Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37974050

RESUMEN

Magnetotactic bacteria (MTB) have the remarkable capability of producing intracellularly membrane-enveloped magnetic nanocrystals (i.e. magnetosomes) and swimming along geomagnetic field lines. Despite more than 50 years of research, bacterial diversity and magnetosome biomineralization within MTB are relatively less known in the Gammaproteobacteria class than other groups. This is incompatible with the status of Gammaproteobacteria as the most diverse class of gram-negative bacteria with a number of ecologically important bacteria. Here, we identify a novel MTB strain YYHR-1 affiliated with the Gammaproteobacteria class of the Pseudomonadota phylum from a freshwater lake. In YYHR-1, most magnetosome crystals are organized into a long chain aligned along the cell long axis; unusually, a few small superparamagnetic crystals are located at the side of the chain, off the main chain axis. Micromagnetic simulations indicate that magnetostatic interactions among adjacent crystals within a chain reduce the Gibbs energy to enhance chain stability. Genomic analysis suggests that duplication of magnetosome gene clusters may result in off-chain magnetosomes formation. By integrating available genomic data from Gammaproteobacteria, the phylogenetic position of MTB in this class is reassigned here. Our new findings expand knowledge about MTB diversity and magnetosome biomineralization, and deepen understanding of the phylogenetics of the Gammaproteobacteria.


Asunto(s)
Lagos , Magnetosomas , Lagos/microbiología , Beijing , Filogenia , Biomineralización , Magnetosomas/química , Magnetosomas/genética , Bacterias/genética , Bacterias Gramnegativas , Óxido Ferrosoférrico/análisis
2.
Microbiol Immunol ; 67(5): 228-238, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36892203

RESUMEN

Magnetotactic bacteria (MTB) generate a membrane-enclosed subcellular compartment called magnetosome, which contains a biomineralized magnetite or greigite crystal, an inner membrane-derived lipid bilayer membrane, and a set of specifically targeted associated proteins. Magnetosomes are formed by a group of magnetosome-associated proteins encoded in a genomic region called magnetosome island. Magnetosomes are then arranged in a linear chain-like positioning, and the resulting magnetic dipole of the chain functions as a geomagnetic sensor for magneto-aerotaxis motility. Recent metagenomic analyses of environmental specimens shed light on the sizable phylogenetical diversity of uncultured MTB at the phylum level. These findings have led to a better understanding of the diversity and conservation of magnetosome-associated proteins. This review provides an overview of magnetosomes and magnetosome-associated proteins and introduces recent topics about this fascinating magnetic bacterial organelle.


Asunto(s)
Magnetosomas , Magnetosomas/química , Magnetosomas/metabolismo , Magnetosomas/ultraestructura , Proteínas Bacterianas/metabolismo , Bacterias/genética , Óxido Ferrosoférrico/análisis , Óxido Ferrosoférrico/química , Óxido Ferrosoférrico/metabolismo , Bacterias Gramnegativas
3.
Environ Microbiol Rep ; 15(3): 181-187, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36779255

RESUMEN

Magnetotactic bacteria (MTB) ubiquitously inhabit the oxic-anoxic interface or anaerobic areas of aquatic environments. MTB biomineralize magnetite or greigite crystals and synthesize an organelle known as magnetosome. This intrinsic ability of MTB allows them to accumulate iron to levels 100-1000 times higher than those in non-magnetotactic bacteria (non-MTB). Therefore, MTB considerably contributes to the global iron cycle as primary iron suppliers in the aquatic environmental food chain. However, to the best of our knowledge, there have been no reports describing the effects of trophic interactions between MTB and their protist grazers on the iron distributions in MTB grazers and the extracellular milieu. Herein, we evaluated the effects of MTB grazing using a model species of protist (Tetrahymena pyriformis) and a model species of MTB (Magnetospirillum magneticum AMB-1). MTB-fed T. pyriformis exhibited a magnetic response and contained magnetite crystals in their vacuoles. Fluorescence imaging using a ferrous ion-specific fluorescent dye revealed that the cellular ferrous ion content was five times higher in MTB-fed T. pyriformis than in non-MTB grazers. Moreover, soluble iron concentrations in the spent media increased with time during MTB predation. This study provides experimental evidence to delineate the importance of trophic interactions of MTB on iron distributions.


Asunto(s)
Magnetosomas , Magnetospirillum , Óxido Ferrosoférrico/análisis , Magnetosomas/química , Hierro , Vacuolas
4.
BMC Genomics ; 23(1): 699, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217140

RESUMEN

BACKGROUND: One of the most complex prokaryotic organelles are magnetosomes, which are formed by magnetotactic bacteria as sensors for navigation in the Earth's magnetic field. In the alphaproteobacterium Magnetospirillum gryphiswaldense magnetosomes consist of chains of magnetite crystals (Fe3O4) that under microoxic to anoxic conditions are biomineralized within membrane vesicles. To form such an intricate structure, the transcription of > 30 specific structural genes clustered within the genomic magnetosome island (MAI) has to be coordinated with the expression of an as-yet unknown number of auxiliary genes encoding several generic metabolic functions. However, their global regulation and transcriptional organization in response to anoxic conditions most favorable for magnetite biomineralization are still unclear. RESULTS: Here, we compared transcriptional profiles of anaerobically grown magnetosome forming cells with those in which magnetosome biosynthesis has been suppressed by aerobic condition. Using whole transcriptome shotgun sequencing, we found that transcription of about 300 of the > 4300 genes was significantly enhanced during magnetosome formation. About 40 of the top upregulated genes are directly or indirectly linked to aerobic and anaerobic respiration (denitrification) or unknown functions. The mam and mms gene clusters, specifically controlling magnetosome biosynthesis, were highly transcribed, but constitutively expressed irrespective of the growth condition. By Cappable-sequencing, we show that the transcriptional complexity of both the MAI and the entire genome decreased under anaerobic conditions optimal for magnetosome formation. In addition, predominant promoter structures were highly similar to sigma factor σ70 dependent promoters in other Alphaproteobacteria. CONCLUSIONS: Our transcriptome-wide analysis revealed that magnetite biomineralization relies on a complex interplay between generic metabolic processes such as aerobic and anaerobic respiration, cellular redox control, and the biosynthesis of specific magnetosome structures. In addition, we provide insights into global regulatory features that have remained uncharacterized in the widely studied model organism M. gryphiswaldense, including a comprehensive dataset of newly annotated transcription start sites and genome-wide operon detection as a community resource (GEO Series accession number GSE197098).


Asunto(s)
Magnetosomas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biomineralización/genética , Óxido Ferrosoférrico/análisis , Óxido Ferrosoférrico/metabolismo , Magnetosomas/genética , Magnetosomas/metabolismo , Magnetospirillum , Factor sigma/genética , Transcriptoma
5.
Environ Monit Assess ; 195(1): 9, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36269461

RESUMEN

In this work, a novel surface-modified, green-based wheat straw-supported magnetite nanoparticles (Fe3O4-NPs) were synthesized via the green synthesis method, and the adsorption of mercury (Hg(II)) ion from aqueous solutions was methodically investigated. The synthesized wheat straw-supported magnetite (Fe3O4-WSS) NPs were characterized using X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopic (SEM) methods. FT-IR and TGA confirmed that the surface of Fe3O4-NPs was functionalized well. The XRD analysis revealed the existence of magnetite in the synthesized wheat straw-supported Fe3O4-NPs of 19.83 nm average crystalline size. SEM analysis showed Fe3O4-NPs were almost spherical, with an average particle size of 22.48 nm. Adsorption studies were carried out to investigate the adsorption of Hg(II) ions onto Fe3O4-WSS NPs and the effect of various adsorption parameters such as pH, time, adsorbent dosage, and Hg(II) ion concentration. The optimum adsorption conditions were obtained: pH of 6, contact time of 45 min, adsorbate of 40 mg/L, and adsorbent of 1 g. A maximum of 98.04% Hg(II) ion removal efficiency was obtained at these optimum conditions. FT-IR analysis also indicated that surface functional groups such as C = C,-OH, and C-C of the newly produced Fe3O4-NPs led to the more efficient removal of Hg(II) from aqueous solution. The synthesized nano-adsorbent showed an excellent adsorption capability of 101.01 mg/g. Hg(II) ions adsorption onto Fe3O4-WSS NPs fitted well with the Langmuir adsorption isotherm model. Therefore, these reasonable findings reveal that Fe3O4-WSS NPs are an efficient and promising adsorbent for Hg(II) removal from aqueous water environments.


Asunto(s)
Nanopartículas de Magnetita , Mercurio , Contaminantes Químicos del Agua , Mercurio/análisis , Óxidos/análisis , Óxido Ferrosoférrico/análisis , Óxido Ferrosoférrico/química , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis , Cinética , Monitoreo del Ambiente , Adsorción , Agua/análisis , Nanopartículas de Magnetita/química , Iones/análisis , Concentración de Iones de Hidrógeno
6.
Adv Sci (Weinh) ; 9(28): e2203444, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35975419

RESUMEN

Metal sulfides are a common group of extracellular bacterial biominerals. However, only a few cases of intracellular biomineralization are reported in this group, mostly limited to greigite (Fe3 S4 ) in magnetotactic bacteria. Here, a previously unknown periplasmic biomineralization of copper sulfide produced by the magnetotactic bacterium Desulfamplus magnetovallimortis strain BW-1, a species known to mineralize greigite (Fe3 S4 ) and magnetite (Fe3 O4 ) in the cytoplasm is reported. BW-1 produces hundreds of spherical nanoparticles, composed of 1-2 nm substructures of a poorly crystalline hexagonal copper sulfide structure that remains in a thermodynamically unstable state. The particles appear to be surrounded by an organic matrix as found from staining and electron microscopy inspection. Differential proteomics suggests that periplasmic proteins, such as a DegP-like protein and a heavy metal-binding protein, could be involved in this biomineralization process. The unexpected periplasmic formation of copper sulfide nanoparticles in BW-1 reveals previously unknown possibilities for intracellular biomineralization that involves intriguing biological control and holds promise for biological metal recovery in times of copper shortage.


Asunto(s)
Magnetosomas , Nanopartículas , Proteínas Periplasmáticas , Bacterias , Biomineralización , Cobre , Óxido Ferrosoférrico/análisis , Óxido Ferrosoférrico/metabolismo , Hierro , Magnetosomas/química , Magnetosomas/metabolismo , Proteínas Periplasmáticas/análisis , Proteínas Periplasmáticas/metabolismo , Sulfuros/análisis , Sulfuros/metabolismo
7.
An Acad Bras Cienc ; 94(3): e20210917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35920489

RESUMEN

Molecular machines, as exemplified by the kinesin and microtubule system, are responsible for molecular transport in cells. The monitoring of the cellular machinery has attracted much attention in recent years, requiring sophisticated techniques such as optical tweezers, and dark field hyperspectral and fluorescence microscopies. It also demands suitable procedures for immobilization and labeling with functional agents such as dyes, plasmonic nanoparticles and quantum dots. In this work, microtubules were co-polymerized by incubating a tubulin mix consisting of 7 biotinylated tubulin to 3 rhodamine tubulin. Rhodamine provided the fluorescent tag, while biotin was the anchoring group for receiving streptavidin containing species. To control the microtubule alignment and consequently, the molecular gliding directions, functionalized iron oxide nanoparticles were employed in the presence of an external magnet field. Such iron oxide nanoparticles, (MagNPs) were previously coated with silica and (3-aminopro-pyl)triethoxysilane (APTS) and then modified with streptavidin (SA) for linking to the biotin-functionalized microtubules. In this way, the binding has been successfully performed, and the magnetic alignment probed by Inverted Fluorescence Microscopy. The proposed strategy has proved promising, as tested with one of the most important biological structures of the cellular machinery.


Asunto(s)
Biotina , Tubulina (Proteína) , Biotina/análisis , Biotina/química , Biotina/metabolismo , Óxido Ferrosoférrico/análisis , Óxido Ferrosoférrico/metabolismo , Fenómenos Magnéticos , Microscopía Fluorescente , Microtúbulos/química , Microtúbulos/metabolismo , Rodaminas/análisis , Rodaminas/metabolismo , Estreptavidina/análisis , Estreptavidina/química , Estreptavidina/metabolismo , Tubulina (Proteína)/análisis , Tubulina (Proteína)/metabolismo
8.
Environ Sci Pollut Res Int ; 29(50): 75744-75768, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35661301

RESUMEN

Globally, potentially toxic elements (PTEs) and bacterial contamination pose health hazards, persistency, and genotoxicity in the groundwater aquifer. This study evaluates PTE concentration, carcinogenic and noncarcinogenic health hazards, groundwater quality indexing (GWQI-model), source provenance, and fate distribution in the groundwater of Hindukush ranges, Pakistan. The new estimates of USEPA equations record new research dimensions for carcinogenic and noncarcinogenic hazards. The principal component analysis (PCA), mineral phases, and spatial distribution determine groundwater contamination and its impacts. The average concentrations of PTEs, viz., Cd, Cu, Co, Fe, Pb, and Zn, were 0.06, 0.27, 0.07, 0.55, 0.05, and 0.19 mg/L, and E. coli, F. coli, and P. coli were 27.5, 24.0, and 19.0 CFU/100 ml. Moreover, the average values of basic minerals, viz., anhydrite, aragonite, calcite, dolomite, gypsum, halite, and hydroxyl apatite, were 0.4, 2.4, 2.6, 5.1, 0.6, and - 4.0, 11.2, and PTE minerals like monteponite, tenorite, cuprite, cuprous ferrite, cupric ferrite, ferrihydrite, goethite, hematite, lepidocrocite, maghemite, magnetite, massicot, minium, litharge, plattnerite, and zincite were - 5.5, 2.23, 4.65, 18.56, 20.0, 4.84, 7.54, 17.46, 6.66, 9.67, 22.72, - 3.36, 22.9, 3.16, - 18.0, and 1.46. The groundwater showed carcinogenic and non-carcinogenic health hazards for children and adults. The GWQI-model showed that 58.3% of samples revealed worse water quality. PCA revealed rock weathering, mineral dissolution, water-rock interaction, and industrial effluents as the dominant factors influencing groundwater chemistry. Carbonate weathering and ion exchange play vital roles in altering CaHCO3 type to NaHCO3 water. In this study, E. coli, F. coli, P. coli, EC, turbidity, TSS, PO43─, Na+, Mg+2, Ca+2, Cd, Co, Fe, and Pb have exceeded the World Health Organization (WHO) guidelines. The carcinogenic and non-carcinogenic impacts of PTEs and bacterial contamination declared that the groundwater is unfit for drinking and domestic purposes.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Adulto , Apatitas , Cadmio/análisis , Carbonato de Calcio/análisis , Sulfato de Calcio/análisis , Carcinógenos/análisis , Niño , Monitoreo del Ambiente/métodos , Escherichia coli , Compuestos Férricos , Óxido Ferrosoférrico/análisis , Sistemas de Información Geográfica , Agua Subterránea/análisis , Humanos , Plomo/análisis , Minerales/análisis , Pakistán , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Calidad del Agua
9.
Environ Microbiol ; 24(11): 5019-5038, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35726890

RESUMEN

Magnetotactic bacteria (MTB) biomineralize intracellular magnetic nanocrystals and swim along geomagnetic field lines. While few axenic MTB cultures exist, living cells can be separated magnetically from natural environments for analysis. The bacterial universal 27F/1492R primer pair has been used widely to amplify nearly full-length 16S rRNA genes and to provide phylogenetic portraits of MTB communities. However, incomplete coverage and amplification biases inevitably prevent detection of some phylogenetically specific or non-abundant MTB. Here, we propose a new formulation of the upstream 390F primer that we combined with the downstream 1492R primer to specifically amplify 1100-bp 16S rRNA gene sequences of sulfate-reducing MTB in freshwater sediments from Lake Weiyanghu, Xi'an, northwestern China. With correlative fluorescence in situ hybridization and scanning/transmission electron microscopy, three novel MTB strains (WYHR-2, WYHR-3 and WYHR-4) from the Desulfobacterota phylum were identified phylogenetically and structurally at the single-cell level. Strain WYHR-2 produces bullet-shaped magnetosome magnetite, while the other two strains produce both cubic/prismatic greigite and bullet-shaped magnetite. Our results expand knowledge of bacterial diversity and magnetosome biomineralization of sulfate-reducing MTB. We also propose a general strategy for identifying and characterizing uncultured MTB from natural environments.


Asunto(s)
Desulfovibrio , Magnetosomas , ARN Ribosómico 16S/genética , ADN Ribosómico/genética , Sulfatos/análisis , Filogenia , Óxido Ferrosoférrico/análisis , Hibridación Fluorescente in Situ , Magnetosomas/genética , Magnetosomas/química , Lagos/microbiología , Microscopía Electrónica , Desulfovibrio/genética
10.
Arch Microbiol ; 204(5): 282, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35471713

RESUMEN

Magnetotactic bacteria (MTB) use iron from their habitat to create magnetosomes, a unique organelle required for magnetotaxis. Due to a lack of cost-effective assay methods for estimating iron in magnetosomes, research on MTB and iron-rich magnetosomes is limited. A systemized assay was established in this study to quantify iron in MTB using ferric citrate colorimetric estimation. With a statistically significant R2 value of 0.9935, the iron concentration range and wavelength for iron estimation were optimized using linear regression. This colorimetric approach and the inductively coupled plasma optical emission spectrometry (ICP-OES) exhibited an excellent correlation R2 value of 0.961 in the validatory correlative study of the iron concentration in the isolated magnetotactic bacterial strains. In large-scale screening studies, this less-expensive strategy could be advantageous.


Asunto(s)
Magnetosomas , Colorimetría , Óxido Ferrosoférrico/análisis , Bacterias Gramnegativas , Hierro , Modelos Lineales , Magnetosomas/química
11.
Environ Microbiol ; 24(2): 938-950, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33876543

RESUMEN

Magnetotactic bacteria (MTB) are phylogenetically diverse prokaryotes that can produce intracellular chain-assembled nanocrystals of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ). Compared with their wide distribution in the Alpha-, Eta- and Delta-proteobacteria classes, few MTB strains have been identified in the Gammaproteobacteria class, resulting in limited knowledge of bacterial diversity and magnetosome biomineralization within this phylogenetic branch. Here, we identify two magnetotactic Gammaproteobacteria strains (tentatively named FZSR-1 and FZSR-2 respectively) from a salt evaporation pool in Bohai Bay, at the Fuzhou saltern, Dalian City, eastern China. Phylogenetic analysis indicates that strain FZSR-2 is the same species as strains SHHR-1 and SS-5, which were discovered previously from brackish and hypersaline environments respectively. Strain FZSR-1 represents a novel species. Compared with strains FZSR-2, SHHR-1 and SS-5 in which magnetite particles are assembled into a single chain, FZSR-1 cells form relatively narrower magnetite nanoparticles that are often organized into double chains. We find a good relationship between magnetite morphology within strains FZSR-2, SHHR-1 and SS-5 and the salinity of the environment in which they live. This study expands the bacterial diversity of magnetotactic Gammaproteobacteria and provides new insights into magnetosome biomineralization within magnetotactic Gammaproteobacteria.


Asunto(s)
Gammaproteobacteria , Magnetosomas , Bahías , Óxido Ferrosoférrico/análisis , Gammaproteobacteria/genética , Magnetosomas/química , Magnetosomas/genética , Filogenia
12.
Environ Microbiol ; 23(2): 1115-1129, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32985765

RESUMEN

Magnetotactic bacteria (MTB) are diverse prokaryotes that produce magnetic nanocrystals within intracellular membranes (magnetosomes). Here, we present a large-scale analysis of diversity and magnetosome biomineralization in modern magnetotactic cocci, which are the most abundant MTB morphotypes in nature. Nineteen novel magnetotactic cocci species are identified phylogenetically and structurally at the single-cell level. Phylogenetic analysis demonstrates that the cocci cluster into an independent branch from other Alphaproteobacteria MTB, that is, within the Etaproteobacteria class in the Proteobacteria phylum. Statistical analysis reveals species-specific biomineralization of magnetosomal magnetite morphologies. This further confirms that magnetosome biomineralization is controlled strictly by the MTB cell and differs among species or strains. The post-mortem remains of MTB are often preserved as magnetofossils within sediments or sedimentary rocks, yet paleobiological and geological interpretation of their fossil record remains challenging. Our results indicate that magnetofossil morphology could be a promising proxy for retrieving paleobiological information about ancient MTB.


Asunto(s)
Alphaproteobacteria/clasificación , Alphaproteobacteria/metabolismo , Óxido Ferrosoférrico/análisis , Filogenia , Alphaproteobacteria/citología , Alphaproteobacteria/genética , Biomineralización , Óxido Ferrosoférrico/metabolismo , Sedimentos Geológicos/microbiología , Magnetosomas/química , Magnetosomas/metabolismo , Magnetosomas/ultraestructura , Especificidad de la Especie
13.
AJNR Am J Neuroradiol ; 41(7): 1193-1200, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32527840

RESUMEN

BACKGROUND AND PURPOSE: Glioblastoma-associated macrophages are a major constituent of the immune response to therapy and are known to engulf the iron-based MR imaging contrast agent, ferumoxytol. Current ferumoxytol MR imaging techniques for localizing macrophages are confounded by contaminating intravascular signal. The aim of this study was to assess the utility of a newly developed MR imaging technique, segregation and extravascular localization of ferumoxytol imaging, for differentiating extravascular-from-intravascular ferumoxytol contrast signal at a delayed 24-hour imaging time point. MATERIALS AND METHODS: Twenty-three patients with suspected post-chemoradiotherapy glioblastoma progression underwent ferumoxytol-enhanced SWI. Segregation and extravascular localization of ferumoxytol imaging maps were generated as the voxelwise difference of the delayed (24 hours) from the early (immediately after administration) time point SWI maps. Continuous segregation and extravascular localization of ferumoxytol imaging map values were separated into positive and negative components. Image-guided biologic correlation was performed. RESULTS: Negative segregation and extravascular localization of ferumoxytol imaging values correlated with early and delayed time point SWI values, demonstrating that intravascular signal detected in the early time point persists into the delayed time point. Positive segregation and extravascular localization of ferumoxytol imaging values correlated only with delayed time point SWI values, suggesting successful detection of the newly developed extravascular signal. CONCLUSIONS: Segregation and extravascular localization of ferumoxytol MR imaging improves on current techniques by eliminating intrinsic tissue and intravascular ferumoxytol signal and may inform glioblastoma outcomes by serving as a more specific metric of macrophage content compared with uncorrected T1 and SWI techniques.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Óxido Ferrosoférrico/análisis , Glioblastoma/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Artefactos , Medios de Contraste/análisis , Medios de Contraste/metabolismo , Femenino , Óxido Ferrosoférrico/metabolismo , Humanos , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Neuroimagen/métodos , Prueba de Estudio Conceptual
14.
Ecotoxicol Environ Saf ; 201: 110816, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32521370

RESUMEN

Mine tailings contain dangerously high levels of toxic metals which pose a constant threat to local ecosystems. Few naturally grown native plants can colonize tailings site and the existence of their root-associated microbial populations is poorly understood. The objective of this study was to give further insights into the interactions between native plants and their microbiota during natural attenuation of abandoned V-Ti magnetite mine tailings. In the present work, we first examined the native plants' potential for phytoremediation using plant/soil analytical methods and then investigated the root microbial communities and their inferred functions using 16 S rRNA-based metagenomics. It was found that in V-Ti magnetite mine tailings the two dominant plants Bothriochloa ischaemum and Typha angustifolia were able to increase available nitrogen in the rhizosphere soil by 23.3% and 53.7% respectively. The translocation factors (TF) for both plants indicated that B. ischaemum was able to accumulate Pb (TF = 1.212), while T. angustifolia was an accumulator of Mn (TF = 2.502). The microbial community structure was more complex in the soil associated with T. angustifolia than with B. ischaemum. The presence of both plants significantly reduced the population of Acinetobacter. Specifically, B. ischaemum enriched Massilia, Opitutus and Hydrogenophaga species while T. angustifolia significantly increased rhizobia species. Multivariate analyses revealed that among all tested soil variables Fe and total organic carbon (TOC) could be the key factors in shaping the microbial structure. The putative functional analysis indicated that soil sample of B. ischaemum was abundant with nitrate/nitrite reduction-related functions while that of T. angustifolia was rich in nitrogen fixing functions. The results indicate that these native plants host a diverse range of soil microbes, whose community structure can be shaped by plant types and soil variables. It is also possible that these plants can be used to improve soil nitrogen content and serve as bioaccumulators for Pb or Mn for phytoremediation purposes.


Asunto(s)
Óxido Ferrosoférrico/toxicidad , Microbiota/efectos de los fármacos , Raíces de Plantas/microbiología , Contaminantes del Suelo/toxicidad , Titanio/toxicidad , Vanadio/toxicidad , Biodegradación Ambiental , China , Óxido Ferrosoférrico/análisis , Metagenómica , Microbiota/genética , Minería , Poaceae/crecimiento & desarrollo , Poaceae/microbiología , Rhizobium , Rizosfera , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Titanio/análisis , Typhaceae/crecimiento & desarrollo , Typhaceae/microbiología , Vanadio/análisis
15.
J Magn Reson Imaging ; 52(6): 1688-1698, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32452088

RESUMEN

BACKGROUND: Quantitative T2 * MRI is the standard of care for the assessment of iron overload. However, patient motion corrupts T2 * estimates. PURPOSE: To develop and evaluate a motion-robust, simultaneous cardiac and liver T2 * imaging approach using non-Cartesian, rosette sampling and a model-based reconstruction as compared to clinical-standard Cartesian MRI. STUDY TYPE: Prospective. PHANTOM/POPULATION: Six ferumoxytol-containing phantoms (26-288 µg/mL). Eight healthy subjects and 18 patients referred for clinically indicated iron overload assessment. FIELD STRENGTH/SEQUENCE: 1.5T, 2D Cartesian and rosette gradient echo (GRE) ASSESSMENT: GRE T2 * values were validated in ferumoxytol phantoms. In healthy subjects, test-retest and spatial coefficient of variation (CoV) analysis was performed during three breathing conditions. Cartesian and rosette T2 * were compared using correlation and Bland-Altman analysis. Images were rated by three experienced radiologists on a 5-point scale. STATISTICAL TESTS: Linear regression, analysis of variance (ANOVA), and paired Student's t-testing were used to compare reproducibility and variability metrics in Cartesian and rosette scans. The Wilcoxon rank test was used to assess reader score comparisons and reader reliability was measured using intraclass correlation analysis. RESULTS: Rosette R2* (1/T2 *) was linearly correlated with ferumoxytol concentration (r2 = 1.00) and not significantly different than Cartesian values (P = 0.16). During breath-holding, ungated rosette liver and heart T2 * had lower spatial CoV (liver: 18.4 ± 9.3% Cartesian, 8.8% ± 3.4% rosette, P = 0.02, heart: 37.7% ± 14.3% Cartesian, 13.4% ± 1.7% rosette, P = 0.001) and higher-quality scores (liver: 3.3 [3.0-3.6] Cartesian, 4.7 [4.1-4.9] rosette, P = 0.005, heart: 3.0 [2.3-3] Cartesian, 4.5 [3.8-5.0] rosette, P = 0.005) compared to Cartesian values. During free-breathing and failed breath-holding, Cartesian images had very poor to average image quality with significant artifacts, whereas rosette remained very good, with minimal artifacts (P = 0.001). DATA CONCLUSION: Rosette k-sampling with a model-based reconstruction offers a clinically useful motion-robust T2 * mapping approach for iron quantification. J. MAGN. RESON. IMAGING 2020;52:1688-1698.


Asunto(s)
Óxido Ferrosoférrico/análisis , Corazón/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Hígado/anatomía & histología , Imagen por Resonancia Magnética/métodos , Adulto , Artefactos , Femenino , Voluntarios Sanos , Humanos , Masculino , Movimiento (Física) , Fantasmas de Imagen , Estudios Prospectivos , Valores de Referencia , Reproducibilidad de los Resultados
16.
Sci Rep ; 10(1): 1171, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980695

RESUMEN

The use of magnetic fluid hyperthermia (MFH) for cancer therapy has shown promise but lacks suitable methods for quantifying exogenous irons such as superparamagnetic iron oxide (SPIO) nanoparticles as a source of heat generation under an alternating magnetic field (AMF). Application of quantitative susceptibility mapping (QSM) technique to prediction of SPIO in preclinical models has been challenging due to a large variation of susceptibility values, chemical shift from tissue fat, and noisier data arising from the higher resolution required to visualize the anatomy of small animals. In this study, we developed a robust QSM for the SPIO ferumoxytol in live mice to examine its potential application in MFH for cancer therapy. We demonstrated that QSM was able to simultaneously detect high level ferumoxytol accumulation in the liver and low level localization near the periphery of tumors. Detection of ferumoxytol distribution in the body by QSM, however, required imaging prior to and post ferumoxytol injection to discriminate exogenous iron susceptibility from other endogenous sources. Intratumoral injection of ferumoxytol combined with AMF produced a ferumoxytol-dose dependent tumor killing. Histology of tumor sections corroborated QSM visualization of ferumoxytol distribution near the tumor periphery, and confirmed the spatial correlation of cell death with ferumoxytol distribution. Due to the dissipation of SPIOs from the injection site, quantitative mapping of SPIO distribution will aid in estimating a change in temperature in tissues, thereby maximizing MFH effects on tumors and minimizing side-effects by avoiding unwanted tissue heating.


Asunto(s)
Compuestos Férricos/análisis , Óxido Ferrosoférrico/análisis , Hipertermia Inducida , Nanopartículas/análisis , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Adenocarcinoma/terapia , Animales , Línea Celular Tumoral , Medios de Contraste , Compuestos Férricos/farmacocinética , Compuestos Férricos/uso terapéutico , Óxido Ferrosoférrico/farmacocinética , Óxido Ferrosoférrico/uso terapéutico , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos NOD , Nanopartículas/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata/patología , Radioisótopos , Radiofármacos , Tejido Subcutáneo , Distribución Tisular , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Circonio
17.
Mol Oncol ; 13(10): 2049-2061, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31376208

RESUMEN

The long-term survival of osteosarcoma patients with metastatic or recurrent disease remains dismal, and new therapeutic options are urgently needed. The purpose of our study was to compare the efficacy of CD47 mAb plus doxorubicin combination therapy in mouse models of osteosarcoma with CD47 mAb and doxorubicin monotherapy. Forty-eight NOD scid gamma (NSG) mice with intratibial MNNG/HOS tumors received CD47 mAb, doxorubicin, combination therapy, or control IgG treatment. Twenty-four mice (n = 6 per group) underwent pre- and post-treatment magnetic resonance imaging (MRI) scans with the macrophage marker ferumoxytol, bioluminescence imaging, and histological analysis. Tumor ferumoxytol enhancement, tumor flux, and tumor-associated macrophages (TAM) density were compared between different groups using a one-way ANOVA. Twenty-four additional NSG mice underwent survival analyses with Kaplan-Meier curves and a log-rank (Mantel-Cox) test. Intratibial osteosarcomas demonstrated significantly stronger ferumoxytol enhancement and significantly increased TAM quantities after CD47 mAb plus doxorubicin combination therapy compared to CD47 mAb (P = 0.02) and doxorubicin monotherapy (P = 0.001). Tumor-bearing mice treated with CD47 mAb plus doxorubicin combination therapy demonstrated significantly reduced tumor size and prolonged survival compared to control groups that received CD47 mAb (P = 0.03), doxorubicin monotherapy (P = 0.01), and control IgG (P = 0.001). In conclusion, CD47 mAb plus doxorubicin therapy demonstrates an additive therapeutic effect in mouse models of osteosarcomas, which can be monitored with an immediately clinically applicable MRI technique.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Antígeno CD47/inmunología , Doxorrubicina/uso terapéutico , Osteosarcoma/tratamiento farmacológico , Animales , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/inmunología , Línea Celular Tumoral , Óxido Ferrosoférrico/análisis , Humanos , Luminiscencia , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Imagen por Resonancia Magnética , Ratones Endogámicos NOD , Imagen Óptica , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/inmunología , Fagocitosis/efectos de los fármacos
18.
Environ Microbiol Rep ; 11(2): 236-248, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30790444

RESUMEN

Recent studies have shown that application of conductive materials including magnetite and carbon nanotubes (CNTs) can promote the methanogenic decomposition of short-chain fatty acids and even more complex organic matter in anaerobic digesters and natural habitats. The linkage to microbial identity and the mechanisms, however, remain poorly understood. Here, we evaluate the effects of nanoscale magnetite (nanoFe3 O4 ) and multiwalled CNTs on the syntrophic oxidation of propionate in an enrichment obtained from lake sediment. The microbial populations were composed mainly of Smithella, Syntrophomonas, Methanosaeta, Methanosarcina and Methanoregula. In addition to acetate, butyrate was transiently accumulated indicating that propionate was oxidized by Smithella via the dismutation pathway and part of the leaked butyrate was oxidized by Syntrophomonas. Propionate oxidation and CH4 production were significantly accelerated in the presence of nanoFe3 O4 and CNTs. While propionate oxidation was suppressed upon H2 application and suspended completely upon formate application in the control, this suppressive effect was substantially compromised in the presence of nanoFe3 O4 and CNTs. The tests on hydrogenotrophic methanogenesis of a pure culture methanogen and of the enrichment culture without propionate showed negative effect by both materials. The positive effect of nanoFe3 O4 disappeared when it was insulated by surface-coating with silica. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated the extensive formation of microbial cell-conductive material mixture aggregates. Our results suggest that direct interspecies electron transfer is likely activated by the conductive materials and operates in concert with H2 /formate-dependent electron transfer for syntrophic propionate oxidation in the sediment enrichment.


Asunto(s)
Deltaproteobacteria/metabolismo , Óxido Ferrosoférrico/análisis , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Nanotubos de Carbono/análisis , Propionatos/metabolismo , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Butiratos/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/aislamiento & purificación , Óxido Ferrosoférrico/farmacología , Formiatos/farmacología , Hidrógeno/farmacología , Metano/metabolismo , Oxidación-Reducción/efectos de los fármacos , Filogenia , ARN Ribosómico 16S/genética , Simbiosis
19.
Hum Brain Mapp ; 40(5): 1654-1665, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30457688

RESUMEN

During the past several decades there has been much interest in the existence of magnetite particles in the human brain and their accumulation with age. These particles also appear to play an important role in neurodegenerative diseases of the brain. However, up to now the amount and distribution of these particles has been measured only in post-mortem brain tissue. Although in-vivo MRI measurements do show iron compounds generally, MRI cannot separate them according to their magnetic phases, which are associated with their chemical interactions. In contrast, we here offer a new noninvasive, in-vivo method which is selectively sensitive only to particles which can be strongly magnetized. We magnetize these particles with a strong magnetic field through the head, and then measure the resulting magnetic fields, using the dcMagnetoencephalogram (dcMEG). From these data, the mass and locations of the particles can be estimated, using a distributed inverse solution. To test the method, we measured 11 healthy male subjects (ages 19-89 year). Accumulation of magnetite, in the hippocampal formation or nearby structures, was observed in the older men. These in-vivo findings agree with reports of post-mortem measurements of their locations, and of their accumulation with age. Thus, our findings allow in-vivo measurement of magnetite in the human brain, and possibly open the door for new studies of neurodegenerative diseases of the brain.


Asunto(s)
Química Encefálica/fisiología , Óxido Ferrosoférrico/metabolismo , Magnetoencefalografía/métodos , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Algoritmos , Autopsia , Óxido Ferrosoférrico/análisis , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Humanos , Campos Magnéticos , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Adulto Joven
20.
Environ Sci Pollut Res Int ; 26(3): 2950-2959, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30499095

RESUMEN

Settled road dust was examined to detect the presence of non-airborne submicron and nano-sized iron-based particles and to characterize these particles. Samples were collected from a road surface near a busy road junction in the city of Ostrava, Czech Republic, once a month from March to October. The eight collected samples were subjected to a combination of experimental techniques including elemental analysis, Raman microspectroscopy, scanning electron microscopy (SEM) analysis, and magnetometry. The data thereby obtained confirmed the presence of non-agglomerated spherical nano-sized iron-based particles, with average sizes ranging from 2 down to 490 nm. There are several sources in road traffic which generate road dust particles, including exhaust and non-exhaust processes. Some of them (e.g., brake wear) produce iron as the dominant metallic element. Raman microspectroscopy revealed forms of iron (mainly as oxides, Fe2O3, and mixtures of Fe2O3 and Fe3O4). Moreover, Fe3O4 was also detected in samples of human tissues from the upper and lower respiratory tract. In view of the fact that no agglomeration of those particles was found by SEM, it is supposed that these particles may be easily resuspended and represent a risk to human health due to inhalation exposure, as proved by the detection of particles with similar morphology and phase composition in human tissues.


Asunto(s)
Polvo/análisis , Monitoreo del Ambiente/métodos , Compuestos Férricos/análisis , Óxido Ferrosoférrico/análisis , Exposición por Inhalación/análisis , Emisiones de Vehículos/análisis , Ciudades , República Checa , Humanos , Tamaño de la Partícula , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA