Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.216
Filtrar
1.
Mikrochim Acta ; 191(7): 424, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922365

RESUMEN

The enumeration of circulating tumor cells (CTCs) in peripheral blood plays a crucial role in the early diagnosis, recurrence monitoring, and prognosis assessment of cancer patients. There is a compelling need to develop an efficient technique for the capture and identification of these rare CTCs. However, the exclusive reliance on a single criterion, such as the epithelial cell adhesion molecule (EpCAM) antibody or aptamer, for the specific recognition of epithelial CTCs is not universally suitable for clinical applications, as it usually falls short in identifying EpCAM-negative CTCs. To address this limitation, we propose a straightforward and cost-effective method involving triplex fluorescently labelled aptamers (FAM-EpCAM, Cy5-PTK7, and Texas Red-CSV) to modify Fe3O4-loaded dendritic SiO2 nanocomposite (dmSiO2@Fe3O4/Apt). This multi-recognition-based strategy not only enhanced the efficiency in capturing heterogeneous CTCs, but also facilitated the rapid and accurate identification of CTCs. The capture efficiency of heterogenous CTCs reached up to 93.33%, with a detection limit as low as 5 cells/mL. Notably, the developed dmSiO2@Fe3O4/Apt nanoprobe enabled the swift identification of captured cells in just 30 min, relying solely on the fluorescently modified aptamers, which reduced the identification time by approximately 90% compared with the conventional immunocytochemistry (ICC) technique. Finally, these nanoprobe characteristics were validated using blood samples from patients with various types of cancers.


Asunto(s)
Aptámeros de Nucleótidos , Colorantes Fluorescentes , Nanocompuestos , Células Neoplásicas Circulantes , Dióxido de Silicio , Humanos , Células Neoplásicas Circulantes/patología , Dióxido de Silicio/química , Aptámeros de Nucleótidos/química , Nanocompuestos/química , Colorantes Fluorescentes/química , Separación Inmunomagnética/métodos , Molécula de Adhesión Celular Epitelial/inmunología , Límite de Detección , Línea Celular Tumoral , Óxido Ferrosoférrico/química
2.
Bull Exp Biol Med ; 176(6): 811-815, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38896317

RESUMEN

The qualitative composition and zeta potential of magnetite nanoparticles (size 4.2±1.2 nm) obtained by co-precipitation method were determined by X-ray and diffraction dynamic light scattering. The zeta potential of Fe3O4 particles was -15.1±4.5 mV. The possibility of interaction of magnetite nanoparticles with human blood plasma proteins and hemoglobin as well as with erythrocyte membranes was demonstrated by spectrophotometry, electrophoresis, and fluorescence methods. No changes in the sizes of hemoglobin molecules and plasma proteins after their modification by Fe3O4 particles were detected. The possibility of modifying the structural state of erythrocyte membranes in the presence of magnetite nanoparticles was demonstrated by means of fluorescent probe 1-anilinonaphthalene-8-sulfonate.


Asunto(s)
Hemoglobinas , Nanopartículas de Magnetita , Humanos , Nanopartículas de Magnetita/química , Hemoglobinas/química , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Tamaño de la Partícula , Proteínas Sanguíneas/química , Naftalenosulfonatos de Anilina/química , Difracción de Rayos X , Óxido Ferrosoférrico/química , Colorantes Fluorescentes/química
3.
J Environ Manage ; 363: 121434, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38861886

RESUMEN

Despite benefits such as lower water and working volume requirements, thermophilic high solids anaerobic digestion (THSAD) often fails due to the rapid build-up of volatile fatty acids (VFAs) and the associated drop in pH. Use of conductive materials (CM) can promote THSAD through stimulation of direct interspecies electron transfer (DIET), while the need for their constant dosing due to poor separation from effluent impairs economic feasibility. This study used an approach of spatially separating magnetite and granular activated carbon (GAC) from the organic fraction of municipal solid waste (OFMSW) in a single reactor for THSAD. GAC and magnetite addition could both mitigate the severe inhibition of methanogenesis after VFAs build-up to ∼28-30 g/L, while negligible methane production was observed in the control group. The highest methane yield (286 mL CH4/g volatile solids (VS)) was achieved in magnetite-added reactors, while the highest maximum CH4 production rates (26.38 mL CH4/g VS/d) and lowest lag-phase (2.83 days) were obtained in GAC-added reactors. The enrichment of GAC and magnetite biofilms with various syntrophic and potentially electroactive microbial groups (Ruminiclostridium 1, Clostridia MBA03, Defluviitoga, Lentimicrobiaceae) in different relative abundances indicates the existence of specific preferences of these groups for the nature of CM. According to predicted basic metabolic functions, CM can enhance cellular processes and signals, lipid transport and metabolism, and methane metabolism, resulting in improved methane production. Rearrangement of metabolic pathways, formation of pili-like structures, enrichment of biofilms with electroactive groups and a significant improvement in THSAD performance was attributed to the enhancement of the DIET pathway. Promising results obtained in this work due to the spatial separation of the bulk OFMSW and CM can be useful for modeling larger-scale THSAD systems with better recovery of CM and cost-effectiveness.


Asunto(s)
Reactores Biológicos , Metano , Residuos Sólidos , Anaerobiosis , Metano/metabolismo , Ácidos Grasos Volátiles/metabolismo , Eliminación de Residuos/métodos , Óxido Ferrosoférrico/química
4.
Anal Chim Acta ; 1315: 342804, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38879211

RESUMEN

BACKGROUND: Rapid on-site detection of infectious diseases is considerably essential for preventing and controlling major epidemics and maintaining social and public safety. However, the complexity of the natural environment in which infectious disease pathogens exist severely disrupts the performance of on-site detection, and rapid detection can become meaningless because of the cumbersome sample pretreatment process. RESULT: Herein, a new detection platform based on a carbon sphere@Fe3O4 micromotor (CS@Fe3O4) in combination with a graphene field-effect transistor (GFET) was designed and used for the on-site detection of SARS-CoV-2 coronavirus pathogens. The CS@Fe3O4 micromotor, surface-modified with anti-SARS-CoV-2 coronavirus antibody, could move at a velocity of 79.4 µm/s in a solution containing hydrogen peroxide (H2O2) and exhibited capture rates of 67.9% and 36.2% for the SARS-CoV-2 pathogen in phosphate buffered saline (PBS) and soil solutions, respectively. After magnetic field separation, the captured micromotor was used for GFET detection, with detection limits of 4.6 and 15.6 ag/mL in PBS and soil solutions, respectively. SIGNIFICANCE AND NOVELTY: This detection platform can be employed to avoid complex sample pretreatment procedures and achieve rapid on-site detection of SARS-CoV-2 coronavirus pathogens in complex environments. This study introduces a novel approach for the on-site detection of infectious diseases.


Asunto(s)
COVID-19 , Carbono , Grafito , SARS-CoV-2 , Transistores Electrónicos , Grafito/química , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , COVID-19/diagnóstico , COVID-19/virología , Carbono/química , Humanos , Límite de Detección , Técnicas Biosensibles/métodos , Peróxido de Hidrógeno/química , Óxido Ferrosoférrico/química
5.
Langmuir ; 40(24): 12792-12801, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38848468

RESUMEN

Herein, we constructed the branch-shaped SiO2/nano GO (nGO)/Fe3O4/selenium quantum dots (QDs) (SeQDs) nanoparticles (SGF/SeQDs) embodying magnetism, fluorescence, and microwave stimulus response properties to enhance the performance of releasing drugs. The SGF/SeQDs composite was characterized by technologies including powder X-ray diffraction, transmission electron microscopy, infrared spectroscopy, etc. In the nanoparticles, the branch-shaped SiO2 provides a large specific surface area, nGO as the dielectric loss-style material promotes microwave-absorbing performance, and the Fe3O4 serves as a magnetic targeting agent and microwave absorber. Integrating nGO and Fe3O4 could further strengthen the microwave absorption of the entire composite; selenium features both fluorescence and anticancer effects. The synthesized nanoparticles as carriers exhibited a branch-like mesoporous sphere of ∼260 nm, a specific surface area of 258.57 m2 g-1, a saturation magnetization of 24.59 emu g-1, and good microwave thermal conversion performance that the temperature was elevated from 25 to 70 °C under microwave irradiation. These physical characteristics, including large pore volume (5.30 nm), high specific surface area, and fibrous morphology, are in favor of loading drugs. Meanwhile, the cumulative etoposide (VP16) loading rate of the nanoparticles reached to 21 wt % after 360 min. The noncovalent interaction between the VP16 and SGF/SeQDs was mainly the hydrogen-bonding effect during the loading process. Furthermore, the drug release rates at 180 min were up to 81.46, 61.92, and 56.84 wt % at pH 4, 5, and 7, respectively. At 25, 37, and 50 °C, the rates of drug release reach 25.40, 56.84, and 65.32 wt %, respectively. After microwave stimulation at pH 7, the rate of releasing drug increased distinctly from 56.84 to 71.74 wt % compared to that of nonmicrowave irradiation. Cytotoxicity tests manifested that the carrier had good biocompatibility. Therefore, the nanoparticles are looking forward to paving one platform for further applications in biomedicine and drug delivery systems.


Asunto(s)
Portadores de Fármacos , Puntos Cuánticos , Selenio , Dióxido de Silicio , Dióxido de Silicio/química , Portadores de Fármacos/química , Portadores de Fármacos/síntesis química , Humanos , Puntos Cuánticos/química , Puntos Cuánticos/toxicidad , Selenio/química , Microondas , Liberación de Fármacos , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Etopósido/química , Etopósido/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Tamaño de la Partícula , Propiedades de Superficie , Óxido Ferrosoférrico/química
6.
Sci Rep ; 14(1): 11928, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789508

RESUMEN

Cancer stands as one of the most impactful illnesses in the modern world, primarily owing to its lethal consequences. The fundamental concern in this context likely stems from delayed diagnoses in patients. Hence, detecting various forms of cancer is imperative. A formidable challenge in cancer research has been the diagnosis and treatment of this disease. Early cancer diagnosis is crucial, as it significantly influences subsequent therapeutic steps. Despite substantial scientific efforts, accurately and swiftly diagnosing cancer remains a formidable challenge. It is well known that the field of cancer diagnosis has effectively included electrochemical approaches. Combining the remarkable selectivity of biosensing components-such as aptamers, antibodies, or nucleic acids-with electrochemical sensor systems has shown positive outcomes. In this study, we adapt a novel electrochemical biosensor for cancer detection. This biosensor, based on a glassy carbon electrode, incorporates a nanocomposite of reduced graphene oxide/Fe3O4/Nafion/polyaniline. We elucidated the modification process using SEM, TEM, FTIR, RAMAN, VSM, and electrochemical methods. To optimize the experimental conditions and monitor the immobilization processes, electrochemical techniques such as CV, EIS, and SWV were employed. The calibration graph has a linear range of 102-106 cells mL-1, with a detection limit of 5 cells mL-1.


Asunto(s)
Compuestos de Anilina , Biomarcadores de Tumor , Técnicas Biosensibles , Neoplasias de la Mama , Técnicas Electroquímicas , Polímeros de Fluorocarbono , Grafito , Receptor ErbB-2 , Grafito/química , Humanos , Técnicas Biosensibles/métodos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Técnicas Electroquímicas/métodos , Compuestos de Anilina/química , Polímeros de Fluorocarbono/química , Línea Celular Tumoral , Receptor ErbB-2/metabolismo , Receptor ErbB-2/análisis , Femenino , Óxido Ferrosoférrico/química , Límite de Detección , Electrodos
7.
Bioresour Technol ; 403: 130863, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772520

RESUMEN

The OH production by adding magnetite (MGT) alone has been reported in composting. However, the potential of nitrilotriacetic acid (NTA) addition for magnetite-amended sludge composting remained unclear. Three treatments with different addition [control check (CK); T1: 5 % MGT; T2: 5 % MGT + 5 % NTA] were investigated to characterize hydroxyl radical, humification and bacterial community response. The NTA addition manifested the best performance, with the peak OH content increase by 52 % through facilitating the cycle of Fe(Ⅱ)/Fe(Ⅲ). It led to the highest organic matters degradation (22.3 %) and humic acids content (36.1 g/kg). Furthermore, NTA addition altered bacterial community response, promoting relative abundances of iron-redox related genera, and amino acid metabolism but decreasing carbohydrate metabolism. Structural equation model indicated that temperature and Streptomyces were the primary factors affecting OH content. The study suggests that utilizing chelators is a promising strategy to strengthen humification in sewage sludge composting with adding iron-containing minerals.


Asunto(s)
Compostaje , Óxido Ferrosoférrico , Sustancias Húmicas , Radical Hidroxilo , Ácido Nitrilotriacético , Aguas del Alcantarillado , Ácido Nitrilotriacético/química , Óxido Ferrosoférrico/química , Compostaje/métodos , Hierro/química
8.
Proc Natl Acad Sci U S A ; 121(23): e2319148121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805285

RESUMEN

Magnetotactic bacteria produce chains of nanoscopic iron minerals used for navigation, which can be preserved over geological timescales in the form of magnetofossils. Micrometer-sized magnetite crystals with unusual shapes suggesting a biologically controlled mineralization have been found in the geological record and termed giant magnetofossils. The biological origin and function of giant magnetofossils remains unclear, due to the lack of modern analogues to giant magnetofossils. Using distinctive Ptychographic nanotomography data of Precambrian (1.88 Ga) rocks, we recovered the morphology of micrometric cuboid grains of iron oxides embedded in an organic filamentous fossil to construct synthetic magnetosomes. Their morphology is different from that of previously found giant magnetofossils, but their occurrence in filamentous microfossils and micromagnetic simulations support the hypothesis that they could have functioned as a navigation aid, akin to modern magnetosomes.


Asunto(s)
Fósiles , Magnetosomas , Magnetosomas/química , Magnetosomas/metabolismo , Óxido Ferrosoférrico/química , Sedimentos Geológicos/química
9.
Talanta ; 276: 126235, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761654

RESUMEN

N-nitrosamines (NAs) are highly carcinogenic compounds commonly found in food, beverages, and consumer products. Due to their wide polarity range, it is challenging to find a suitable carbon adsorbent that can simultaneously adsorb and enrich both polar and nonpolar NAs with good recovery. In this study, nitrogen-doped magnetic mesoporous carbon nanospheres (M-MCN) were prepared and employed as an adsorbent for magnetic solid-phase extraction (MSPE) to extract and concentrate four NAs. The introduction of nitrogen functional groups enhanced the hydrophilicity of the carbon material, allowing M-MCN to achieve a balance between hydrophilicity and hydrophobicity, resulting in good recovery for both polar and nonpolar NAs. A method combining MSPE with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of NAs in processed meat and alcoholic beverages. The method exhibited a good linear range (1-100 ng g-1, r2 > 0.9967) and trace-level detection (0.53-6.6 ng g-1). The recovery rates for the four NAs ranged between 85.7 and 110.7 %, with intra-day precision expressed as relative standard deviation (RSD) between 4.1 and 10.7 %, and inter-day precision between 4.8 and 12.9 %. The results demonstrated not only good accuracy and precision but also provided a new adsorbent for the enrichment of trace-level NAs in processed meat and alcoholic beverage samples.


Asunto(s)
Carbono , Cromatografía de Gases y Espectrometría de Masas , Indoles , Nanosferas , Nitrógeno , Nitrosaminas , Polímeros , Extracción en Fase Sólida , Nitrógeno/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Porosidad , Nanosferas/química , Carbono/química , Polímeros/química , Nitrosaminas/análisis , Nitrosaminas/aislamiento & purificación , Indoles/química , Extracción en Fase Sólida/métodos , Adsorción , Óxido Ferrosoférrico/química
10.
Chemosphere ; 361: 142416, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38797218

RESUMEN

Although the promotive effect of direct interspecies electron transfer (DIET) on methane production has been well-documented, the practical applicability of DIET in different scenarios have not yet been systematically studied. This study compared the effects of magnetite-mediated DIET with conventional biogas mixing-driven interspecies hydrogen transfer (IHT) on anaerobic digestion (AD) of swine manure (SM). Compared with control, magnetite supplementation, biogas circulation, and their integration enhanced the CH4 yield by 19.3%, 25.9%, and 26.2%, respectively. Magnetite mainly enriched DIET-related syntrophic bacteria (Anaerolineae and Synergistia) and methanogens (Methanosarcina) to accelerate acidification and establish DIET, while biogas circulation mainly enriched hydrolytic bacteria (Clostridia) and hydrogenotrophic methanogens (Methanolinea and Methanobacterium) to promote hydrolysis and accelerate IHT. Coupling magnetite addition with biogas circulation led to the enrichment of the above six microorganisms to different extents. The effectiveness of the strategies for lowering the H2 pressure followed: magnetite + biogas circulation ≈ biogas circulation > magnetite. Under stress-free environment, the enhancement effect of magnetite-induced DIET was not even as pronounced as biogas circulation-a simple and common mixing strategy in commercial AD plants, and the promotion effect of magnetite was insignificant in the well-mixed digesters. In short, the magnetite-mediated DIET is not always effective in improving AD of SM.


Asunto(s)
Biocombustibles , Óxido Ferrosoférrico , Hidrógeno , Estiércol , Metano , Anaerobiosis , Hidrógeno/metabolismo , Óxido Ferrosoférrico/química , Animales , Metano/metabolismo , Transporte de Electrón , Porcinos , Bacterias/metabolismo , Reactores Biológicos/microbiología
11.
Environ Sci Pollut Res Int ; 31(24): 35824-35834, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38744762

RESUMEN

This study aims to evaluate the feasibility of an innovative reusable adsorbent through adsorption-degradation sequence for antibiotic removal from water. The magnetite/mesoporous carbon adsorbent was prepared using a two-step method of (i) in situ impregnation of magnetite precursor during resorcinol formaldehyde polymerization and (ii) pyrolysis at elevated temperature (800 °C). XRD spectra confirmed that magnetite (Fe3O4) was the only iron oxide species present in the adsorbent, and thermogravimetric analysis revealed that its content was 10 wt%. Nitrogen sorption analysis showed that Fe3O4/carbon features a high fraction of mesopores (> 80 vol.%) and a remarkable specific surface area value (246 m2 g-1), outstanding properties for water treatment. The performance of the adsorbent was examined in the uptake of three relevant antibiotics. The maximum adsorption uptakes were ca. 76 mg g-1, ca. 70 mg g-1, and ca. 44 mg g-1 for metronidazole, sulfamethoxazole, and ciprofloxacin, respectively. All adsorption curves were successfully fitted with Langmuir equilibrium model. The regeneration of adsorbent was carried out using Fenton oxidation under ambient conditions. After three consecutive runs of adsorption-regeneration, Fe3O4/carbon maintained its performance almost unchanged (up to 95% of its adsorption capacity), which highlights the high reusability of the adsorbent.


Asunto(s)
Antibacterianos , Carbono , Óxido Ferrosoférrico , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Antibacterianos/química , Carbono/química , Óxido Ferrosoférrico/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Porosidad
12.
ACS Appl Mater Interfaces ; 16(21): 27668-27683, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38748922

RESUMEN

Micro/nanomotors (MNMs) are miniature devices that can generate energy through chemical reactions or physical processes, utilizing this energy for movement. By virtue of their small size, self-propulsion, precise positioning within a small range, and ability to access microenvironments, MNMs have been applied in various fields including sensing, biomedical applications, and pollutant adsorption. However, the development of food-grade MNMs and their application in food delivery systems have been scarcely reported. Currently, there are various issues with the decomposition, oxidation, or inability to maintain the activity of some nutrients or bioactive substances, such as the limited application of curcumin (Cur) in food. Compared to traditional delivery systems, MNMs can adjust the transport speed and direction as needed, effectively protecting bioactive substances during delivery and achieving efficient transportation. Therefore, this study utilizes polysaccharides as the substrate, employing a simple, rapid, and pollution-free template method to prepare polysaccharide-based microtubes (PMTs) and polysaccharide-based micro/nanomotors (PMNMs). PMNMs can achieve multifunctional propulsion by modifying ferrosoferric oxide (Fe3O4), platinum (Pt), and glucose oxidase (GOx). Fe-PMNMs and Pt-PMNMs exhibit excellent photothermal conversion performance, showing promise for applications in photothermal therapy. Moreover, PMNMs can effectively deliver curcumin, achieving the effective delivery of nutrients and exerting the anti-inflammatory performance of the system.


Asunto(s)
Curcumina , Polisacáridos , Curcumina/química , Polisacáridos/química , Animales , Ratones , Platino (Metal)/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Óxido Ferrosoférrico/química , Humanos , Ingredientes Alimentarios/análisis
13.
Anal Chim Acta ; 1309: 342701, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772662

RESUMEN

BACKGROUND: Nanozymes, a new class of nanomaterials, have emerged as promising substitutes for enzymes in biosensor design due to their exceptional stability, affordability, and ready availability. While nanozymes address many limitations of natural enzymes, they still face challenges, particularly in achieving the catalytic activity levels of their natural counterparts. This indicates the need for enhancing the sensitivity of biosensors based on nanozymes. The catalytic activity of nanozyme can be significantly improved by regulating its size, morphology, and surface composition of nanomaterial. RESULTS: In this work, a kind of hollow core-shell structure was designed to enhance the catalytic activity of nanozymes. The hollow core-shell structure material consists of a nanozymes core layer, a hollow layer, and a MOF shell layer. Taking the classic peroxidase like Fe3O4 as an example, the development of a novel nanozyme@MOF, specifically p-Fe3O4@PDA@ZIF-67, is detailed, showcasing its application in enhancing the sensitivity of sensors based on Fe3O4 nanozymes. This innovative nanocomposite, featuring that MOF layer was designed to adsorb the signal molecules of the sensor to improve the utilization rate of reactive oxygen species generated by the nanozymes catalyzed reactions and the hollow layer was designed to prevent the active sites of nanozymes from being cover by the MOF layer. The manuscript emphasizes the nanocomposite's remarkable sensitivity in detecting hydrogen peroxide (H2O2), coupled with high specificity and reproducibility, even in complex environments like milk samples. SIGNIFICANCE AND NOVELTY: This work firstly proposed and proved that Fe3O4 nanozyme@MOF with hollow layer structure was designed to improve the catalytic activity of the Fe3O4 nanozyme and the sensitivity of the sensors based on Fe3O4 nanozyme. This research marks a significant advancement in nanozyme technology, demonstrating the potential of structural innovation in creating high-performance, sensitive, and stable biosensors for various applications.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Técnicas Biosensibles/métodos , Estructuras Metalorgánicas/química , Óxido Ferrosoférrico/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Indoles/química , Catálisis , Límite de Detección , Nanoestructuras/química , Nanocompuestos/química , Imidazoles , Polímeros , Zeolitas
14.
J Biol Phys ; 50(2): 215-228, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38727764

RESUMEN

The detection of magnetic fields by animals is known as magnetoreception. The ferromagnetic hypothesis explains magnetoreception assuming that magnetic nanoparticles are used as magnetic field transducers. Magnetite nanoparticles in the abdomen of Apis mellifera honeybees have been proposed in the literature as the magnetic field transducer. However, studies with ants and stingless bees have shown that the whole body of the insect contain magnetic material, and that the largest magnetization is in the antennae. The aim of the present study is to investigate the magnetization of all the body parts of honeybees as has been done with ants and stingless bees. To do that, the head without antennae, antennae, thorax, and abdomen obtained from Apis mellifera honeybees were analyzed using magnetometry and Ferromagnetic Resonance (FMR) techniques. The magnetometry and FMR measurements show the presence of magnetic material in all honeybee body parts. Our results present evidence of the presence of biomineralized magnetite nanoparticles in the honeybee abdomen and, for the first time, magnetite in the antennae. FMR measurements permit to identify the magnetite in the abdomen as biomineralized. As behavioral experiments reported in the literature have shown that the abdomen is involved in magnetoreception, new experimental approaches must be done to confirm or discard the involvement of the antennae in magnetoreception.


Asunto(s)
Abdomen , Antenas de Artrópodos , Animales , Abejas/fisiología , Antenas de Artrópodos/fisiología , Óxido Ferrosoférrico/química , Óxido Ferrosoférrico/metabolismo , Campos Magnéticos
15.
Environ Sci Pollut Res Int ; 31(20): 29148-29161, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568307

RESUMEN

The global occurrence of micropollutants in water bodies has raised concerns about potential negative effects on aquatic ecosystems and human health. EU regulations to mitigate such widespread pollution have already been implemented and are expected to become increasingly stringent in the next few years. Catalytic wet peroxide oxidation (CWPO) has proved to be a promising alternative for micropollutant removal from water, but most studies were performed in batch mode, often involving complex, expensive, and hardly recoverable catalysts, that are prone to deactivation. This work aims to demonstrate the feasibility of a fixed-bed reactor (FBR) packed with natural magnetite powder for the removal of a representative mixture of azole pesticides, recently listed in the EU Watch Lists. The performance of the system was evaluated by analyzing the impact of H2O2 dose (3.6-13.4 mg L-1), magnetite load (2-8 g), inlet flow rate (0.25-1 mL min-1), and initial micropollutant concentration (100-1000 µg L-1) over 300 h of continuous operation. Azole pesticide conversion values above 80% were achieved under selected operating conditions (WFe3O4 = 8 g, [H2O2]0 = 6.7 mg L-1, flow rate = 0.5 mL min-1, pH0 = 5, T = 25 °C). Notably, the catalytic system showed a high stability upon 500 h in operation, with limited iron leaching (< 0.1 mg L-1). As a proof of concept, the feasibility of the system was confirmed using a real wastewater treatment plant (WWTP) effluent spiked with the mixture of azole pesticides. These results represent a clear advance for the application of CWPO as a tertiary treatment in WWTPs and open the door for the scale-up of FBR packed with natural magnetite.


Asunto(s)
Óxido Ferrosoférrico , Plaguicidas , Contaminantes Químicos del Agua , Catálisis , Contaminantes Químicos del Agua/química , Óxido Ferrosoférrico/química , Peróxido de Hidrógeno/química , Oxidación-Reducción , Azoles/química
16.
J Nanobiotechnology ; 22(1): 203, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659001

RESUMEN

BACKGROUND: Biogeochemical processing of metals including the fabrication of novel nanomaterials from metal contaminated waste streams by microbial cells is an area of intense interest in the environmental sciences. RESULTS: Here we focus on the fate of Ce during the microbial reduction of a suite of Ce-bearing ferrihydrites with between 0.2 and 4.2 mol% Ce. Cerium K-edge X-ray absorption near edge structure (XANES) analyses showed that trivalent and tetravalent cerium co-existed, with a higher proportion of tetravalent cerium observed with increasing Ce-bearing of the ferrihydrite. The subsurface metal-reducing bacterium Geobacter sulfurreducens was used to bioreduce Ce-bearing ferrihydrite, and with 0.2 mol% and 0.5 mol% Ce, an Fe(II)-bearing mineral, magnetite (Fe(II)(III)2O4), formed alongside a small amount of goethite (FeOOH). At higher Ce-doping (1.4 mol% and 4.2 mol%) Fe(III) bioreduction was inhibited and goethite dominated the final products. During microbial Fe(III) reduction Ce was not released to solution, suggesting Ce remained associated with the Fe minerals during redox cycling, even at high Ce loadings. In addition, Fe L2,3 X-ray magnetic circular dichroism (XMCD) analyses suggested that Ce partially incorporated into the Fe(III) crystallographic sites in the magnetite. The use of Ce-bearing biomagnetite prepared in this study was tested for hydrogen fuel cell catalyst applications. Platinum/carbon black electrodes were fabricated, containing 10% biomagnetite with 0.2 mol% Ce in the catalyst. The addition of bioreduced Ce-magnetite improved the electrode durability when compared to a normal Pt/CB catalyst. CONCLUSION: Different concentrations of Ce can inhibit the bioreduction of Fe(III) minerals, resulting in the formation of different bioreduction products. Bioprocessing of Fe-minerals to form Ce-containing magnetite (potentially from waste sources) offers a sustainable route to the production of fuel cell catalysts with improved performance.


Asunto(s)
Cerio , Óxido Ferrosoférrico , Geobacter , Platino (Metal) , Cerio/química , Cerio/metabolismo , Geobacter/metabolismo , Catálisis , Óxido Ferrosoférrico/química , Platino (Metal)/química , Oxidación-Reducción , Compuestos Férricos/química , Compuestos Férricos/metabolismo
17.
Chemosphere ; 357: 142040, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615949

RESUMEN

1,2,3-Trichloropropane (TCP) is an emerging groundwater pollutant, but there is a lack of reported studies on the abiotic natural attenuation of TCP by iron minerals. Furthermore, perturbation by O2 is common in the shallow subsurface by both natural and artificial processes. In this study, natural magnetite was selected as the reactive iron mineral to investigate its role in the degradation of TCP under O2 perturbation. The results indicated that the mineral structural Fe(II) on magnetite reacted with dissolved oxygen to generate O2-· and HO·. Both O2-· and HO· contributed to TCP degradation, with O2-· playing a more important role. After 56 days of reaction, 66.7% of TCP was completely dechlorinated. This study revealed that higher magnetite concentrations, smaller magnetite particle sizes, and lower initial TCP concentrations favored TCP degradation. The presence of <10 mg/L natural organic matter (NOM) did not affect TCP degradation. These findings significantly advance our understanding of the abiotic natural attenuation mechanisms facilitated by iron minerals under O2 perturbation, providing crucial insights for the study of natural attenuation.


Asunto(s)
Óxido Ferrosoférrico , Oxígeno , Propano , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Oxígeno/química , Óxido Ferrosoférrico/química , Propano/química , Propano/análogos & derivados , Agua Subterránea/química , Hierro/química , Biodegradación Ambiental
18.
Water Res ; 256: 121567, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581983

RESUMEN

Discovery of nitrate/nitrite-dependent anaerobic methane oxidation (DAMO) challenges the conventional biological treatment processes, since it provides a possibility of simultaneously mitigating dissolved methane emissions from anaerobic effluents and reducing additional carbon sources for denitrification. Due to the slow growth of specialized DAMO microbes, this possibility has been just practiced with biofilms in membrane biofilm reactors or granular sludge in membrane bioreactors. In this study, simultaneous elimination of dissolved methane from anaerobic effluents and nitrate/nitrite reduction was achieved in a conventional anoxic reactor with magnetite. Calculations of electron flow balance showed that, with magnetite the eliminated dissolved methane was almost entirely used for nitrate/nitrite reduction, while without magnetite approximately 52 % of eliminated dissolved methane was converted to unknown organics. Metagenomic sequencing showed that, when dissolved methane served as an electron donor, the abundance of genes for reverse methanogenesis and denitrification dramatically increased, indicating that anaerobic oxidation of methane (AOM) coupled to nitrate/nitrite reduction occurred. Magnetite increased the abundance of genes encoding the key enzymes involved in whole reverse methanogenesis and Nir and Nor involved in denitrification, compared to that without magnetite. Analysis of microbial communities showed that, AOM coupled to nitrate/nitrite reduction was proceeded by syntrophic consortia comprised of methane oxidizers, Methanolinea and Methanobacterium, and nitrate/nitrite reducers, Armatimonadetes_gp5 and Thauera. With magnetite syntrophic consortia exchanged electrons more effectively than that without magnetite, further supporting the microbial growth.


Asunto(s)
Reactores Biológicos , Óxido Ferrosoférrico , Metano , Nitratos , Nitritos , Metano/metabolismo , Anaerobiosis , Nitratos/metabolismo , Óxido Ferrosoférrico/química , Nitritos/metabolismo , Oxidación-Reducción , Desnitrificación
19.
Chemosphere ; 357: 141912, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582166

RESUMEN

The efficiency of the Fenton reaction is markedly contingent upon the operational pH related to iron solubility. Therefore, a heterogeneous Fenton reaction has been developed to function at neutral pH. In the present study, the Bio-Fenton reaction was carried out using magnetite (Fe(II)Fe(III)2O4) and H2O2 generated by a newly isolated H2O2-producing bacterium, Desemzia sp. strain C1 at pH 6.8 to degrade chloroacetanilide herbicides. The optimal conditions for an efficient Bio-Fenton reaction were 10 mM of lactate, 0.5% (w/v) of magnetite, and resting-cells (O.D.600 = 1) of strain C1. During the Bio-Fenton reaction, 1.8-2.0 mM of H2O2 was generated by strain C1 and promptly consumed by the Fenton reaction with magnetite, maintaining stable pH conditions. Approximately, 40-50% of the herbicides underwent oxidation through non-specific reactions of •OH, leading to dealkylation, dechlorination, and hydroxylation via hydrogen atom abstraction. These findings will contribute to advancing the Bio-Fenton system for non-specific oxidative degradation of diverse organic pollutants under in-situ environmental conditions with bacteria producing high amount of H2O2 and magnetite under a neutral pH condition.


Asunto(s)
Acetamidas , Biodegradación Ambiental , Óxido Ferrosoférrico , Herbicidas , Peróxido de Hidrógeno , Hierro , Herbicidas/metabolismo , Herbicidas/química , Peróxido de Hidrógeno/metabolismo , Óxido Ferrosoférrico/metabolismo , Óxido Ferrosoférrico/química , Hierro/metabolismo , Hierro/química , Acetamidas/metabolismo , Acetamidas/química , Oxidación-Reducción , Concentración de Iones de Hidrógeno
20.
Enzyme Microb Technol ; 178: 110443, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593516

RESUMEN

A novel immobilized chitosanase was developed and utilized to produce chitosan oligosaccharides (COSs) via chitosan hydrolysis. Magnetite-agar gel particles (average particle diameter: 338 µm) were prepared by emulsifying an aqueous agar solution dispersing 200-nm magnetite particles with isooctane containing an emulsifier at 80 °C, followed by cooling the emulsified mixture. The chitosanase from Bacillus pumilus was immobilized on the magnetite-agar gel particles chemically activated by introducing glyoxyl groups with high immobilization yields (>80%), and the observed specific activity of the immobilized chitosanase was 16% of that of the free enzyme. This immobilized chitosanase could be rapidly recovered from aqueous solutions by applying magnetic force. The thermal stability of the immobilized chitosanase improved remarkably compared with that of free chitosanase: the deactivation rate constants at 35 °C of the free and immobilized enzymes were 8.1 × 10-5 and 3.9 × 10-8 s-1, respectively. This immobilized chitosanase could be reused for chitosan hydrolysis at 75 °C and pH 5.6, and 80% of its initial activity was maintained even after 10 cycles of use. COSs with a degree of polymerization (DP) of 2-7 were obtained using this immobilized chitosanase, and the product content of physiologically active COSs (DP ≥ 5) reached approximately 50%.


Asunto(s)
Agar , Bacillus , Quitosano , Estabilidad de Enzimas , Enzimas Inmovilizadas , Glicósido Hidrolasas , Oligosacáridos , Quitosano/química , Quitosano/metabolismo , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Oligosacáridos/química , Oligosacáridos/metabolismo , Oligosacáridos/biosíntesis , Hidrólisis , Bacillus/enzimología , Agar/química , Geles/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Óxido Ferrosoférrico/química , Biocatálisis , Concentración de Iones de Hidrógeno , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA