MCC for 16 min at 600 rpm, followed by MW-assisted thermochemical treatment for 20 min at 190 °C, aqueous p-toluenesulfonic acid (p-TSA) 0.25 M as catalyst and saturation with KBr. These optimal conditions were further applied to a lignocellulosic feedstock, namely melon rind, to afford a 51 % yield of LA. These results corroborate the suitability of this method to obtain LA from agroindustrial wastes, in line with a circular economy-based approach.


Asunto(s)
Celulosa , Microondas , Celulosa/química , Ácidos Levulínicos/química , Ácidos
7.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768767

RESUMEN

Currently, there is a great interest in the development of sustainable and green technologies for production of biofuels and chemicals. In this sense, much attention is being paid to lignocellulosic biomass as feedstock, as alternative to fossil-based resources, inasmuch as its fractions can be transformed into value-added chemicals. Two important platform molecules derived from lignocellulosic sugars are furfural and levulinic acid, which can be transformed into a large spectrum of chemicals, by hydrogenation, oxidation, or condensation, with applications as solvents, agrochemicals, fragrances, pharmaceuticals, among others. However, in many cases, noble metal-based catalysts, scarce and expensive, are used. Therefore, an important effort is performed to search the most abundant, readily available, and cheap transition-metal-based catalysts. Among these, copper-based catalysts have been proposed, and the present review deals with the hydrogenation of furfural and levulinic acid, with Cu-based catalysts, into several relevant chemicals: furfuryl alcohol, 2-methylfuran, and cyclopentanone from FUR, and γ-valerolactone and 2-methyltetrahydrofuran from LA. Special emphasis has been placed on catalytic processes used (gas- and liquid-phase, catalytic transfer hydrogenation), under heterogeneous catalysis. Moreover, the effect of addition of other metal to Cu-based catalysts has been considered, as well as the issue related to catalyst stability in reusing studies.


Asunto(s)
Cobre , Furaldehído , Furaldehído/química , Hidrogenación , Cobre/química , Ácidos Levulínicos/química , Catálisis
8.
Molecules ; 27(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36080151

RESUMEN

Monometallic (Cu, Ni) and bimetallic (Cu-Ni) catalysts supported on KIT-6 based mesoporous silica/zeolite composites were prepared using the wet impregnation method. The catalysts were characterized using X-ray powder diffraction, N2 physisorption, SEM, solid state NMR and H2-TPR methods. Finely dispersed NiO and CuO were detected after the decomposition of impregnating salt on the silica carrier. The formation of small fractions of ionic Ni2+ and/or Cu2+ species, interacting strongly with the silica supports, was found. The catalysts were studied in the gas-phase upgrading of lignocellulosic biomass-derived levulinic acid (LA) to γ-valerolactone (GVL). The bimetallic, CuNi-KIT-6 catalyst showed 100% LA conversion at 250 °C and atmospheric pressure. The high LA conversion and GVL yield can be attributed to the high specific surface area and finely dispersed Cu-Ni species in the catalyst. Furthermore, the catalyst also exhibited high stability after 24 h of reaction time with a GVL yield above 80% without any significant change in metal dispersion.


Asunto(s)
Ácidos Levulínicos , Dióxido de Silicio , Hidrogenación , Lactonas , Ácidos Levulínicos/química , Dióxido de Silicio/química
9.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163029

RESUMEN

Levulinic acid and its esters (e.g., ethyl levulinate, EL) are platform chemicals derived from biomass feedstocks that can be converted to a variety of valuable compounds. Reductive amination of levulinates with primary amines and H2 over heterogeneous catalysts is an attractive method for the synthesis of N-alkyl-5-methyl-2-pyrrolidones, which are an environmentally friendly alternative to the common solvent N-methyl-2-pyrrolidone (NMP). In the present work, the catalytic properties of the different nickel phosphide catalysts supported on SiO2 and Al2O3 were studied in a reductive amination of EL with n-hexylamine to N-hexyl-5-methyl-2-pyrrolidone (HMP) in a flow reactor. The influence of the phosphorus precursor, reduction temperature, reactant ratio, and addition of acidic diluters on the catalyst performance was investigated. The Ni2P/SiO2 catalyst prepared using (NH4)2HPO4 and reduced at 600 °C provides the highest HMP yield, which reaches 98%. Although the presence of acid sites and a sufficient hydrogenating ability are important factors determining the pyrrolidone yield, the selectivity also depends on the specific features of EL adsorption on active catalytic sites.


Asunto(s)
Ácidos Levulínicos/química , Níquel/química , Fosfinas/química , Fósforo/farmacología , Dióxido de Silicio/química , Aminación , Catálisis , Hidrogenación , Temperatura
10.
ChemSusChem ; 15(5): e202102662, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-34997688

RESUMEN

In this work, three types of alumina-supported bimetallic Ni-Cu catalysts [Ni-Cu/commercial non-ordered mesoporous alumina (CMA), Ni-Cu/ordered MA (OMA), and Ni-Cu-OMA] were prepared via different fabrication strategies and investigated in the conversion of levulinic acid (LA) into γ-valerolactone and 2-methyltetrahydrofuran (2-MTHF). This study employed characterization techniques and reactions to reveal the effects of the fabrication strategy on the activities of the catalysts. It was observed that the catalysts constructed on OM supports (Ni-Cu/OMA and Ni-Cu-OMA) displayed superior catalytic performance compared to those constructed on CM supports (Ni-Cu/CMA). Specifically, Ni-Cu-OMA, which was fabricated via the one-pot evaporation-induced self-assembly strategy, exhibited the best catalytic performance, achieving a complete conversion of LA and a high selectivity of 73.0 % toward 2-MTHF in a solvent-free reaction environment. The promising activity of Ni-Cu-OMA was ascribed to the well-dispersed active sites within the framework of the support, the enhanced metal-support interaction, and the highly efficient exploitation of the synergistic effect between Ni and Cu. Detailed post-characterization techniques were also employed to highlight the outstanding stability of Ni-Cu-OMA.


Asunto(s)
Óxido de Aluminio , Ácidos Levulínicos , Óxido de Aluminio/química , Catálisis , Hidrogenación , Ácidos Levulínicos/química
11.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35054984

RESUMEN

Hydrogenation of levulinic acid (LA) obtained from cellulose biomass is a promising path for production of γ-valerolactone (GVL)-a component of biofuel. In this work, we developed Ru nanoparticle containing nanocomposites based on hyperbranched pyridylphenylene polymer, serving as multiligand and stabilizing matrix. The functionalization of the nanocomposite with sulfuric acid significantly enhances the activity of the catalyst in the selective hydrogenation of LA to GVL and allows the reaction to proceed under mild reaction conditions (100 °C, 2 MPa of H2) in water and low catalyst loading (0.016 mol.%) with a quantitative yield of GVL and selectivity up to 100%. The catalysts were successfully reused four times without a significant loss of activity. A comprehensive physicochemical characterization of the catalysts allowed us to assess structure-property relationships and to uncover an important role of the polymeric support in the efficient GVL synthesis.


Asunto(s)
Lactonas/química , Ácidos Levulínicos/química , Polímeros/química , Rutenio/química , Catálisis , Celulosa/química , Hidrogenación , Estructura Molecular , Análisis Espectral , Temperatura
12.
Carbohydr Polym ; 277: 118819, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893236

RESUMEN

Psoriasis does not respond adequately to the monotherapy, tailoring combined strategies for synergistical treatment remains challenging. We fabricated chitosan/hyaluronan nanogels to co-load methotrexate (MTX) and 5-aminoleavulinic acid (ALA), i.e., MTX-ALA NGs, for a combined chemo-photodynamic therapy for psoriasis. Compared with MTX-ALA suspension, the NGs enhanced the penetration and retention of MTX and ALA through and into the skin in vitro and in vivo (p < 0.001). NGs enhanced the cellular uptake (p < 0.001), protoporphyrin IX conversion (p < 0.001), and reactive oxygen species generation (3.93-fold), subsequently exerted the synergistical anti-proliferation and apoptosis on lipopolysaccharide-irritated HaCaT cells with the apoptosis rate of 78.6%. MTX-ALA NGs efficiently ameliorated the skin manifestations and down-regulated the proinflammatory cytokines of TNF-α and IL-17A in imiquimod-induced psoriatic mice (p < 0.001). Importantly, MTX-ALA NGs reduced the toxicities of oral MTX to the liver and kidney. The results support that MTX-ALA NG is a convenient, effective, and safe combined chemo-photodynamic strategy for psoriasis treatment.


Asunto(s)
Ácidos Levulínicos/uso terapéutico , Metotrexato/uso terapéutico , Nanogeles/química , Fármacos Fotosensibilizantes/uso terapéutico , Psoriasis/tratamiento farmacológico , Línea Celular , Quitosano/química , Quimioterapia Combinada , Humanos , Ácido Hialurónico/química , Ácidos Levulínicos/química , Lipopolisacáridos , Metotrexato/química , Fármacos Fotosensibilizantes/química , Psoriasis/inducido químicamente , Psoriasis/metabolismo , Ácido Aminolevulínico
13.
Molecules ; 26(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34885667

RESUMEN

Lilac aldehydes are considered as principal olfactory molecules of lilac flowers. We have designed, prepared, and evaluated a set of racemic seco-analogues of such natural products. The synthesis employs commercially available α-chloroketones as substrates that are transformed in four steps to target compounds. Their qualitative olfactory analysis revealed that the opening of the tetrahydrofuran ring leads to a vanishing of original flowery scent with the emergence of spicy aroma accompanied by green notes, and/or fruity aspects of novel seco-analogues. These results suggest the important osmophoric role of THF moiety for the generation of the typical flowery aroma associated with lilac aldehydes.


Asunto(s)
Aldehídos/química , Aldehídos/síntesis química , Productos Biológicos/química , Productos Biológicos/síntesis química , Flores/química , Odorantes/análisis , Aceites de Plantas/química , Olfato , Syringa/química , Alcoholes/química , Alquenos/química , Furanos/química , Ácidos Levulínicos/química , Monoterpenos/química
14.
Phys Chem Chem Phys ; 23(35): 19729-19739, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524307

RESUMEN

The fundamental understanding of glucose conversion to 5-ethoxymethylfurfural (EMF) and ethyl levulinate (EL) (value-added chemicals from biomass) in ethanol solution catalyzed by a Brønsted acid is limited at present. Consequently, here, the reaction pathways and mechanism of glucose conversion to EMF and EL catalyzed by a Brønsted acid were studied, using an experimental method and quantum chemical calculations at the B3LYP/6-31G(D) and B2PLYPD3/Def2TZVP level under a polarized continuum model (PCM-SMD). By further verification through GC/MS tests, the mechanism and reaction pathways of glucose conversion in ethanol solution catalyzed by a Brønsted acid were revealed, showing that glucose is catalyzed by proton and ethanol, and ethanol plays a bridging role in the process of proton transfer. There are three main reaction pathways: through glucose and ethyl glucoside (G/EG), through fructose, 5-hydroxymethylfurfural (HMF), levulinic acid (LA), and EL (G/F/H/L/EL), and through fructose, HMF, EMF, and EL (G/F/H/E/EL). The G/F/H/E/EL pathway with an energy barrier of 20.8 kcal mol-1 is considered as the thermodynamic and kinetics primary way, in which the reaction rate of this is highly related to the proton transfer in the isomerization of glucose to fructose. The intermediate HMF was formed from O5 via a ring-opening reaction and by the dehydration of fructose, and was further converted to the main product of EMF by etherification or by LA through hydrolysis. EMF and LA are both unstable, and can partially be transformed to EL. This study is beneficial for the insights aiding the understanding of the process and products controlling biomass conversion in ethanol solution.


Asunto(s)
Etanol/química , Furaldehído/análogos & derivados , Glucosa/química , Modelos Moleculares , Ácidos Sulfúricos/química , Biocombustibles , Catálisis , Teoría Funcional de la Densidad , Furaldehído/química , Ácidos Levulínicos/química , Termodinámica
15.
ACS Appl Mater Interfaces ; 13(27): 31799-31807, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34197068

RESUMEN

Catalytic conversion of a biomass derivative (levulinic acid, LA) to a high value-added product (γ-valerolactone, GVL) has attracted much attention, in which the control of catalytic selectivity plays an important role. Herein, a stepwise method was developed to prepare Co-MoOx catalysts via topological transformation (calcination reduction) from layered double hydroxide (Mo/CoAl-LDH) precursors. X-ray diffraction, high-resolution transmission electron microscopy, and hydrogen temperature-programmed reduction demonstrate the formation of MoOx-decorated Co structures of Co-MoOx samples. Remarkably, the sample that is reduced at 500 °C is featured with the most abundant interfacial Coδ+ (denoted as Co-MoOx-500), which exhibits an excellent catalytic performance toward the hydrodeoxygenation (HDO) reaction of several biomass-derived platform molecules (furfural, FAL; succinic acid, SA; 5-hydroxymethyl-furfural, HMF; and levulinic acid, LA). Especially, this optimal catalyst displays a high yield (99%) toward the HDO reaction of LA to GVL, which stands at the highest level among non-noble metal catalysts. The combination of in situ FT-IR characterization and theoretical calculation further confirms that interfacial Coδ+ sites in Co-MoOx-500 act as adsorption active sites for the polarization of a C═O bond in an LA molecule, which simultaneously promotes C═O hydrogenation and C-O cleavage. Moreover, the MoOx overlayer suppresses the formation of byproducts by covering the Co0 sites. This work offers a cost-effective and efficient catalyst, which can be potentially applied in catalytic conversion of biomass-derived platform molecules.


Asunto(s)
Biomasa , Cobalto/química , Ácidos Levulínicos/química , Tilidina/química , Catálisis , Hidrogenación , Temperatura
16.
Carbohydr Polym ; 269: 118271, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34294303

RESUMEN

In this study, an economically competitive and sustainable levulinic acid-based protic ionic liquids were identified to be good solvents for the dissolution pretreatment of cellulose towards enhanced enzymatic hydrolysis. The influences of protic ionic liquids species, dissolution pretreatment time, and pretreatment temperature on the physico-chemical structures of cellulose were systematically investigated by various analytical techniques. The findings indicate that the pretreatment efficiency was correlated to the basicity of the organic bases, and the presence of ketone group in the levulinate anion with particular hydrogen bonding forming ability via keto-enol tautomerism. The DBN derived protic ionic liquids exhibited best performance at 100 °C in 1 h, as evidenced by a 94% glucose yield. This solvent system was also suitable for the dissolution pretreatment of corn stover-based lignocellulosic biomass for sugars production, although a higher temperature and longer pretreatment time was required. Furthermore, the solvent system could be recycled and reused.


Asunto(s)
Celulasa/química , Celulosa/química , Líquidos Iónicos/química , Ácidos Levulínicos/química , Solventes/química , Hidrólisis , Solubilidad , Zea mays/química
17.
Int J Biochem Cell Biol ; 137: 106036, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34217813

RESUMEN

BACKGROUND: We previously demonstrated that M-PDT is painless and effective in precancerous skin diseases treatment. However, whether M-PDT is effective in cSCC and the underlying inhibitory mechanism remains enigmatic. OBJECTIVE: We aims to unveil the effect of M-PDT on cSCC cell proliferation and the regulatory effect of M-PDT on MAPK signaling. METHODS: The proliferation and migration of cSCC cells were revealed by CCK8 assay, tumor sphere formation assay and scratch assay respectively. The expression of MAPKs was examined by western blot. The activity of PP2A and PP5 was regulated by inhibitor and recombinant adenoviruses. RESULTS: Here, we show that M-PDT inhibits cSCC cell proliferation by activating p-JNK, p-p38 and inhibiting p-Erk1/2, as well as activation of PP2A and inactivation of PP5. Furthermore, pharmacological inhibition of PP2A conferred resistance to M-PDT's suppression on p-Erk1/2 and attenuated inhibitory effects of M-PDT on cell proliferation whereas overexpression of wild-type PP2A showed the contrary results. Pharmacological inhibition of PP5 potentiated M-PDT's elevation on p-JNK and strengthened inhibitory effects of M-PDT on cell proliferation whereas overexpression of wild-type PP5 exhibited the contrary results. CONCLUSION: Our findings indicate that M-PDT inhibits cSCC cell proliferation via targeting PP2A/PP5-mediated MAPK signaling pathway.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glicoproteínas/metabolismo , Ácidos Levulínicos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fotoquimioterapia/métodos , Proteína Fosfatasa 2/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular , Glicoproteínas/genética , Humanos , Ácidos Levulínicos/química , Proteína Fosfatasa 2/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Células Tumorales Cultivadas , Ácido Aminolevulínico
18.
Chem Soc Rev ; 50(10): 6042-6093, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34027943

RESUMEN

Transformation of biomass to chemicals and fuels is a long-term goal in both science and industry. However, high cost is one of the major obstacles to the industrialization of this sustainable technology. Thus, developing catalysts with high activity and low-cost is of great importance for biomass conversion. The last two decades have witnessed the increasing achievement of the use of earth-abundant 3d-transition-metals in catalysis due to their low-cost, high efficiency and excellent stability. Here, we aim to review the fast development and recent advances of 3d-metal-based catalysts including Cu, Fe, Co, Ni and Mn in lignocellulosic biomass conversion. Moreover, present research trends and invigorating perspectives on future development are given.


Asunto(s)
Lignina/química , Elementos de Transición/química , Biomasa , Carbohidratos/química , Catálisis , Furanos/química , Hidrogenación , Ácidos Levulínicos/química , Lignina/metabolismo , Magnetismo , Oxidación-Reducción
19.
Inorg Chem ; 60(11): 7785-7793, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33755456

RESUMEN

Catalytic transformation of levulinic acid (LA) to γ-valerolactone (γ-GVL) is an important route for biomass upgradation. Because both Bro̷nsted and Lewis acidic sites are required in the cascade reaction, herein we fabricate a series of H3PW12O40@Zr-based metal-organic framework (HPW@MOF-808) by a facile impregnation method. The synthesized HPW@MOF-808 is active for the conversion of LA to γ-GVL using isopropanol as a hydrogen donor. Interestingly, with the increase in the HPW loading amount, the yield of γ-GVL increases first and then decreases, and 14%-HPW@MOF-808 gave the highest γ-GVL yield (86%). The excellent catalytic performance was ascribed to the synergistic effect between the accessible Lewis acidic Zr4+ sites in MOF-808 and Bro̷nsted acidic HPW sites. Based on the experimental results, a plausible reaction mechanism was proposed: the Zr4+ sites catalyze the transfer hydrogenation of carbonyl groups and the HPW clusters promote the esterification of LA with isopropanol and lactonization to afford γ-GVL. Moreover, HPW@MOF-808 is resistant to leaching and can be reused for five cycles without significant loss of its catalytic activity.


Asunto(s)
Lactonas/química , Ácidos Levulínicos/química , Ácidos de Lewis/química , Estructuras Metalorgánicas/química , Compuestos de Tungsteno/química , Circonio/química , 2-Propanol/química , Biomasa , Estructuras Metalorgánicas/síntesis química , Modelos Moleculares , Estructura Molecular
20.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572104

RESUMEN

In this paper, we present a versatile template-directed colloidal self-assembly method for the fabrication in aqueous phase of composition-tuned mesoporous RuO2@TiO2-SiO2 catalysts. Randomly methylated ß-cyclodextrin/Pluronic F127 supramolecular assemblies were used as soft templates, TiO2 colloids as building blocks, and tetraethyl orthosilicate as a silica source. Catalysts were characterized at different stages of their synthesis using dynamic light scattering, N2-adsorption analysis, powder X-ray diffraction, temperature programmed reduction, high-resolution transmission electron microscopy, high-angle annular bright-field and dark-field scanning transmission electron microscopy, together with EDS elemental mapping. Results revealed that both the supramolecular template and the silica loading had a strong impact on the pore characteristics and crystalline structure of the mixed oxides, as well as on the morphology of the RuO2 nanocrystals. Their catalytic performance was then evaluated in the aqueous phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) under mild conditions (50 °C, 50 bar H2). Results showed that the cyclodextrin-derived catalyst displayed almost quantitative LA conversion and 99% GVL yield in less than one hour. Moreover, this catalyst could be reused at least five times without loss of activity. This work offers an effective approach to the utilization of cyclodextrins for engineering the surface morphology of Ru nanocrystals and pore characteristics of TiO2-based materials for catalytic applications in hydrogenation reactions.


Asunto(s)
Tecnología Química Verde/métodos , Lactonas/química , Ácidos Levulínicos/química , Rutenio/química , Catálisis , Ingeniería Química/métodos , Ciclodextrinas/química , Hidrogenación , Microscopía Electrónica de Transmisión , Nanopartículas/química , Nanopartículas/ultraestructura , Porosidad , Prueba de Estudio Conceptual , Dióxido de Silicio/química , Propiedades de Superficie , Titanio/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA