Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.364
Filtrar
1.
Brain Res Bull ; 214: 110989, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825252

RESUMEN

Parkinson's disease (PD) is a chronic neurodegenerative disease with unclear pathogenesis that involves neuroinflammation and intestinal microbial dysbiosis. Intercellular adhesion molecule-1 (ICAM-1), an inflammatory marker, participates in neuroinflammation during dopaminergic neuronal damage. However, the explicit mechanisms of action of ICAM-1 in PD have not been elucidated. We established a subacute PD mouse model by the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and observed motor symptoms and gastrointestinal dysfunction in mice. Immunofluorescence was used to examine the survival of dopaminergic neurons, expression of microglial and astrocyte markers, and intestinal tight junction-associated proteins. Then, we use 16 S rRNA sequencing to identify alterations in the microbiota. Our findings revealed that ICAM-1-specific antibody (Ab) treatment relieved behavioural defects, gastrointestinal dysfunction, and dopaminergic neuronal death in MPTP-induced PD mice. Further mechanistic investigations indicated that ICAM-1Ab might suppress neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra and relieving colon barrier impairment and intestinal inflammation. Furthermore, 16 S rRNA sequencing revealed that the relative abundances of bacterial Firmicutes, Clostridia, and Lachnospiraceae were elevated in the PD mice. However, ICAM-1Ab treatment ameliorated the MPTP-induced disorders in the intestinal microbiota. Collectively, we concluded that the suppressing ICAM-1 might lead to the a significant decrease of inflammation and restore the gut microbial community, thus ameliorating the damage of DA neurons.


Asunto(s)
Neuronas Dopaminérgicas , Molécula 1 de Adhesión Intercelular , Ratones Endogámicos C57BL , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones , Masculino , Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias/metabolismo , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Inflamación/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Microglía/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Trastornos Parkinsonianos/metabolismo , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología
2.
Mol Biol Rep ; 51(1): 669, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787465

RESUMEN

BACKGROUND: The loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) is a major pathological hallmark of Parkinson's disease (PD). Orexin B (OXB) has been reported to promote the growth of DA neurons. However, the roles of OXB in the degeneration of DA neurons still remained not fully clear. METHODS: An in vivo PD model was constructed by administrating 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Pole test was performed to investigate the motor function of mice and the number of DA neurons was detected by immunofluorescence (IF). A PD cell model was established by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+). OXB was added to the culture medium 2 h after MPP + treatment. Microscopic analysis was carried out to investigate the function of OXB in the cell model of PD 24 h after MPP + challenge. RNA-Seq analysis of the PD cell model was performed to explore the possible mechanisms. Western blot was used to detect the phosphorylation levels of extracellular signal-regulated kinase (ERK). RESULTS: OXB significantly decreased the DA neurons death caused by MPTP, alleviated MPP+-induced neurotoxicity in SH-SY5Y cells, and robustly enhanced the weight and motor ability of PD mice. Besides, RNA-Seq analysis demonstrated that the mitogen-activated protein kinase (MAPK) pathway was involved in the pathology of PD. Furthermore, MPP + led to increased levels of phosphorylation of ERK (p-ERK), OXB treatment significantly decreased the levels of p-ERK in MPP+-treated SH-SY5Y cells. CONCLUSIONS: This study demonstrated that OXB exerts a neuroprotective role associated with reduced ERK phosphorylation in the PD model. This suggests that OXB may have therapeutic potential for treatment of PD.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Neuronas Dopaminérgicas , Quinasas MAP Reguladas por Señal Extracelular , Orexinas , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Animales , Ratones , Fosforilación/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Orexinas/metabolismo , Orexinas/farmacología , Humanos , Masculino , Línea Celular Tumoral , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , 1-Metil-4-fenilpiridinio/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
3.
Neuroscience ; 549: 65-75, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38750924

RESUMEN

Recent evidence has supported a pathogenic role for neuroinflammation in Parkinson's disease (PD). Inflammatory response has been associated with symptoms and subtypes of PD. However, it is unclear whether immune changes are involved in the initial pathogenesis of PD, leading to the non-motor symptoms (NMS) observed in its prodromal stage. The current study aimed to characterize the behavioral and cognitive changes in a toxin-induced model of prodromal PD-like syndrome. We also sought to investigate the role of neuroinflammation in prodromal PD-related NMS. Male mice were subjected to bilateral intranasal infusion with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or saline (control group), followed by comprehensive behavioral, pathological and neurochemical analysis. Intranasal MPTP infusion was able to cause the loss of dopaminergic neurons in the substantia nigra (SN). In parallel, it induced impairment in olfactory discrimination and social memory consolidation, compulsive and anxiety-like behaviors, but did not influence motor performance. Iba-1 and GFAP expressions were increased in the SN, suggesting an activated state of microglia and astrocytes. Consistent with this, MPTP mice had increased levels of IL-10 and IL-17A, and decreased levels of BDNF and TrkA mRNA in the SN. The striatum showed increased IL-17A, BDNF, and NFG levels compared to control mice. In conclusion, neuroinflammation may play an important role in the early stage of experimental PD-like syndrome, leading to cognitive and behavioral changes. Our results also indicate that intranasal administration of MPTP may represent a valuable mouse model for prodromal PD.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Síntomas Prodrómicos , Sustancia Negra , Animales , Masculino , Sustancia Negra/metabolismo , Sustancia Negra/patología , Sustancia Negra/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Enfermedades Neuroinflamatorias/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Ratones , Microglía/metabolismo , Microglía/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ansiedad/etiología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología
4.
Org Lett ; 26(22): 4672-4677, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38787765

RESUMEN

Picrachinentins A-F (1-6, respectively), six novel cyclopeptide alkaloid-type burpitides (CPABs), were isolated and fully elucidated from the EtOH extract of the stems and leaves of Picrasma chinensis. Structurally, compounds 1-6 have a 14-membered paracyclophane ring system that was closed through an ether bond between the ß-hydroxy amino acid and tyrosine and modified with a 4,5-methylenedioxybenzoyloxy (MDBz, 3 and 5) or hexanoyl (Hexa, 1, 2, 4, and 6) group at the N-terminus. Interestingly, this is the first report on the isolation and characterization of CPABs from plants of the Simaroubaceae family. In addition, all compounds showed a neuroprotective effect against H2O2-damaged SH-SY5Y cells. Compound 1 was further investigated for its neuroprotective activities using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease animal model, and it dramatically improved MPTP-impaired motor behavioral performance. Biochemical analysis revealed compound 1 restored the tyrosine hydroxylase expression in the striatum of the MPTP-damaged mouse brain, which demonstrates its protective effect on dopaminergic neurons.


Asunto(s)
Alcaloides , Fármacos Neuroprotectores , Péptidos Cíclicos , Picrasma , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Animales , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/aislamiento & purificación , Ratones , Picrasma/química , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Estructura Molecular , Humanos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/antagonistas & inhibidores , Hojas de la Planta/química , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología
5.
Acta Neuropathol Commun ; 12(1): 79, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773545

RESUMEN

Neurodegenerative diseases have common underlying pathological mechanisms including progressive neuronal dysfunction, axonal and dendritic retraction, and mitochondrial dysfunction resulting in neuronal death. The retina is often affected in common neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Studies have demonstrated that the retina in patients with Parkinson's disease undergoes changes that parallel the dysfunction in the brain. These changes classically include decreased levels of dopamine, accumulation of alpha-synuclein in the brain and retina, and death of dopaminergic nigral neurons and retinal amacrine cells leading to gross neuronal loss. Exploring this disease's retinal phenotype and vision-related symptoms is an important window for elucidating its pathophysiology and progression, and identifying novel ways to diagnose and treat Parkinson's disease. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease in animal models. MPTP is a neurotoxin converted to its toxic form by astrocytes, transported to neurons through the dopamine transporter, where it causes mitochondrial Complex I inhibition and neuron degeneration. Systemic administration of MPTP induces retinal changes in different animal models. In this study, we assessed the effects of MPTP on the retina directly via intravitreal injection in mice (5 mg/mL and 50 mg/mL to 7, 14 and 21 days post-injection). MPTP treatment induced the reduction of retinal ganglion cells-a sensitive neuron in the retina-at all time points investigated. This occurred without a concomitant loss of dopaminergic amacrine cells or neuroinflammation at any of the time points or concentrations tested. The observed neurodegeneration which initially affected retinal ganglion cells indicated that this method of MPTP administration could yield a fast and straightforward model of retinal ganglion cell neurodegeneration. To assess whether this model could be amenable to neuroprotection, mice were treated orally with nicotinamide (a nicotinamide adenine dinucleotide precursor) which has been demonstrated to be neuroprotective in several retinal ganglion cell injury models. Nicotinamide was strongly protective following intravitreal MPTP administration, further supporting intravitreal MPTP use as a model of retinal ganglion cell injury. As such, this model could be utilized for testing neuroprotective treatments in the context of Parkinson's disease and retinal ganglion cell injury.


Asunto(s)
Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Niacinamida , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Niacinamida/farmacología , Niacinamida/administración & dosificación , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Masculino , Ratones , Administración Oral , Inyecciones Intravítreas , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/tratamiento farmacológico , Intoxicación por MPTP/patología , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/tratamiento farmacológico
6.
Mar Drugs ; 22(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38786584

RESUMEN

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, and accumulating evidence suggests a link between dysbiosis of the gut microbiota and the onset and progression of PD. In our previous investigations, we discovered that intraperitoneal administration of glucuronomannan oligosaccharides (GMn) derived from Saccharina japonica exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. However, the complicated preparation process, difficulties in isolation, and remarkably low yield have constrained further exploration of GMn. In this study, we optimized the degradation conditions in the preparation process of GMn through orthogonal experiments. Subsequently, an MPTP-induced PD model was established, followed by oral administration of GMn. Through a stepwise optimization, we successfully increased the yield of GMn, separated from crude fucoidan, from 1~2/10,000 to 4~8/1000 and indicated the effects on the amelioration of MPTP-induced motor deficits, preservation of dopamine neurons, and elevation in striatal neurotransmitter levels. Importantly, GMn mitigated gut microbiota dysbiosis induced by MPTP in mice. In particular, GM2 significantly reduced the levels of Akkermansia, Verrucomicrobiota, and Lactobacillus, while promoting the abundance of Roseburia and Prevotella compared to the model group. These findings suggest that GM2 can potentially suppress PD by modulating the gut microbiota, providing a foundation for the development of a novel and effective anti-PD marine drug.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Oligosacáridos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Oligosacáridos/farmacología , Masculino , Fármacos Neuroprotectores/farmacología , Disbiosis/tratamiento farmacológico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Manosa/farmacología , Manosa/química , Manosa/análogos & derivados , Glucuronatos/farmacología
7.
J Chem Neuroanat ; 138: 102424, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670441

RESUMEN

Neuroinflammation associated with microglial activation plays a role in the development of Parkinson's disease (PD). The upregulation of interferon regulatory factor 8 (IRF8) in microglia following peripheral nerve injury has been observed to induce microglial activation. This suggests the potential therapeutic significance of IRF8 in PD. This research aims to explore the effects of IRF8 on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and lipopolysaccharide (LPS)-induced neuroinflammation, along with its underlying mechanisms. The study examines the differential expression of IRF8 and its effects on neuropathological changes using a PD mouse model and a PD model established from BV2 cells in vitro. IRF8 was found to be prominently expressed in the substantia nigra pars compacta (SNpc) region of PD mice and LPS-stimulated BV2 cells, while the expression of tyrosine hydroxylase (TH) and dopamine (DA) content in the SNpc region of PD mice was notably reduced. MPTP treatment and LPS stimulation intensified microglial activation, inflammation, and activation of the AMPK/mTOR signaling pathway in vivo and in vitro, respectively. Upon IRF8 silencing in the PD mouse and cell models, the knockdown of IRF8 ameliorated MPTP-induced behavioral deficits, increased the counts of TH and Nissl-positive neurons and DA content, reduced the number of Iba-1-positive microglia, and reduced the content of inflammatory factors, possibly by inhibiting the AMPK/mTOR signaling pathway. Similar outcomes were observed in the PD cell model. In conclusion, the suppression of IRF8 alleviates neuroinflammation through regulating microglial activation in PD models in vivo and in vitro by the AMPK/mTOR signaling pathway.


Asunto(s)
Factores Reguladores del Interferón , Ratones Endogámicos C57BL , Microglía , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson , Animales , Microglía/metabolismo , Ratones , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Masculino , Enfermedades Neuroinflamatorias/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Lipopolisacáridos , Serina-Treonina Quinasas TOR/metabolismo , Técnicas de Silenciamiento del Gen , Transducción de Señal/fisiología , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología
8.
Physiol Res ; 73(1): 139-155, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466012

RESUMEN

Nonsteroidal anti-inflammatory drugs are the most widely used drugs for Parkinson's disease (PD), of which ibuprofen shows positive effects in suppressing symptoms; however, the associated risk needs to be addressed in different pathological stages. Initially, we developed an initial and advanced stage of the Parkinson disease mouse model by intraperitoneal injection of MPTP (20 mg/kg; 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine) for 10 and 20 days, respectively. Subsequently, ibuprofen treatment was administered for 2 months, and a pole test, rotarod test, histology, immunohistochemistry, and western blotting were performed to determine neuronal motor function. Histological analysis for 10 days after mice were injected with MPTP showed the onset of neurodegeneration and cell aggregation, indicating the initial stages of Parkinson's disease. Advanced Parkinson's disease was marked by Lewy body formation after another 10 days of MPTP injection. Neurodegeneration reverted after ibuprofen therapy in initial Parkinson's disease but not in advanced Parkinson's disease. The pole and rotarod tests confirmed that motor activity in the initial Parkinson disease with ibuprofen treatment recovered (p<0.01). However, no improvement was observed in the ibuprofen-treated mice with advanced disease mice. Interestingly, ibuprofen treatment resulted in a significant improvement (p<0.01) in NURR1 (Nuclear receptor-related 1) expression in mice with early PD, but no substantial improvement was observed in its expression in mice with advanced PD. Our findings indicate that NURR1 exerts anti-inflammatory and neuroprotective effects. Overall, NURR1 contributed to the effects of ibuprofen on PD at different pathological stages.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Parkinson/metabolismo , Ibuprofeno/farmacología , Ibuprofeno/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Antiinflamatorios no Esteroideos/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología
9.
J Cell Physiol ; 239(5): e31250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477420

RESUMEN

Parkinson's disease (PD) is the most prevalent neurodegenerative disorder. Neuroinflammation mediated by activated microglia and apoptosis of dopaminergic (DA) neurons in the midbrain are its primary pathological manifestations. Leucine-rich repeat protein kinase 2 (LRRK2) kinase has been observed to increase expression during neuroinflammation, however, the effect of LRRK2 on microglia activation remains poorly understood. In this study, we have established lipopolysaccharide (LPS) treated BV2 cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models for both in vivo and in vitro investigation. Our data in vivo reveal that LRRK2 can promote microglia activation by regulating ferroptosis and activating nuclear factor-κB. Inhibition of LRRK2 expression effectively suppressed the LPS-induced pro-inflammatory cytokines and facilitated the secretion of neuroprotective factors. Importantly, by co-overexpressing LRRK2 and glutathione peroxidase 4 (GPX4), we identified the system Xc-GSH-GPX4 pathway as a crucial component in LRRK2-mediated microglial ferroptosis and inflammatory responses. Using a microglial culture supernatant (MCS) transfer model, we found that inhibiting LRRK2 or downregulating ferroptosis in BV2 cells prevented SH-SY5Y cell apoptosis. Additionally, we observed abundant expression of LRRK2 and P-P65 in the midbrain, which was elevated in the MPTP-induced PD model, along with microglia activation. LRRK2 and P-P65 expression inhibition with PF-06447475 attenuated microglia activation in the nigrostriatal dense part of MPTP-treated mice. Based on our findings, it is evident that LRRK2 plays a critical role in promoting the neuroinflammatory response during the pathogenesis of PD by regulating the system Xc-GSH-GPX4 pathway. Taken together, our data highlights the potential research and therapeutic value of targeting LRRK2 to regulate neuroinflammatory response in PD through ferroptosis.


Asunto(s)
Ferroptosis , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Microglía , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson , Animales , Humanos , Masculino , Ratones , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Línea Celular , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Ferroptosis/efectos de los fármacos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , FN-kappa B/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Transducción de Señal , Pirimidinas/farmacología , Pirroles/farmacología
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 270-279, 2024 Feb 20.
Artículo en Chino | MEDLINE | ID: mdl-38501412

RESUMEN

OBJECTIVE: To investigate the protective effect of resveratrol on intestinal barrier in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse models and its mechanism for regulating TLR4/MyD88/NF-κB signaling to protect dopaminergic neurons. METHODS: Fifty-two C57BL/6J mice were randomized into control group (n= 12), MPTP group (n=14), MPTP + resveratrol (30 mg/kg) group (n=13), and MPTP + resveratrol (90 mg/kg) group (n=13), and mouse models were established by intraperitoneal MPTP (30 mg/kg) injection for 7 days in the latter 3 groups. Behavioral tests were conducted to evaluate the effect of resveratrol on motor symptoms of the mice. Western blotting was used to detect the expression of TH, α-syn, ZO-1, Claudin-1, TLR4, MyD88, and NF-κB in the brain tissues of the mice. Immunohistochemistry, immunofluorescence, ELISA and transmission electron microscopy were used to verify the effect of resveratrol for suppressing inflammation and protecting the intestinal barrier. RESULTS: Compared with those in the normal control group, the mice in MPTP group showed significant changes in motor function, number of dopaminergic neurons, neuroinflammation, levels of LPS and LBP, and expressions of tight junction proteins in the intestinal barrier. Resveratrol treatment significantly improved motor function of the PD mice (P < 0.01), increased the number of neurons and TH protein expression (P < 0.05), down-regulated the expressions of GFAP, Iba-1, and TLR4, lowered fecal and plasma levels of LPS and LBP (P < 0.05), restored the expression levels of ZO-1 and Claudin-1 (P < 0.01), and down-regulated the expressions of TLR4, MyD88, and NF-κB in the colon tissue (P < 0.05). The mice with resveratrol treatment at 30 mg/kg showed normal morphology of the tight junction complex with neatly and tightly arranged intestinal villi. CONCLUSION: Resveratrol repairs the intestinal barrier by inhibiting TLR4/MyD88/NF-κB signaling pathway-mediated inflammatory response, thereby improving motor function and neuropathy in mouse models of MPTP-induced PD.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Neuronas Dopaminérgicas/metabolismo , Resveratrol/farmacología , Receptor Toll-Like 4/metabolismo , FN-kappa B/metabolismo , Eje Cerebro-Intestino , Lipopolisacáridos/farmacología , Claudina-1/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Ratones Endogámicos C57BL , Transducción de Señal , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología
11.
Comput Biol Med ; 171: 108200, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38428099

RESUMEN

BACKGROUND: The COVID-19 pandemic caused by SARS-CoV-2 has led to significant global morbidity and mortality, with potential neurological consequences, such as Parkinson's disease (PD). However, the underlying mechanisms remain elusive. METHODS: To address this critical question, we conducted an in-depth transcriptome analysis of dopaminergic (DA) neurons in both COVID-19 and PD patients. We identified common pathways and differentially expressed genes (DEGs), performed enrichment analysis, constructed protein‒protein interaction networks and gene regulatory networks, and employed machine learning methods to develop disease diagnosis and progression prediction models. To further substantiate our findings, we performed validation of hub genes using a single-cell sequencing dataset encompassing DA neurons from PD patients, as well as transcriptome sequencing of DA neurons from a mouse model of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. Furthermore, a drug-protein interaction network was also created. RESULTS: We gained detailed insights into biological functions and signaling pathways, including ion transport and synaptic signaling pathways. CD38 was identified as a potential key biomarker. Disease diagnosis and progression prediction models were specifically tailored for PD. Molecular docking simulations and molecular dynamics simulations were employed to predict potential therapeutic drugs, revealing that genistein holds significant promise for exerting dual therapeutic effects on both PD and COVID-19. CONCLUSIONS: Our study provides innovative strategies for advancing PD-related research and treatment in the context of the ongoing COVID-19 pandemic by elucidating the common pathogenesis between COVID-19 and PD in DA neurons.


Asunto(s)
COVID-19 , Enfermedad de Parkinson , Animales , Ratones , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , Simulación del Acoplamiento Molecular , Pandemias , SARS-CoV-2 , Modelos Animales de Enfermedad
12.
Neuroreport ; 35(3): 175-184, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38305108

RESUMEN

Parkinson's disease (PD) is a disorder of neurodegeneration. Imperatorin is an active natural furocoumarin characterized by antioxidant, anti-inflammatory, and potent vasodilatory properties. Therefore, we aimed to investigate the biological functions of imperatorin and its mechanisms against PD progression. C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 30 mg/kg) daily for 5 consecutive days to mimic PD conditions in vivo. The MPTP-induced PD model mice were intraperitoneally injected with imperatorin (5 mg/kg) for 25 consecutive days after MPTP administration. The motor and cognitive functions of mice were examined by rotarod test, hanging test, narrow beam test and Morris water maze test. After analysis of MWM test, the expression levels of tyrosine hydroxylase and Iba-1 in the substantia nigra pars compacta were measured by immunohistochemistry staining, immunofluorescence staining and western blotting. The expression levels of striatal dopamine and its metabolite 3,4-dihydroxyphenylacetic acid were also measured. The protein levels of inducible nitric-oxide synthase, cyclooxygenase-2, phosphorylated phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (Akt) in the mouse striatum were estimated by western blotting. The expression levels of proinflammatory cytokines including tumor necrosis factor, interleukin (IL)-1ß and IL-6 in the mouse striatum were measured by ELISA kits. The expression levels of superoxide dismutase, malondialdehyde and glutathione in the mouse midbrains were measured with commercially available kits. TUNEL staining was performed to identify the apoptosis of midbrain cells. Histopathologic changes in the mouse striata were assessed by hematoxylin-eosin staining. Imperatorin treatment markedly improved spatial learning and memory abilities of MPTP-induced PD mice. The MPTP-induced dopaminergic neuron loss in the mouse striata was inhibited by imperatorin. Imperatorin also suppressed neuroinflammation and neuronal oxidative stress in the midbrains of MPTP-induced PD mice. Mechanistically, imperatorin treatment inhibited the MPTP-induced reduction in the PI3K/Akt pathway. Imperatorin treatment can prevent dopaminergic neuron degeneration and improve cognitive functions via its potent antioxidant and anti-inflammatory properties in an MPTP-induced PD model in mice by regulating the PI3K/Akt pathway.


Asunto(s)
Furocumarinas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Enfermedades Neuroinflamatorias , Antioxidantes/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Ratones Endogámicos C57BL , Transducción de Señal , Furocumarinas/farmacología , Furocumarinas/uso terapéutico , Dopamina/metabolismo , Antiinflamatorios/farmacología , Estrés Oxidativo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
13.
Neurochem Int ; 174: 105691, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311217

RESUMEN

Human gut microbiota are thought to affect different physiological processes in the body, including brain functions. Gut dysbiosis has been linked to the progression of Parkinson's disease (PD) and thus, restoring the healthy gut microbiota with supplementation of putative probiotic strains can confer some benefits in PD. In the current study, we explored the neuroprotective potential of Bifidobacterium breve Bif11 supplementation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated female Sprague Dawley rats. This study investigated the behavioural, molecular and biochemical parameters in the MPTP rat model. A pharmacological intervention of Bif11 at doses of 1 × 1010 CFU and 2 × 1010 CFU for 21 days was found to attenuate the cognitive and motor changes in the MPTP rat model. Furthermore, it also increased the tyrosine hydroxylase levels, reduced pro-inflammatory markers and decreased oxidative and nitrosative stress in the mid brain of MPTP-lesioned rats. Bif11 supplementation even restored the levels of short-chain fatty acids and decreased intestinal epithelial permeability in MPTP-induced PD model rats. In summary, these findings demonstrate that B. breve Bif11 has the potential to ameliorate symptoms of PD. However, this therapy needs to be further investigated with in-depth mechanistic insights in the future for the treatment of PD.


Asunto(s)
Bifidobacterium breve , Fármacos Neuroprotectores , Enfermedad de Parkinson , Probióticos , Ratas , Femenino , Humanos , Animales , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Estrés Oxidativo , Probióticos/farmacología , Probióticos/uso terapéutico , Suplementos Dietéticos , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
14.
Folia Neuropathol ; 62(1): 76-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38174675

RESUMEN

This study investigated the protective effect of vanillin against Parkinson's disease (PD). 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 30 mg/kg) was administered s.c. for 6 consecutive days to induce PD and mice were treated with vanillin (100 and 200 mg/kg, p.o.) for 15 days. Cognitive, motor and non-motor functions were assessed to evaluate the effect of vanillin in PD mice. Levels of dopamine and glutamate and activity of monoamine oxidaseB (MAO-B) were estimated in vanillin-treated PD mice. The effect of vanillin on the level of lipid peroxidation and superoxide dismutase in brain tissue of PD mice was estimated. Data of the study revealed that vanillin reversed the altered cognitive, motor and non-motor function in PD mice. Activity of MAO-B and neurochemical level were attenuated with vanillin in PD mice. Inflammatory cytokines, nuclear factor kappa B (NF-kB) and Toll-like receptor 4 (TLR-4) levels were lower in the vanillin-treated group compared to the PD group of mice. Data of the study suggest that vanillin protects against neuronal injury and recovers the altered behaviour in PD mice by regulating neurochemical balance and the TLR-4/NF-kB pathway.


Asunto(s)
Benzaldehídos , Estrés Oxidativo , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/efectos de los fármacos , Benzaldehídos/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratones , Masculino , Inflamación/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico
15.
Neuroscience ; 540: 38-47, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38242280

RESUMEN

Secretory clusterin (sCLU) plays an important role in the research progress of nervous system diseases. However, the physiological function of sCLU in Parkinson's disease (PD) are unclear. The purpose of this study was to examine the effects of sCLU-mediated autophagy on cell survival and apoptosis inhibition in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We found that MPTP administration induced prolonged pole-climbing time, shortened traction time and rotarod time, significantly decreased TH protein expression in the SN tissue of mice. In contrast, sCLU -treated mice took less time to climb the pole and had an extended traction time and rotating rod time. Meanwhile, sCLU intervention induced increased expression of the TH protein in the SN of mice. These results indicated that sCLU intervention could reduce the loss of dopamine neurons in the SN area and alleviate dyskinesia in mice. Furthermore, MPTP led to suppressed viability, enhanced apoptosis, an increased Bax/Bcl-2 ratio, and cleaved caspase-3 in the SN of mice, and these effects were abrogated by sCLU intervention. In addition, MPTP increased the levels of P62 protein, decreased Beclin1 protein, decreased the ratio of LC3B-II/LC3B-I, and decreased the numbers of autophagosomes and autophagolysosomes in the SN tissues of mice. These effects were also abrogated by sCLU intervention. Activation of PI3K/AKT/mTOR signaling with MPTP inhibited autophagy in the SN of MPTP mice; however, sCLU treatment activated autophagy in MPTP-induced PD mice by inhibiting PI3K/AKT/mTOR signaling. These data indicated that sCLU treatment had a neuroprotective effect in an MPTP-induced model of PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Ratones , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Apoptosis , Autofagia , Clusterina/metabolismo , Clusterina/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Enfermedad de Parkinson/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
16.
Biomed Pharmacother ; 170: 115972, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056239

RESUMEN

Artemisinin is an antimalarial drug that has been used for almost half a century. However, the anti-Parkinson's disease (PD) effects of artemisinin with respect to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced oxidative stress have not yet been investigated while focusing on NF-E2-related factor 2 (Nrf2) signaling. Thus, we sought to assess the behavioral and oxidative mechanistic effects of artemisinin on MPTP-induced toxicity via the Nrf2 signaling pathway. We explored this through immunohistochemical assays, ELISA, in differentiated PC12 cells treated with siRNA, and with a PD mouse model. Artemisinin increased Nrf2 DNA-binding activity and HO-1 and NQO1 expression. Artemisinin treatment protected cells against MPP+ -induced neuronal death signaling, including NADH dehydrogenase activity, reactive oxygen species, mitochondrial membrane potential, and cleaved caspase-3. Moreover, it protected cells against MPTP-induced behavioral impairments and significantly reduced dopaminergic neuronal loss. Additionally, Nrf2 pre-inhibition using ML385 neutralized the inhibitory effects of artemisinin on dopaminergic neuronal damage and behavioral impairments induced by MPTP. Our results suggest that artemisinin inhibits MPTP-induced behavioral and neurotoxic effects in mice. This provides a foundation for further research to evaluate artemisinin as a potential therapeutic agent for PD.


Asunto(s)
Artemisininas , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Enfermedad de Parkinson , Ratas , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , Neuronas Dopaminérgicas , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Artemisininas/farmacología , Artemisininas/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
17.
Eur J Pharmacol ; 962: 176234, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38043777

RESUMEN

The study was performed to evaluate the neuroprotective effects of Benfotiamine (BFT) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) in rats. The rats were given daily doses of BFT (100 mg/kg, 200 mg/kg) through oral administration for 42 days. The rats were given a single bilateral dosage of MPTP (0.1 mg/nostril) intranasally once before the drug treatment to induce PD. On day 42, the animals were subjected to various behavioral paradigms. Post-treatment with BFT for 42 days significantly improved the motor and nonmotor fluctuations of MPTP. The results demonstrated that treatment with BFT ameliorated MPTP-induced disorders in behavior, body balance, and dopamine levels in the mid-brain. Among the post-treated groups, a high dose of BFT was the most effective treatment. Mean values are indicated in ±SEM, n = 5***(p < 0.001) when compared with the vehicle control, n = 5 ### (p < 0.001) when compared with the disease control; (p < 0.001) when compared with the BFT per se; (p < 0.001) when compared with the low dose of BFT; (p < 0.001) when compared with the high dose of BFT. Our finding suggests that BFT contributed to superior antioxidant, and anti-inflammatory and could be a novel therapeutic method for PD management. In conclusion, BFT could be a potential drug candidate for curbing and preventing PD.


Asunto(s)
Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Animales , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Administración Oral , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Intoxicación por MPTP/tratamiento farmacológico
18.
Exp Neurol ; 373: 114642, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38056584

RESUMEN

Parkinson's disease (PD) is a prevalent neurodegenerative disorder characteristized by the presence of dyskinesia and the progressive loss of dopaminergic neurons. Although certain drugs can mitigate the symptoms of PD, they are unable to delay the disease progression, and their prolonged use may result in complications. Therefore, there exists an urgent necessity to identify potential agents that can effectively delay PD progression with fewer side effects. Recent research has unveiled that several traditional Chinese medicines (TCM) exhibit neuroprotective properties in various models pertinent to PD. Forsythoside A (FSA), the primary bioactive compound derived from TCM Lianqiao, has undergone extensive research in animal models of Alzheimer's disease and cerebral ischemia. However, the investigation into the impact of FSA on PD is limited in existing research. In this study, we aimed to evaluate the neuroprotective effects of FSA on MPTP-induced PD mouse model. FSA demonstrated significant improvements in the behavioral and neuropathological changes triggered by MPTP in mice. Furthermore, it exerted a suppressive effect on the activations of astrocyte and microglia. Meanwhile, Tandem mass tag (TMT)-based quantitative proteomics of striatal tissue and bioinformatics analysis were performed to elucidate the underlying mechanisms of FSA on PD mouse model. Proteomics demonstrated a total of 68 differentially expressed proteins (DEPs) were identified between HFSA and MPTP groups including 26 upregulated and 42 downregulated. Systematic bioinformatics analysis of the 68 DEPs illustrated that they were predominantly related to estrogen signaling pathway and calcium signaling pathway. The related DEPs (PLCß4, Grm2, HPAC and Cox4i1) expression levels were verified by Western blot. FSA effectively restored the altered expression of the four DEPs induced by MPTP. Summarily, FSA exerted remarkable neuroprotective effects in MPTP-induced mice. Further, our research may provide proteomics insights that contribute to the further exploration of FSA as a potential treatment for PD.


Asunto(s)
Medicamentos Herbarios Chinos , Forsythia , Glicósidos , Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Parkinson/metabolismo , Intoxicación por MPTP/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Proteómica , Neuronas Dopaminérgicas/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología
19.
Zool Res ; 45(1): 108-124, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38114437

RESUMEN

Parkinson's disease (PD) is a neurodegenerative condition that results in dyskinesia, with oxidative stress playing a pivotal role in its progression. Antioxidant peptides may thus present therapeutic potential for PD. In this study, a novel cathelicidin peptide (Cath-KP; GCSGRFCNLFNNRRPGRLTLIHRPGGDKRTSTGLIYV) was identified from the skin of the Asiatic painted frog ( Kaloula pulchra). Structural analysis using circular dichroism and homology modeling revealed a unique αßß conformation for Cath-KP. In vitro experiments, including free radical scavenging and ferric-reducing antioxidant analyses, confirmed its antioxidant properties. Using the 1-methyl-4-phenylpyridinium ion (MPP +)-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, Cath-KP was found to penetrate cells and reach deep brain tissues, resulting in improved MPP +-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1 (Sirt1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation. Both focal adhesion kinase (FAK) and p38 were also identified as regulatory elements. In the MPTP-induced PD mice, Cath-KP administration increased the number of tyrosine hydroxylase (TH)-positive neurons, restored TH content, and ameliorated dyskinesia. To the best of our knowledge, this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress. These findings expand the known functions of cathelicidins, and hold promise for the development of therapeutic agents for PD.


Asunto(s)
Discinesias , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Ratones , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , 1-Metil-4-fenilpiridinio/farmacología , 1-Metil-4-fenilpiridinio/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/metabolismo , Catelicidinas/metabolismo , Discinesias/tratamiento farmacológico , Discinesias/veterinaria , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Enfermedad de Parkinson/veterinaria
20.
Brain Res Bull ; 206: 110860, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38143008

RESUMEN

Forkhead box A1 (FOXA1), a member of the forkhead family of transcription factors, plays a crucial role in the development of various organ systems and exhibits neuroprotective properties. This study aims to investigate the effect of FOXA1 on Parkinson's disease (PD) and unravel the underlying mechanism. Transcriptome analysis of PD was conducted using three GEO datasets to identify aberrantly expressed genes. A mouse model of PD was generated by injecting neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), resulting in reduced FOXA1 expression. FOXA1 decline was also observed in 1-methyl-4-phenylpyridinium-treated SH-SY5Y cells. Artificial upregulation of FOXA1 improved motor abilities of mice according to rotarod and pole tests, and it mitigated tissue damage, cell loss, and neuronal damage in the mouse substantia nigra or in vitro. FOXA1 was found to bind to the neurofibromin 1 (NF1) promoter, thereby inducing its transcription and inactivating the mitogen-activated protein kinase (MAPK) signaling pathway. Further experimentation revealed that silencing NF1 in mice or SH-SY5Y cells counteracted the neuroprotective effects of FOXA1. In conclusion, this research suggests that FOXA1 activates NF1 transcription and inactivates the MAPK signaling pathway, ultimately ameliorating neuronal damage and motor disability in PD. The findings may offer novel ideas in the field of PD management.


Asunto(s)
Personas con Discapacidad , Trastornos Motores , Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Humanos , Ratones , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/farmacología , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Trastornos Motores/tratamiento farmacológico , Neuroblastoma/metabolismo , Neurofibromina 1/metabolismo , Neurofibromina 1/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/metabolismo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA