RESUMEN
Halomonas elongata OUT30018 is a moderately halophilic bacterium that synthesizes and accumulates ectoine as an osmolyte by activities of the enzymes encoded by the high salinity-inducible ectABC operon. Previously, we engineered a γ-aminobutyric acid (GABA)-producing H. elongata GOP-Gad (ΔectABC::mCherry-HopGadmut) from an ectoine-deficient mutant of this strain due to its ability to use high-salinity biomass waste as substrate. Here, to further increase GABA accumulation, we deleted gabT, which encodes GABA aminotransferase (GABA-AT) that catalyzes the first step of the GABA catabolic pathway, from the H. elongata GOP-Gad genome. The resulting strain H. elongata ZN3 (ΔectABC::mCherry-HopGadmut ΔgabT) accumulated 291 µmol/g cell dry weight (CDW) of GABA in the cells, which is a 1.5-fold increase from H. elongata GOP-Gad's 190 µmol/g CDW. This result has confirmed the role of GABA-AT in the GABA catabolic pathway. However, redundancy in endogenous GABA-AT activity was detected in a growth test, where a gabT-deletion mutant of H. elongata OUT30018 was cultured in a medium containing GABA as the sole carbon and nitrogen sources. Because L-2,4-diaminobutyric acid aminotransferase (DABA-AT), encoded by an ectB gene of the ectABC operon, shares sequence similarity with GABA-AT, a complementation analysis of the gabT and the ectB genes was performed in the H. elongata ZN3 genetic background to test the involvement of DABA-AT in the redundancy of GABA-AT activity. Our results indicate that the expression of DABA-AT can restore GABA-AT activity in H. elongata ZN3 and establish DABA-AT's aminotransferase activity toward GABA in vivo. IMPORTANCE: In this study, we were able to increase the yield of GABA by 1.5 times in the GABA-producing H. elongata ZN3 strain by deleting the gabT gene, which encodes GABA-AT, the initial enzyme of the GABA catabolic pathway. We also report the first in vivo evidence for GABA aminotransferase activity of an ectB-encoded DABA-AT, confirming a longstanding speculation based on the reported in vitro GABA-AT activity of DABA-AT. According to our findings, the DABA-AT enzyme can catalyze the initial step of GABA catabolism, in addition to its known function in ectoine biosynthesis. This creates a cycle that promotes adequate substrate flow between the two pathways, particularly during the early stages of high-salinity stress response when the expression of the ectB gene is upregulated.
Asunto(s)
Proteínas Bacterianas , Halomonas , Transaminasas , Ácido gamma-Aminobutírico , Ácido gamma-Aminobutírico/metabolismo , Halomonas/genética , Halomonas/metabolismo , Halomonas/enzimología , Transaminasas/genética , Transaminasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Eliminación de Gen , 4-Aminobutirato Transaminasa/genética , 4-Aminobutirato Transaminasa/metabolismo , Ingeniería Metabólica , OperónRESUMEN
Although saline-alkali stress can improve tomato quality, the detailed molecular processes that balance stress tolerance and quality are not well-understood. Our research links nitric oxide (NO) and γ-aminobutyric acid (GABA) with the control of root malate exudation and fruit malate storage, mediated by aluminium-activated malate transporter 9/14 (SlALMT9/14). By modifying a specific S-nitrosylated site on pyruvate-dependent GABA transaminase 1 (SlGABA-TP1), we have found a way to enhance both plant's saline-alkali tolerance and fruit quality. Under saline-alkali stress, NO levels vary in tomato roots and fruits. High NO in roots leads to S-nitrosylation of SlGABA-TP1/2/3 at Cys316/258/316, reducing their activity and increasing GABA. This GABA then reduces malate exudation from roots and affects saline-alkali tolerance by interacting with SlALMT14. In fruits, a moderate NO level boosts SlGABA-TP1 expression and GABA breakdown, easing GABA's block on SlALMT9 and increasing malate storage. Mutants of SlGABA-TP1C316S that do not undergo S-nitrosylation maintain high activity, supporting malate movement in both roots and fruits under stress. This study suggests targeting SlGABA-TP1Cys316 in tomato breeding could significantly improve plant's saline-alkali tolerance and fruit quality, offering a promising strategy for agricultural development.
Asunto(s)
Álcalis , Frutas , Malatos , Óxido Nítrico , Raíces de Plantas , Solanum lycopersicum , Ácido gamma-Aminobutírico , Solanum lycopersicum/genética , Solanum lycopersicum/efectos de los fármacos , Malatos/metabolismo , Óxido Nítrico/metabolismo , Álcalis/farmacología , Ácido gamma-Aminobutírico/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Frutas/genética , Frutas/efectos de los fármacos , 4-Aminobutirato Transaminasa/metabolismo , 4-Aminobutirato Transaminasa/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacosRESUMEN
The effect of calcium chloride (CaCl2) treatment on γ-aminobutyric acid (GABA) accumulation in fresh-cut cantaloupe and the involved mechanisms were investigated. The result showed that 1% (w/v) CaCl2 treatment increased GABA content and activities of glutamate decarboxylase (GAD) and succinate semialdehyde dehydrogenase (SSADH), while decreased glutamate (Glu) content and GABA transaminase (GABA-T) activities in fresh-cut cantaloupe. CmCML11 and CmCAMTA5 expressions of CaCl2-treated fruit increased by 187.4% and 165.6% than control fruit in the initial 6 h. Besides, expressions of GABA shunt genes, including CmGAD1, CmGAD2, CmGABA-T and CmSSADH were also up-regulated by CaCl2 treatment during early storage. Moreover, acting as a transcriptional activator, CmCAMTA5 could bind to the CG-box in promoters of CmGAD1, CmGABA-T and CmSSADH and activate their transcription. Furthermore, the interaction between CmCML11 and CmCAMTA5 could enhance the transcriptional activation on GABA shunt genes which were regulated by CmCAMTA5. Collectively, our findings revealed that CaCl2 treatment promoted GABA accumulation in fresh-cut cantaloupe via the combined effect of CmCML11 and CmCAMTA5 in the regulation of expressions of CmGAD1, CmGABA-T, and CmSSADH in GABA shunt.
Asunto(s)
Cucumis melo , Cucumis melo/genética , Cucumis melo/metabolismo , Cloruro de Calcio , 4-Aminobutirato Transaminasa/genética , 4-Aminobutirato Transaminasa/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácido GlutámicoRESUMEN
Background: MicroRNA-421 (miR-421) has been implicated in hepatocellular carcinoma (HCC), but its potential mechanism in HCC remains unclear. Objectives: The study aimed to study the potential mechanism of miR-421 in HCC which is necessary. Methods: The downstream target genes of miR-421 were screened in HCC tissues and cells using miDIP, Targetscan, and starBase databases. Differential analysis, survival analysis, and Pearson correlation analysis were performed between miR-421 and its downstream target genes. Quantitative reverse transcription polymerase chain reaction and western blot were used to assay RNA and protein levels of 4-aminobutyrate aminotransferase (ABAT) and epithelial-mesenchymal transition (EMT)-related proteins. Cell-based assays, including CCK-8, wound healing, transwell, flow cytometry, and metabolic measurements, were implemented to assess proliferation, migration, invasion, cell cycle, and apoptosis of HCC cells with different treatments. Dual-luciferase assay was utilized to detect the targeting relationship between miR-421 and ABAT. Results: miR-421 level was elevated in HCC tissues and cells, and low miR-421 expression hindered phenotype progression of HCC cells. ABAT was identified as a direct target of miR-421 in HCC cells, and miR-421 could inhibit ABAT expression. Rescue assay revealed that miR-421 promoted HCC cell tumorigenesis progress and affected cell metabolic remodeling through down-regulating ABAT. Conclusion: The miR-421/ABAT regulatory axis promoted HCC cell tumorigenesis progress, highlighting its potential as a therapeutic target for HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , 4-Aminobutirato Transaminasa/genética , 4-Aminobutirato Transaminasa/metabolismo , 4-Aminobutirato Transaminasa/uso terapéutico , MicroARNs/genética , MicroARNs/metabolismo , MicroARNs/uso terapéutico , Línea Celular Tumoral , Carcinogénesis/genética , Regulación Neoplásica de la Expresión GénicaRESUMEN
Gamma-aminobutyric acid (GABA) transaminase-also called GABA aminotransferase (GABA-AT)-deficiency is a rare autosomal recessive disorder characterized by a severe neonatal-infantile epileptic encephalopathy with symptoms such as seizures, hypotonia, hyperreflexia, developmental delay, and growth acceleration. GABA transaminase deficiency is caused by mutations in GABA-AT, the enzyme responsible for the catabolism of GABA. Mutations in multiple locations on GABA-AT have been reported and their locations have been shown to influence the onset of the disease and the severity of symptoms. We examined how GABA-AT mutations influence the structural stability of the enzyme and GABA-binding affinity using computational methodologies such as molecular dynamics simulation and binding free energy calculation to understand the underlying mechanism through which GABA-AT mutations cause GABA-AT deficiency. GABA-AT 3D model depiction was carried out together with seven individual mutated models of GABA-AT. The structural stability of all the predicted models was analyzed using several tools and web servers. All models were evaluated based on their phytochemical values. Additionally, 100 ns MD simulation was carried out and the mutated models were evaluated using RMSD, RMSF, Rg, and SASA. gmxMMPBSA free energy calculation was carried out. Moreover, RMSD and free energy calculations were also compared with those obtained using online web servers. Our study demonstrates that P152S, Q296H, and R92Q play a more critical role in the structural instability of GABA-AT compared with the other mutated models: G465R, L211F, L478P, and R220K.
Asunto(s)
4-Aminobutirato Transaminasa , Transaminasas , 4-Aminobutirato Transaminasa/genética , Transaminasas/genética , Transaminasas/metabolismo , Mutación , Simulación de Dinámica Molecular , Ácido gamma-Aminobutírico/genéticaRESUMEN
MicroRNAs (miRNAs) are small, single-stranded, noncoding RNAs of approximately 21 to 23 nucleotides in length. Owing to their regulation of gene expression and many physiological processes including fat metabolism, they have become a popular research topic in recent years; however, the exact functional mechanisms by which they regulate fat metabolism have not been fully elucidated. Here, we identified miR-15a, which specifically acquired the 3' untranslated region (UTR) containing 4-aminobutyrate aminotransferase (ABAT), and validated the regulation of its expression and involvement in adipogenesis mechanisms. We used a dual-luciferase reporter assay and transfection-mediated miR-15a overexpression and inhibition in Yanbian yellow cattle preadipocytes to investigate the role of miR-15a in adipogenesis. The results showed that miR-15a directly targets the 3'UTR of ABAT and downregulates its expression. Additionally, at the protein and mRNA levels, miR-15a overexpression using a miRNA mimic inhibited triglyceride accumulation and downregulated lipogenic peroxisome proliferator-activated receptor γ and CCAAT enhancer-binding protein α, whereas miR-15a inhibition had the opposite effect. The above results indicated that miR-15a regulated the differentiation of Yanbian yellow cattle preadipocytes by inhibiting the expression of ABAT. Furthermore, our findings suggested that miR-15a and its target gene(s) might represent new targets for investigating intramuscular fat deposits in cattle and treating human obesity.
Asunto(s)
4-Aminobutirato Transaminasa , MicroARNs , Humanos , Bovinos/genética , Animales , 4-Aminobutirato Transaminasa/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Transfección , Adipogénesis/genéticaRESUMEN
Gamma-aminobutyric acid (GABA) is a nonproteinogenic amino acid that plays vital roles in plant growth and developmental processes. However, its role in regulating potato sprouting is unknown. Therefore, the physiological and molecular mechanisms underlying the sprouting process were assessed, and we found that GABA promoted sprouting after treatment for 50 d. In addition, the GABA and soluble sugar contents increased while the starch content decreased. To study the molecular mechanism by which exogenous GABA accelerates tuber sprouting, comparative proteomic analysis of tuber bud eyes was performed after GABA treatment for 48 h. Further analysis revealed 316 differentially abundant proteins (DAPs) that are mainly involved in fatty acid and sugar metabolism and cutin, suberin and wax biosyntheses. The qRTâPCR results suggested that the GABA transaminase 2 (GABA-T2) and GABA-T3 expression levels showed the greatest decrease at 30 d of storage. Peroxidase 42 (StPOD42) expression showed the greatest increase at 30 d. Overexpression of StPOD42 in potato was found to promote tuber sprouting. Our results provide new insights into the role of GABA in regulating the sprouting process and indicate that StPOD42 is a target gene for molecular breeding to modulate potato sprouting.
Asunto(s)
Solanum tuberosum , 4-Aminobutirato Transaminasa/genética , 4-Aminobutirato Transaminasa/metabolismo , Aminoácidos/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Peroxidasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/metabolismo , Proteómica , Solanum tuberosum/metabolismo , Almidón/metabolismo , Azúcares/metabolismo , Ácido gamma-AminobutíricoRESUMEN
Epilepsy is a paroxysmal brain disorder that results from an imbalance between neuronal excitation and inhibition. Gamma-aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the brain and plays an important role in the occurrence and development of epilepsy. Abnormalities in all aspects of GABA metabolism, including GABA synthesis, transport, genes encoding GABA receptors, and GABA inactivation, may lead to epilepsy. GABRA1, GABRA2, GABRA5, GABRB1, GABRB2, GABRB3, GABRG2 and GABBR2 are genes that encode GABA receptors and are commonly associated with epilepsy. Mutations of these genes lead to a variety of epilepsy syndromes with different clinical phenotypes, primarily by down regulating receptor expression and reducing the amplitude of GABA-evoked potentials. GABA is metabolized by GABA transaminase and succinate semi aldehyde dehydrogenase, which are encoded by the ABAT and ALDH5A1 genes, respectively. Mutations of these genes result in symptoms related to deficiency of GABA transaminase and succinate semi aldehyde dehydrogenase, such as epilepsy and cognitive impairment. Most of the variation in genes associated with GABA metabolism are accompanied by developmental disorders. This review focuses on advances in understanding the relationship between genetic variation in GABA metabolism and epilepsy to establish a basis for the accurate diagnosis and treatment of epilepsy.
Asunto(s)
Epilepsia , Receptores de GABA-A , 4-Aminobutirato Transaminasa/genética , 4-Aminobutirato Transaminasa/metabolismo , Aldehído Deshidrogenasa/genética , Epilepsia/diagnóstico , Epilepsia/genética , Humanos , Mutación/genética , Receptores de GABA/metabolismo , Receptores de GABA-A/genética , Succinatos , Ácido gamma-AminobutíricoRESUMEN
Lipid overload contributes to cardiac complications of diabetes and obesity. However, the underlying mechanisms remain obscure. This study investigates the role of gamma-aminobutyrate transaminase (ABAT), the key enzyme involved in the catabolism of γ-aminobutyric acid (GABA), in lipid overload-induced cardiac injury. Microarray revealed a down-regulation of ABAT mRNA expression in high fat diet (HFD)-fed mouse hearts, which correlated with a reduction in ABAT protein level and its GABA catabolic activity. Transgenic mice with cardiomyocyte-specific ABAT over-expression (Tg-ABAT/tTA) were generated to determine the role of ABAT in lipid overload-induced cardiac injury. Feeding with a HFD to control mice for 4 months reduced ATP production and the mitochondrial DNA copy number, and induced myocardial oxidative stress, hypertrophy, fibrosis and dysfunction. Such pathological effects of HFD were mitigated by ABAT over-expression in Tg-ABAT/tTA mice. In cultured cardiomyocytes, palmitate increased mitochondrial ROS production, depleted ATP production and promoted apoptosis, all of which were attenuated by ABAT over-expression. With the inhibition of ABAT's GABA catabolic activity, the protective effects of ABAT remained unchanged in palmitate-induced cardiomyocytes. Thus, ABAT protects the mitochondrial function in defending the heart against lipid overload-induced injury through mechanisms independent of its GABA catabolic activity, and may represent a new therapeutic target for lipid overload-induced cardiac injury.
Asunto(s)
4-Aminobutirato Transaminasa , Lesiones Cardíacas , 4-Aminobutirato Transaminasa/genética , 4-Aminobutirato Transaminasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Lesiones Cardíacas/etiología , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Palmitatos/metabolismo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites found in members of the Solanaceae, such as Solanum tuberosum (potato) and Solanum lycopersicum (tomato). The major potato SGAs are α-solanine and α-chaconine, which are biosynthesized from cholesterol. Previously, we have characterized two cytochrome P450 monooxygenases and a 2-oxoglutarate-dependent dioxygenase that function in hydroxylation at the C-22, C-26 and C-16α positions, but the aminotransferase responsible for the introduction of a nitrogen moiety into the steroidal skeleton remains uncharacterized. Here, we show that PGA4 encoding a putative γ-aminobutyrate aminotransferase is involved in SGA biosynthesis in potatoes. The PGA4 transcript was expressed at high levels in tuber sprouts, in which SGAs are abundant. Silencing the PGA4 gene decreased potato SGA levels and instead caused the accumulation of furostanol saponins. Analysis of the tomato PGA4 ortholog, GAME12, essentially provided the same results. Recombinant PGA4 protein exhibited catalysis of transamination at the C-26 position of 22-hydroxy-26-oxocholesterol using γ-aminobutyric acid as an amino donor. Solanum stipuloideum (PI 498120), a tuber-bearing wild potato species lacking SGA, was found to have a defective PGA4 gene expressing the truncated transcripts, and transformation of PI 498120 with functional PGA4 resulted in the complementation of SGA production. These findings indicate that PGA4 is a key enzyme for transamination in SGA biosynthesis. The disruption of PGA4 function by genome editing will be a viable approach for accumulating valuable steroidal saponins in SGA-free potatoes.
Asunto(s)
4-Aminobutirato Transaminasa/metabolismo , Solanina/análogos & derivados , Solanum tuberosum/genética , 4-Aminobutirato Transaminasa/genética , Edición Génica , Hidroxilación , Cetocolesteroles/biosíntesis , Cetocolesteroles/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/enzimología , Tubérculos de la Planta/genética , Tubérculos de la Planta/fisiología , Saponinas/biosíntesis , Saponinas/química , Solanina/química , Solanina/metabolismo , Solanum tuberosum/enzimología , Solanum tuberosum/fisiologíaRESUMEN
Accumulating evidence demonstrated that GABAergic dysfunction contributes to the pathogenesis of Alzheimer's disease (AD). The GABA aminotransferase (ABAT) gene encodes a mitochondrial GABA transaminase and plays key roles in the biogenesis and metabolism of gamma-aminobutyric acid (GABA), which is a major inhibitory neurotransmitter. In this study, we performed an integrative study at the genetic and expression levels to investigate the potential genetic association between the ABAT gene and AD. Through re-analyzing data from the currently largest meta-analysis of AD genome-wide association study (GWAS), we identified genetic variants in the 3'-UTR of ABAT as the top AD-associated SNPs (P < 1 × 10-4) in this gene. Functional annotation of these AD-associated SNPs indicated that these SNPs are located in the regulatory regions of transcription factors or/and microRNAs. Expression quantitative trait loci (eQTL) analysis and luciferase reporter assay showed that the AD risk alleles of these SNPs were associated with a reduced expression level of ABAT. Further analysis of mRNA expression data and single-cell transcriptome data of AD patients showed that ABAT reduction in the neuron is an early event during AD development. Overall, our results indicated that ABAT genetic variants may be associated with AD through affecting its mRNA expression. An abnormal level of ABAT will lead to a disturbance of the GABAergic signal pathway in AD brains.
Asunto(s)
4-Aminobutirato Transaminasa/genética , Enfermedad de Alzheimer/genética , 4-Aminobutirato Transaminasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter CuantitativoRESUMEN
The objective of this study was to investigate the effects of difloxacin (DIF) and avermectin (AVM) on glutamate decarboxylase (GAD) and GABA-transaminase (GABA-T) in different tissues of crucian carp (Carassius auratus gibelio). After the treatments of DIF and AVM, the mRNA expressions of GAD and GABA-T in different tissues were detected by quantitative real-time PCR (qPCR). The results showed that the mRNA expressions of GAD65, GAD67, and GABA-T in the telencephalon (Tel), mesencephalon (Mes), cerebella (Cer), and medulla oblongata (Med) were downregulated significantly with the safe dose (SD, 20 mg/kg) of DIF (P < 0.05 or P < 0.01). While the expressions of GAD65 and GAD67 in the kidney at 12 h had strikingly upregulated to 13.81 ± 1.06** and 150.67 ± 12.85** times. Treated with the lethal dose of 50% (LD50, 2840 mg/kg b. W.) of DIF, the mRNA expressions of GAD65, GAD67, and GABA-T in all tissues were increased significantly (P < 0.01). The results of AVM group showed that the mRNA expressions of GAD65, GAD67, and GABA-T both in the central and peripheral tissues were all remarkably downregulated at the safe concentration (SC, 0.0039 mg/L) and the lethal concentration of 50% (LC50, 0.039 mg/L), except for the mRNA inhibitions of GAD65, GAD67, and GABA-T in the muscle at 2 h which sharply downregulated to 0.20 ± 0.02ΔΔ × 10-2, 0.57 ± 0.06ΔΔ × 10-1 and 0.44 ± 0.02ΔΔ × 10-1, respectively (P < 0.01).
Asunto(s)
4-Aminobutirato Transaminasa/genética , Antibacterianos/farmacología , Antiprotozoarios/farmacología , Carpas/genética , Ciprofloxacina/análogos & derivados , Glutamato Descarboxilasa/genética , Ivermectina/análogos & derivados , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ciprofloxacina/farmacología , Explotaciones Pesqueras , Ivermectina/farmacología , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Músculos/efectos de los fármacos , Músculos/metabolismo , ARN Mensajero/metabolismoRESUMEN
The GABA shunt is one of the metabolic pathways that is ubiquitous in prokaryotes and eukaryotes. γ-aminobutyric acid (GABA) in fungi is required in the stress responses, virulence and development. The number of genes encoding glutamate decarboxylase (gad), GABA transaminase (gta) and succinic semialdehyde dehydrogenase (ssadh) varies between fungal species. The genome-wide analysis in Neurospora crassa resulted in the identification of a gta and a ssadh. Disruption of either gta or ssadh decreased respiration rate and biomass accumulation, reduced growth on GABA and beta-alanine. The gta and ssadh mutants exhibited aberrant hyphal morphology and displayed differential transcription of the GABA shunt genes. In the gta mutant, protoperithecia and perithecia formation was almost completely suppressed in the presence of GABA and beta-alanine, indicating GTA requirement for the turnover of these amino acids. The strains displayed differential metabolic dysregulations in response to different nitrogen sources. The phenotypic differences between the gta and ssadh mutants could be contributed to accumulation of intermediates of the GABA shunt and/or GABA shunt-independent functions. Together, our data suggest that the GABA shunt could function as a moderate modulator of multiple biological events, including respiration, energy metabolism, carbon and nitrogen metabolism, growth, as well as sexual development in N. crassa.
Asunto(s)
4-Aminobutirato Transaminasa/genética , Proteínas Fúngicas/genética , Neurospora crassa/enzimología , Succionato-Semialdehído Deshidrogenasa/genética , Ácido gamma-Aminobutírico/metabolismo , Aminoácidos/metabolismo , Metabolismo EnergéticoRESUMEN
Bacillus subtilis is able to use γ-aminobutyric acid (GABA) found in the soil as carbon and nitrogen source, through the action of GABA aminotransferase (GabT) and succinic semialdehyde dehydrogenase (GabD). GABA acts as molecular effector in the transcriptional activation of the gabTD operon by GabR. GabR is the most studied member of the MocR family of prokaryotic pyridoxal 5'-phosphate (PLP)-dependent transcriptional regulators, yet crucial aspects of its mechanism of action are unknown. GabR binds to the gabTD promoter, but transcription is activated only when GABA is present. Here, we demonstrated, in contrast with what had been previously proposed, that three repeated nucleotide sequences in the promoter region, two direct repeats and one inverted repeat, are specifically recognized by GabR. We carried out in vitro and in vivo experiments using mutant forms of the gabTD promoter. Our results showed that GABA activates transcription by changing the modality of interaction between GabR and the recognized sequence repeats. A hypothetical model is proposed in which GabR exists in two alternative conformations that, respectively, prevent or promote transcription. According to this model, in the absence of GABA, GabR binds to DNA interacting with all three sequence repeats, overlapping the RNA polymerase binding site and therefore preventing transcription activation. On the other hand, when GABA binds to GabR, a conformational change of the protein leads to the release of the interaction with the inverted repeat, allowing transcription initiation by RNA polymerase.
Asunto(s)
4-Aminobutirato Transaminasa/genética , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Regiones Promotoras Genéticas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Succionato-Semialdehído Deshidrogenasa/genética , Ácido gamma-Aminobutírico/farmacología , 4-Aminobutirato Transaminasa/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mutación , Operón/genética , Unión Proteica/efectos de los fármacos , Homología de Secuencia de Ácido Nucleico , Succionato-Semialdehído Deshidrogenasa/metabolismo , Activación Transcripcional/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Recently we demonstrated that ablation of the DNA methyltransferase enzyme, Dnmt3b, resulted in catabolism and progression of osteoarthritis (OA) in murine articular cartilage through a mechanism involving increased mitochondrial respiration. In this study, we identify 4-aminobutyrate aminotransferase (Abat) as a downstream target of Dnmt3b. Abat is an enzyme that metabolizes γ-aminobutyric acid to succinate, a key intermediate in the tricarboxylic acid cycle. We show that Dnmt3b binds to the Abat promoter, increases methylation of a conserved CpG sequence just upstream of the transcriptional start site, and inhibits Abat expression. Dnmt3b deletion in articular chondrocytes results in reduced methylation of the CpG sequence in the Abat promoter, which subsequently increases expression of Abat. Increased Abat expression in chondrocytes leads to enhanced mitochondrial respiration and elevated expression of catabolic genes. Overexpression of Abat in murine knee joints via lentiviral injection results in accelerated cartilage degradation following surgical induction of OA. In contrast, lentiviral-based knockdown of Abat attenuates the expression of IL-1ß-induced catabolic genes in primary murine articular chondrocytes in vitro and also protects against murine articular cartilage degradation in vivo. Strikingly, treatment with the FDA-approved small-molecule Abat inhibitor, vigabatrin, significantly prevents the development of injury-induced OA in mice. In summary, these studies establish Abat as an important new target for therapies to prevent OA.
Asunto(s)
4-Aminobutirato Transaminasa/genética , Cartílago Articular/lesiones , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Osteoartritis de la Rodilla/patología , Vigabatrin/farmacología , 4-Aminobutirato Transaminasa/antagonistas & inhibidores , 4-Aminobutirato Transaminasa/metabolismo , Animales , Cartílago Articular/citología , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/inmunología , Condrocitos/patología , Islas de CpG/genética , Metilación de ADN/genética , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Masculino , Ratones , Mitocondrias/metabolismo , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/etiología , Fosforilación Oxidativa/efectos de los fármacos , Cultivo Primario de Células , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética , Vigabatrin/uso terapéutico , ADN Metiltransferasa 3BRESUMEN
Oenococcus oeni is the main bacteria extensively used in malolactic fermentation due to its high tolerance against stress factors in wine production. Among these, ethanol is one of the main challenges to O. oeni, and its ethanol tolerance mechanism remains unclear. In this study, the puuE gene related to ethanol tolerance from O. oeni SD-2a was heterologously expressed in Lactobacillus plantarum WCFS1. Results showed that the recombinant strain (W-pMG36epuuE) exhibited better growth performance and survival rate compared to the control strain (W-pMG36e) under ethanol-stress conditions. In addition, it was found that the activities of superoxide dismutase and the concentration of glutathione of W-pMG36epuuE were significantly higher than those of W-pMG36e. This resulted in the decrease of intracellular reactive oxygen species (ROS) accumulation (10.34% lower than control). Moreover, heterologous expression of puuE in WCFS1 exhibited improved activities of two ATPases in membrane, increasing the cell membrane integrity (37.67% higher than control). These results revealed the role of the puuE gene in improving ethanol tolerance in O. oeni by decreasing ROS accumulation and enhancing cell membrane integrity.
Asunto(s)
4-Aminobutirato Transaminasa/genética , Proteínas Bacterianas/genética , Etanol/metabolismo , Lactobacillus plantarum/metabolismo , Oenococcus/enzimología , 4-Aminobutirato Transaminasa/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Fermentación , Lactobacillus plantarum/genética , Lactobacillus plantarum/crecimiento & desarrollo , Oenococcus/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Vino/microbiologíaRESUMEN
IncRNAs play an important role in the regulation of gene expression. The present study profiled differentially expressed lncRNAs (DELs) and mRNAs (DEMs) in myelodysplastic syndrome (MDS) to construct a 4aminobutyrate aminotransferase (ABAT)DELDEM coexpression network in MDS development using the Agilent human BeadChips and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and network analyses. Compared with controls, there were 543 DELs and 2,705 DEMs in MDS patients, among which 285 (52.5%) DELs were downregulated and 258 (47.5%) DELs were upregulated, whereas 1,521 (56.2%) DEMs were downregulated and 1,184 (43.70%) DEMs were upregulated in MDS patients. The ABATDELDEM coexpression network contained six DELs that were coexpressed with ABAT in MDS. The GO analysis revealed that the coexpression network mainly participated in response to organic cyclic compound, cell proliferation, cell part morphogenesis, regulation of cell proliferation and enzymelinked receptor protein signaling pathways, while the KEGG database showed that the coexpression network was involved in various pathways, such as phagosome and metabolic pathways. Furthermore, the expression of a selected DEL (lncENST00000444102) and ABAT was shown to be significantly downregulated in MDS patients, and in SKM1 and THP1 cells. The selected lncENST00000444102 was then overexpressed and ABAT expression was knocked down in the MDS cell lines using lentiviral transfection. In addition, lncENST00000444102 overexpression reduced the viability and increased the apoptosis of MDS cells, ABAT expression was upregulated by lncENST00000444102.
Asunto(s)
4-Aminobutirato Transaminasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Síndromes Mielodisplásicos/patología , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , 4-Aminobutirato Transaminasa/genética , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis , Estudios de Casos y Controles , Proliferación Celular , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , ARN Mensajero/genética , Células Tumorales Cultivadas , Adulto JovenRESUMEN
γ-Aminobutyric acid (GABA)-transaminase deficiency is an ultra-rare disorder of GABA metabolism that was described for decades as an early-onset epileptic encephalopathy plus movement disorder and hypersomnolence with mortality in early childhood. We report 2 affected siblings in adolescence and adulthood, both with profound developmental impairment, intractable epilepsy, movement disorder, and behavioral fluctuations. This considerably expands the phenotype and longevity of this inherited neurotransmitter disease.
Asunto(s)
4-Aminobutirato Transaminasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos , 4-Aminobutirato Transaminasa/genética , Adolescente , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Humanos , Masculino , Fenotipo , Hermanos , Adulto JovenRESUMEN
KEY MESSAGE: The new transient protein expression system using the pBYR2HS vector is applicable to several tomato cultivars and wild species with high level of protein expression. Innovation and improvement of effective tools for transient protein expression in plant cells is critical for the development of plant biotechnology. We have created the new transient protein expression system using the pBYR2HS vector that led to about 4 mg/g fresh weight of protein expression in Nicotiana benthamiana. In this study, we validated the adaptability of this transient protein expression system by agroinfiltration to leaves and fruits of several tomato cultivars and wild species. Although the GFP protein was transiently expressed in the leaves and fruits of all tomato cultivars and wild species, we observed species-specific differences in protein expression. In particular, GFP protein expression was higher in the leaves and fruits of Micro-Tom, Solanum pimpinellifolium (0043) and S. pimpinellifolium (0049-w1) than in those of cultivars and wild species. Furthermore, Agrobacterium with GABA transaminase enhanced transient expression in tomato fruits of Micro-Tom. Taken together with these results, our system is applicable to several tomato cultivars and species as well as a model tomato, even though characteristics are often different among tomato cultivars or species. Thus, the system is an effective, simple, and valuable tool to achieve rapid transgene expression to examine gene function in tomato plant cells.
Asunto(s)
Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Solanum lycopersicum/metabolismo , 4-Aminobutirato Transaminasa/genética , 4-Aminobutirato Transaminasa/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genéticaRESUMEN
Diffuse gliomas often carry point mutations in isocitrate dehydrogenase ( IDH1mut), resulting in metabolic stress. Although IDHmut gliomas are difficult to culture in vitro, they thrive in the brain via diffuse infiltration, suggesting brain-specific tumor-stroma interactions that can compensate for IDH-1 deficits. To elucidate the metabolic adjustments in clinical IDHmut gliomas that contribute to their malignancy, we applied a recently developed method of targeted quantitative RNA next-generation sequencing to 66 clinical gliomas and relevant orthotopic glioma xenografts, with and without the endogenous IDH-1R132H mutation. Datasets were analyzed in R using Manhattan plots to calculate distance between expression profiles, Ward's method to perform unsupervised agglomerative clustering, and the Mann Whitney U test and Fisher's exact tests for supervised group analyses. The significance of transcriptome data was investigated by protein analysis, in situ enzymatic activity mapping, and in vivo magnetic resonance spectroscopy of orthotopic IDH1mut- and IDHwt-glioma xenografts. Gene set enrichment analyses of clinical IDH1mut gliomas strongly suggest a role for catabolism of lactate and the neurotransmitter glutamate, whereas, in IDHwt gliomas, processing of glucose and glutamine are the predominant metabolic pathways. Further evidence of the differential metabolic activity in these cancers comes from in situ enzymatic mapping studies and preclinical in vivo magnetic resonance spectroscopy imaging. Our data support an evolutionary model in which IDHmut glioma cells exist in symbiosis with supportive neuronal cells and astrocytes as suppliers of glutamate and lactate, possibly explaining the diffuse nature of these cancers. The dependency on glutamate and lactate opens the way for novel approaches in the treatment of IDHmut gliomas.-Lenting, K., Khurshed, M., Peeters, T. H., van den Heuvel, C. N. A. M., van Lith, S. A. M., de Bitter, T., Hendriks, W., Span, P. N., Molenaar, R. J., Botman, D., Verrijp, K., Heerschap, A., ter Laan, M., Kusters, B., van Ewijk, A., Huynen, M. A., van Noorden, C. J. F., Leenders, W. P. J. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress.