Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
PLoS One ; 19(9): e0307850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39226277

RESUMEN

DNMT1 is an essential DNA methyltransferase that catalyzes the transfer of methyl groups to CpG islands in DNA and generates a prominent epigenetic mark. The catalytic activity of DNMT1 relies on its conformational plasticity and ability to change conformation from an auto-inhibited to an activated state. Here, we present four cryo-EM reconstructions of apo DNMT1 and DNTM1: non-productive DNA, DNTM1: H3Ub2-peptide, DNTM1: productive DNA complexes. Our structures demonstrate the flexibility of DNMT1's N-terminal regulatory domains during the transition from an apo 'auto-inhibited' to a DNA-bound 'non-productive' and finally a DNA-bound 'productive' state of DNMT1. Furthermore, we address the regulation of DNMT1's methyltransferase activity by a DNMT1-selective small-molecule inhibitor and ubiquitinated histone H3. We observe that DNMT1 binds DNA in a 'non-productive' state despite the presence of the inhibitor and present the cryo-EM reconstruction of full-length DNMT1 in complex with a di-ubiquitinated H3 peptide analogue. Taken together, our results provide structural insights into the reaction cycle of DNMT1.


Asunto(s)
Microscopía por Crioelectrón , ADN (Citosina-5-)-Metiltransferasa 1 , ADN , Microscopía por Crioelectrón/métodos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/química , ADN/metabolismo , ADN/química , Humanos , Histonas/metabolismo , Histonas/química , Modelos Moleculares , Unión Proteica , Conformación Proteica , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo
2.
Protein Sci ; 33(10): e5131, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39290110

RESUMEN

DNA methyltransferase 3B (DNMT3B) plays a crucial role in DNA methylation during mammalian development. Mutations in DNMT3B are associated with human genetic diseases, particularly immunodeficiency, centromere instability, facial anomalies (ICF) syndrome. Although ICF syndrome-related missense mutations in the DNMT3B have been identified, their precise impact on protein structure and function remains inadequately explored. Here, we delve into the impact of four ICF syndrome-linked mutations situated in the DNMT3B dimeric interface (H814R, D817G, V818M, and R823G), revealing that each of these mutations compromises DNA-binding and methyltransferase activities to varying degrees. We further show that H814R, D817G, and V818M mutations severely disrupt the proper assembly of DNMT3B homodimer, whereas R823G does not. We also determined the first crystal structure of the methyltransferase domain of DNMT3B-DNMT3L tetrameric complex hosting the R823G mutation showing that the R823G mutant displays diminished hydrogen bonding interactions around T775, K777, G823, and Q827 in the protein-DNA interface, resulting in reduced DNA-binding affinity and a shift in sequence preference of +1 to +3 flanking positions. Altogether, our study uncovers a wide array of fundamental defects triggered by DNMT3B mutations, including the disassembly of DNMT3B dimers, reduced DNA-binding capacity, and alterations in flanking sequence preferences, leading to aberrant DNA hypomethylation and ICF syndrome.


Asunto(s)
Metilación de ADN , ADN Metiltransferasa 3B , Enfermedades de Inmunodeficiencia Primaria , Humanos , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3B/genética , Cara/anomalías , Síndromes de Inmunodeficiencia/genética , Modelos Moleculares , Mutación Missense , Enfermedades de Inmunodeficiencia Primaria/genética
3.
J Biol Chem ; 300(9): 107633, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098534

RESUMEN

DNA methylation is one of the major epigenetic mechanisms crucial for gene regulation and genome stability. De novo DNA methyltransferase DNMT3C is required for silencing evolutionarily young transposons during mice spermatogenesis. Mutation of DNMT3C led to a sterility phenotype that cannot be rescued by its homologs DNMT3A and DNMT3B. However, the structural basis of DNMT3C-mediated DNA methylation remains unknown. Here, we report the structure and mechanism of DNMT3C-mediated DNA methylation. The DNMT3C methyltransferase domain recognizes CpG-containing DNA in a manner similar to that of DNMT3A and DNMT3B, in line with their high sequence similarity. However, two evolutionary covariation sites, C543 and E590, diversify the substrate interaction among DNMT3C, DNMT3A, and DNMT3B, resulting in distinct DNA methylation activity and specificity between DNMT3C, DNMT3A, and DNMT3B in vitro. In addition, our combined structural and biochemical analysis reveals that the disease-causing rahu mutation of DNMT3C compromises its oligomerization and DNA-binding activities, explaining the loss of DNA methylation activity caused by this mutation. This study provides a mechanistic insight into DNMT3C-mediated DNA methylation that complements DNMT3A- and DNMT3B-mediated DNA methylation in mice, unraveling a regulatory mechanism by which evolutionary conservation and diversification fine-tune the activity of de novo DNA methyltransferases.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Animales , Ratones , ADN Metiltransferasa 3A , Humanos , ADN Metiltransferasa 3B , Mutación , ADN/metabolismo , ADN/química , ADN/genética , Cristalografía por Rayos X
4.
Nucleic Acids Res ; 52(15): 9267-9281, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38966999

RESUMEN

DNA methyltransferases are drug targets for myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), acute myelogenous leukemia (AML) and possibly ß-hemoglobinopathies. We characterize the interaction of nucleoside analogues in DNA with a prokaryotic CpG-specific DNA methyltransferase (M.MpeI) as a model for mammalian DNMT1 methyltransferases. We tested DNA containing 5-hydroxymethylcytosine (5hmC), 5-hydroxycytosine (5OHC), 5-methyl-2-pyrimidinone (in the ribosylated form known as 5-methylzebularine, 5mZ), 5,6-dihydro-5-azacytosine (dhaC), 5-fluorocytosine (5FC), 5-chlorocytosine (5ClC), 5-bromocytosine (5BrC) and 5-iodocytosine (5IC). Covalent complex formation was by far most efficient for 5FC. Non-covalent complexes were most abundant for dhaC and 5mZ. Surprisingly, we observed methylation of 5IC and 5BrC, and to a lesser extent 5ClC and 5FC, in the presence, but not the absence of small molecule thiol nucleophiles. For 5IC and 5BrC, we demonstrated by mass spectrometry that the reactions were due to methyltransferase driven dehalogenation, followed by methylation. Crystal structures of M.MpeI-DNA complexes capture the 'in' conformation of the active site loop for analogues with small or rotatable (5mZ) 5-substituents and its 'out' form for bulky 5-substituents. Since very similar 'in' and 'out' loop conformations were also observed for DNMT1, it is likely that our conclusions generalize to other DNA methyltransferases.


Asunto(s)
Citosina , ADN , Citosina/análogos & derivados , Citosina/química , Citosina/metabolismo , ADN/metabolismo , ADN/química , Especificidad por Sustrato , Metilación de ADN , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , Humanos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/química , 5-Metilcitosina/metabolismo , 5-Metilcitosina/química , 5-Metilcitosina/análogos & derivados , Modelos Moleculares
5.
Nat Commun ; 15(1): 6217, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043678

RESUMEN

Isoform 1 of DNA methyltransferase DNMT3A (DNMT3A1) specifically recognizes nucleosome monoubiquitylated at histone H2A lysine-119 (H2AK119ub1) for establishment of DNA methylation. Mis-regulation of this process may cause aberrant DNA methylation and pathogenesis. However, the molecular basis underlying DNMT3A1-nucleosome interaction remains elusive. Here we report the cryo-EM structure of DNMT3A1's ubiquitin-dependent recruitment (UDR) fragment complexed with H2AK119ub1-modified nucleosome. DNMT3A1 UDR occupies an extensive nucleosome surface, involving the H2A-H2B acidic patch, a surface groove formed by H2A and H3, nucleosomal DNA, and H2AK119ub1. The DNMT3A1 UDR's interaction with H2AK119ub1 affects the functionality of DNMT3A1 in cells in a context-dependent manner. Our structural and biochemical analysis also reveals competition between DNMT3A1 and JARID2, a cofactor of polycomb repression complex 2 (PRC2), for nucleosome binding, suggesting the interplay between different epigenetic pathways. Together, this study reports a molecular basis for H2AK119ub1-dependent DNMT3A1-nucleosome association, with important implications in DNMT3A1-mediated DNA methylation in development.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , ADN Metiltransferasa 3A , Histonas , Nucleosomas , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Histonas/metabolismo , Humanos , Unión Proteica , Microscopía por Crioelectrón , Animales , Ratones , Ubiquitinación , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/genética , Células HEK293 , Modelos Moleculares
6.
Sci Rep ; 14(1): 13508, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866895

RESUMEN

DNA methylation is an epigenetic mechanism that introduces a methyl group at the C5 position of cytosine. This reaction is catalyzed by DNA methyltransferases (DNMTs) and is essential for the regulation of gene transcription. The DNMT1 and DNMT3A or -3B family proteins are known targets for the inhibition of DNA hypermethylation in cancer cells. A selective non-nucleoside DNMT3A inhibitor was developed that mimics S-adenosyl-l-methionine and deoxycytidine; however, the mechanism of selectivity is unclear because the inhibitor-protein complex structure determination is absent. Therefore, we performed docking and molecular dynamics simulations to predict the structure of the complex formed by the association between DNMT3A and the selective inhibitor. Our simulations, binding free energy decomposition analysis, structural isoform comparison, and residue scanning showed that Arg688 of DNMT3A is involved in the interaction with this inhibitor, as evidenced by its significant contribution to the binding free energy. The presence of Asn1192 at the corresponding residues in DNMT1 results in a loss of affinity for the inhibitor, suggesting that the interactions mediated by Arg688 in DNMT3A are essential for selectivity. Our findings can be applied in the design of DNMT-selective inhibitors and methylation-specific drug optimization procedures.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Metilación de ADN , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasa 1/química , Sitios de Unión
7.
Protein Sci ; 32(1): e4542, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519786

RESUMEN

The DNMT3A DNA methyltransferase and MECP2 methylation reader are highly expressed in neurons. Both proteins interact via their DNMT3A-ADD and MECP2-TRD domains, and the MECP2 interaction regulates the activity and subnuclear localization of DNMT3A. Here, we mapped the interface of both domains using peptide SPOT array binding, protein pull-down, equilibrium peptide binding assays, and structural analyses. The region D529-D531 on the surface of the ADD domain was identified as interaction point with the TRD domain. This includes important residues of the histone H3 N-terminal tail binding site to the ADD domain, explaining why TRD and H3 binding to the ADD domain is competitive. On the TRD domain, residues 214-228 containing K219 and K223 were found to be essential for the ADD interaction. This part represents a folded patch within the otherwise largely disordered TRD domain. A crystal structure analysis of ADD revealed that the identified H3/TDR lysine binding pocket is occupied by an arginine residue from a crystallographic neighbor in the ADD apoprotein structure. Finally, we show that mutations in the interface of ADD and TRD domains disrupt the cellular interaction of both proteins in NIH3T3 cells. In summary, our data show that the H3 peptide binding cleft of the ADD domain also mediates the interaction with the MECP2-TRD domain suggesting that this binding site may have a broader role also in the interaction of DNMT3A with other proteins leading to complex regulation options by competitive and PTM specific binding.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Proteína 2 de Unión a Metil-CpG , Sitios de Unión , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/metabolismo , Células 3T3 NIH , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Histonas/química , Histonas/metabolismo , Humanos
8.
Sci China Life Sci ; 66(2): 313-323, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36271982

RESUMEN

DNMT1 is a DNA methyltransferase that catalyzes and maintains methylation in CpG dinucleotides. It blocks the entrance of DNA into the catalytic pocket via the replication foci targeting sequence (RFTS) domain. Recent studies have shown that an H3-tail-conjugated two-mono-ubiquitin mark (H3Ub2) activates DNMT1 by binding to the RFTS domain. However, the activation mechanism of DNMT1 remains unclear. In this work, we combine various sampling methods of extensive simulations, including conventional molecular dynamics, Gaussian-accelerated molecular dynamics, and coarse-grained molecular dynamics, to elucidate the activation mechanism of DNMT1. Geometric and energy analyses show that binding of H3Ub2 to the RFTS domain of DNMT1 results in the bending of the α4-helix in the RFTS domain at approximately 30°-35°, and the RFTS domain rotates ∼20° anti-clockwise and moves ∼3 Å away from the target recognition domain (TRD). The hydrogen-bonding network at the RFTS-TRD interface is significantly disrupted, implying that the RFTS domain is dissociated from the catalytic core, which contributes to activating the auto-inhibited conformation of DNMT1. These results provide structural and dynamic evidence for the role of H3Ub2 in regulating the catalytic activity of DNMT1.


Asunto(s)
Histonas , Simulación de Dinámica Molecular , Histonas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Ubiquitinación , ADN/metabolismo
9.
Adv Exp Med Biol ; 1389: 45-68, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36350506

RESUMEN

In mammals, three major DNA methyltransferases, Dnmt1, Dnmt3a, and Dnmt3b, have been identified. Dnmt3a and Dnmt3b are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. Dnmt3-like (Dnmt3l), which is a member of the Dnmt3 family but does not possess DNA methylation activity, was reported to be indispensable for global methylation in germ cells. Once the DNA methylation patterns are established, maintenance-type DNA methyltransferase Dnmt1 faithfully propagates them to the next generation via replication. All Dnmts possess multiple domains. For instance, Dnmt3a and Dnmt3b each contain a Pro-Trp-Trp-Pro (PWWP) domain that recognizes the histone H3K36me2/3 mark, an Atrx-Dnmt3-Dnmt3l (ADD) domain that recognizes unmodified histone H3 tail, and a catalytic domain that methylates CpG sites. Dnmt1 contains an N-terminal independently folded domain (NTD) that interacts with a variety of regulatory factors, a replication foci-targeting sequence (RFTS) domain that recognizes the histone H3K9me3 mark and H3 ubiquitylation, a CXXC domain that recognizes unmodified CpG DNA, two tandem Bromo-Adjacent-homology (BAH1 and BAH2) domains that read the H4K20me3 mark with BAH1, and a catalytic domain that preferentially methylates hemimethylated CpG sites. In this chapter, the structures and functions of these domains are described.


Asunto(s)
Metilación de ADN , Histonas , Animales , Histonas/metabolismo , ADN Metiltransferasa 3A , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilasas de Modificación del ADN/genética , ADN/metabolismo , Mamíferos/genética
10.
Adv Exp Med Biol ; 1389: 111-136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36350508

RESUMEN

Cytosine methylation at the C5-position-generating 5-methylcytosine (5mC)-is a DNA modification found in many eukaryotic organisms, including fungi, plants, invertebrates, and vertebrates, albeit its levels vary greatly in different organisms. In mammals, cytosine methylation occurs predominantly in the context of CpG dinucleotides, with the majority (60-80%) of CpG sites in their genomes being methylated. DNA methylation plays crucial roles in the regulation of chromatin structure and gene expression and is essential for mammalian development. Aberrant changes in DNA methylation and genetic alterations in enzymes and regulators involved in DNA methylation are associated with various human diseases, including cancer and developmental disorders. In mammals, DNA methylation is mediated by two families of DNA methyltransferases (Dnmts), namely Dnmt1 and Dnmt3 proteins. Over the last three decades, genetic manipulations of these enzymes, as well as their regulators, in mice have greatly contributed to our understanding of the biological functions of DNA methylation in mammals. In this chapter, we discuss genetic studies on mammalian Dnmts, focusing on their roles in embryogenesis, cellular differentiation, genomic imprinting, and human diseases.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , Humanos , Ratones , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasa 1 , Metilasas de Modificación del ADN/genética , 5-Metilcitosina , Mamíferos/genética , Mamíferos/metabolismo , ADN/metabolismo
11.
Structure ; 30(6): 793-802.e5, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35395178

RESUMEN

DNMT1 maintains the parental DNA methylation pattern on newly replicated hemimethylated DNA. The failure of this maintenance process causes aberrant DNA methylation that affects transcription and contributes to the development and progression of cancers such as acute myeloid leukemia. Here, we structurally characterized a set of newly discovered DNMT1-selective, reversible, non-nucleoside inhibitors that bear a core 3,5-dicyanopyridine moiety, as exemplified by GSK3735967, to better understand their mechanism of inhibition. All of the dicyanopydridine-containing inhibitors examined intercalate into the hemimethylated DNA between two CpG base pairs through the DNA minor groove, resulting in conformational movement of the DNMT1 active-site loop. In addition, GSK3735967 introduces two new binding sites, where it interacts with and stabilizes the displaced DNMT1 active-site loop and it occupies an open aromatic cage in which trimethylated histone H4 lysine 20 is expected to bind. Our work represents a substantial step in generating potent, selective, and non-nucleoside inhibitors of DNMT1.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , Sitios de Unión , Dominio Catalítico , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo
12.
Commun Biol ; 5(1): 192, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236925

RESUMEN

Recently, the structure of the DNMT3A2/3B3 heterotetramer complex bound to a mononucleosome was reported. Here, we investigate DNA methylation of recombinant unmodified, H3KC4me3 and H3KC36me3 containing mononucleosomes by DNMT3A2, DNMT3A catalytic domain (DNMT3AC) and the DNMT3AC/3B3C complex. We show strong protection of the nucleosomal bound DNA against methylation, but efficient linker-DNA methylation next to the nucleosome core. High and low methylation levels of two specific CpG sites next to the nucleosome core agree well with details of the DNMT3A2/3B3-nucleosome structure. Linker DNA methylation next to the nucleosome is increased in the absence of H3K4me3, likely caused by binding of the H3-tail to the ADD domain leading to relief of autoinhibition. Our data demonstrate a strong stimulatory effect of H3K36me3 on linker DNA methylation, which is independent of the DNMT3A-PWWP domain. This observation reveals a direct functional role of H3K36me3 on the stimulation of DNA methylation, which could be explained by hindering the interaction of the H3-tail and the linker DNA. We propose an evolutionary model in which the direct stimulatory effect of H3K36me3 on DNA methylation preceded its signaling function, which could explain the evolutionary origin of the widely distributed "active gene body-H3K36me3-DNA methylation" connection.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Unión Proteica
13.
Protein Expr Purif ; 189: 105988, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634480

RESUMEN

DNA 5-methylcytosine modification plays an important role in the regulation of a variety of biological functions in both prokaryotic and eukaryotic organisms. Previous studies show that DNA Cytosine-5-methylation is predominantly associated with restriction-modification system in bacteria. IPF4390 is deduced to be a putative type II DNA Cytosine-5 methyltransferase from a fresh water cyanobacterium, Microcystis aeruginosa. Both its substrate sequence specificity and catalytic mechanism need to be revealed. In this study, the cloning, expression, purification, DNA binding assays and crystallization of IPF4390 are reported. Results of DNA binding assays demonstrate that IPF4390 can specifically recognize and bind two double-stranded DNAs containing GGNCC (N = A, T, C or G) sequences (HgiBI: 5'-ATAAGGACCAATA-3'; TdeIII: 5'-ATAAGGGCCAATA-3'). Therefore, IPF4390 is probably capable of blocking endonuclease cleavage once restriction sites containing these sequences. Moreover, the crystal of IPF4390 in the presence of TdeIII was obtained, and its X-ray diffraction data were collected and scaled to a maximum resolution of 2.46 Å.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Bacteriano/metabolismo , Microcystis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clonación Molecular , Cristalización , Cristalografía por Rayos X , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Microcystis/química , Plásmidos/química , Plásmidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
14.
Nucleic Acids Res ; 49(22): 13045-13061, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871455

RESUMEN

Dnmt2, a member of the DNA methyltransferase superfamily, catalyzes the formation of 5-methylcytosine at position 38 in the anticodon loop of tRNAs. Dnmt2 regulates many cellular biological processes, especially the production of tRNA-derived fragments and intergenerational transmission of paternal metabolic disorders to offspring. Moreover, Dnmt2 is closely related to human cancers. The tRNA substrates of mammalian Dnmt2s are mainly detected using bisulfite sequencing; however, we lack supporting biochemical data concerning their substrate specificity or recognition mechanism. Here, we deciphered the tRNA substrates of human DNMT2 (hDNMT2) as tRNAAsp(GUC), tRNAGly(GCC) and tRNAVal(AAC). Intriguingly, for tRNAAsp(GUC) and tRNAGly(GCC), G34 is the discriminator element; whereas for tRNAVal(AAC), the inosine modification at position 34 (I34), which is formed by the ADAT2/3 complex, is the prerequisite for hDNMT2 recognition. We showed that the C32U33(G/I)34N35 (C/U)36A37C38 motif in the anticodon loop, U11:A24 in the D stem, and the correct size of the variable loop are required for Dnmt2 recognition of substrate tRNAs. Furthermore, mammalian Dnmt2s possess a conserved tRNA recognition mechanism.


Asunto(s)
5-Metilcitosina/metabolismo , Anticodón/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ARN de Transferencia/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Anticodón/genética , Secuencia de Bases , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Células HEK293 , Células HeLa , Humanos , Inosina/metabolismo , Ratones , Modelos Moleculares , Células 3T3 NIH , Conformación de Ácido Nucleico , Unión Proteica , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia de Aspártico/química , ARN de Transferencia de Aspártico/genética , ARN de Transferencia de Aspártico/metabolismo , ARN de Transferencia de Glicerina/química , ARN de Transferencia de Glicerina/genética , ARN de Transferencia de Glicerina/metabolismo , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/genética , ARN de Transferencia de Valina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato
15.
J Mol Biol ; 433(19): 167186, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34375615

RESUMEN

DNA interacting enzymes recognize their target sequences embedded in variable flanking sequence context. The influence of flanking sequences on enzymatic activities of DNA methyltransferases (DNMTs) can be systematically studied with "deep enzymology" approaches using pools of double-stranded DNA substrates, which contain target sites in random flanking sequence context. After incubation with DNMTs and bisulfite conversion, the methylation states and flanking sequences of individual DNA molecules are determined by NGS. Deep enzymology studies with different human and mouse DNMTs revealed strong influences of flanking sequences on their CpG and non-CpG methylation activity and the structures of DNMT-DNA complexes. Differences in flanking sequence preferences of DNMT3A and DNMT3B were shown to be related to the prominent role of DNMT3B in the methylation of human SATII repeat elements. Mutational studies in DNMT3B discovered alternative interaction networks between the enzyme and the DNA leading to a partial equalization of the effects of different flanking sequences. Structural studies in DNMT1 revealed striking correlations between enzymatic activities and flanking sequence dependent conformational changes upon DNA binding. Correlation of the biochemical data with cellular methylation patterns demonstrated that flanking sequence preferences are an important parameter that influences genomic DNA methylation patterns together with other mechanisms targeting DNMTs to genomic sites.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN/genética , ADN/metabolismo , Animales , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/química , Humanos , Ratones , Modelos Moleculares , Conformación Proteica
16.
Viruses ; 13(8)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34452330

RESUMEN

Eukaryotic nucleic acid methyltransferase (MTase) proteins are essential mediators of epigenetic and epitranscriptomic regulation. DNMT2 belongs to a large, conserved family of DNA MTases found in many organisms, including holometabolous insects such as fruit flies and mosquitoes, where it is the lone MTase. Interestingly, despite its nomenclature, DNMT2 is not a DNA MTase, but instead targets and methylates RNA species. A growing body of literature suggests that DNMT2 mediates the host immune response against a wide range of pathogens, including RNA viruses. Curiously, although DNMT2 is antiviral in Drosophila, its expression promotes virus replication in mosquito species. We, therefore, sought to understand the divergent regulation, function, and evolution of these orthologs. We describe the role of the Drosophila-specific host protein IPOD in regulating the expression and function of fruit fly DNMT2. Heterologous expression of these orthologs suggests that DNMT2's role as an antiviral is host-dependent, indicating a requirement for additional host-specific factors. Finally, we identify and describe potential evidence of positive selection at different times throughout DNMT2 evolution within dipteran insects. We identify specific codons within each ortholog that are under positive selection and find that they are restricted to four distinct protein domains, which likely influence substrate binding, target recognition, and adaptation of unique intermolecular interactions. Collectively, our findings highlight the evolution of DNMT2 in Dipteran insects and point to structural, regulatory, and functional differences between mosquito and fruit fly homologs.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Dípteros/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/microbiología , Interacciones Huésped-Patógeno , Wolbachia/fisiología , Adaptación Biológica , Aedes/enzimología , Aedes/genética , Aedes/inmunología , Aedes/microbiología , Secuencia de Aminoácidos , Animales , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/inmunología , Dípteros/clasificación , Dípteros/enzimología , Dípteros/inmunología , Proteínas de Drosophila/química , Proteínas de Drosophila/inmunología , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Evolución Molecular , Filogenia , Conformación Proteica , Alineación de Secuencia , Wolbachia/genética
17.
RNA Biol ; 18(12): 2531-2545, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34110975

RESUMEN

Methylation is a common post-transcriptional modification of tRNAs, particularly in the anticodon loop region. The cytosine 38 (C38) in tRNAs, such as tRNAAsp-GUC, tRNAGly-GCC, tRNAVal-AAC, and tRNAGlu-CUC, can be methylated by human DNMT2/TRDMT1 and some homologs found in bacteria, plants, and animals. However, the substrate properties and recognition mechanism of DNMT2/TRDMT1 remain to be explored. Here, taking into consideration common features of the four known substrate tRNAs, we investigated methylation activities of DNMT2/TRDMT1 on the tRNAGly-GCC truncation and point mutants, and conformational changes of mutants. The results demonstrated that human DNMT2/TRDMT1 preferred substrate tRNAGly-GCC in vitro. L-shaped conformation of classical tRNA could be favourable for DNMT2/TRDMT1 activity. The complete sequence and structure of tRNA were dispensable for DNMT2/TRDMT1 activity, whereas T-arm was indispensable to this activity. G19, U20, and A21 in D-loop were identified as the important bases for DNMT2/TRDMT1 activity, while G53, C56, A58, and C61 in T-loop were found as the critical bases. The conserved CUXXCAC sequence in the anticodon loop was confirmed to be the most critical determinant, and it could stabilize C38-flipping to promote C38 methylation. Based on these tRNA properties, new substrates, tRNAVal-CAC and tRNAGln-CUG, were discovered in vitro. Moreover, a single nucleotide substitute, U32C, could convert non-substrate tRNAAla-AGC into a substrate for DNMT2/TRDMT1. Altogether, our findings imply that DNMT2/TRDMT1 relies on a delicate network involving both the primary sequence and tertiary structure of tRNA for substrate recognition.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Conformación de Ácido Nucleico , ARN de Transferencia/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Humanos , Metilación , ARN de Transferencia/química , ARN de Transferencia/genética , Especificidad por Sustrato
18.
PLoS Genet ; 17(5): e1009570, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34048432

RESUMEN

DNA methylation at CG sites is important for gene regulation and embryonic development. In mouse oocytes, de novo CG methylation requires preceding transcription-coupled histone mark H3K36me3 and is mediated by a DNA methyltransferase DNMT3A. DNMT3A has a PWWP domain, which recognizes H3K36me2/3, and heterozygous mutations in this domain, including D329A substitution, cause aberrant CG hypermethylation of regions marked by H3K27me3 in somatic cells, leading to a dwarfism phenotype. We herein demonstrate that D329A homozygous mice show greater CG hypermethylation and severer dwarfism. In oocytes, D329A substitution did not affect CG methylation of H3K36me2/3-marked regions, including maternally methylated imprinting control regions; rather, it caused aberrant hypermethylation in regions lacking H3K36me2/3, including H3K27me3-marked regions. Thus, the role of the PWWP domain in CG methylation seems similar in somatic cells and oocytes; however, there were cell-type-specific differences in affected regions. The major satellite repeat was also hypermethylated in mutant oocytes. Contrary to the CA hypomethylation in somatic cells, the mutation caused hypermethylation at CH sites, including CA sites. Surprisingly, oocytes expressing only the mutated protein could support embryonic and postnatal development. Our study reveals that the DNMT3A PWWP domain is important for suppressing aberrant CG hypermethylation in both somatic cells and oocytes but that D329A mutation has little impact on the developmental potential of oocytes.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Mutación , Oocitos/metabolismo , Dominios Proteicos , Sustitución de Aminoácidos , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Femenino , Histonas/química , Histonas/metabolismo , Masculino , Ratones , Fenotipo , Dominios Proteicos/genética , Transcriptoma
19.
Nat Genet ; 53(6): 794-800, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33986537

RESUMEN

Precise deposition of CpG methylation is critical for mammalian development and tissue homeostasis and is often dysregulated in human diseases. The localization of de novo DNA methyltransferase DNMT3A is facilitated by its PWWP domain recognizing histone H3 lysine 36 (H3K36) methylation1,2 and is normally depleted at CpG islands (CGIs)3. However, methylation of CGIs regulated by Polycomb repressive complexes (PRCs) has also been observed4-8. Here, we report that DNMT3A PWWP domain mutations identified in paragangliomas9 and microcephalic dwarfism10 promote aberrant localization of DNMT3A to CGIs in a PRC1-dependent manner. DNMT3A PWWP mutants accumulate at regions containing PRC1-mediated formation of monoubiquitylated histone H2A lysine 119 (H2AK119ub), irrespective of the amounts of PRC2-catalyzed formation of trimethylated histone H3 lysine 27 (H3K27me3). DNMT3A interacts with H2AK119ub-modified nucleosomes through a putative amino-terminal ubiquitin-dependent recruitment region, providing an alternative form of DNMT3A genomic targeting that is augmented by the loss of PWWP reader function. Ablation of PRC1 abrogates localization of DNMT3A PWWP mutants to CGIs and prevents aberrant DNA hypermethylation. Our study implies that a balance between DNMT3A recruitment by distinct reader domains guides de novo CpG methylation and may underlie the abnormal DNA methylation landscapes observed in select human cancer subtypes and developmental disorders.


Asunto(s)
Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Proteínas del Grupo Polycomb/metabolismo , Animales , Catálisis , Línea Celular , ADN (Citosina-5-)-Metiltransferasas/química , ADN Metiltransferasa 3A , Predisposición Genética a la Enfermedad , Genoma Humano , Histonas/metabolismo , Humanos , Lisina/metabolismo , Ratones , Mutación/genética , Nucleosomas/metabolismo , Dominios Proteicos , Ubiquitinación
20.
Angew Chem Int Ed Engl ; 60(24): 13507-13512, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33826797

RESUMEN

5-Methylcytosine (5mC), the central epigenetic mark of mammalian DNA, plays fundamental roles in chromatin regulation. 5mC is written onto genomes by DNA methyltransferases (DNMT), and perturbation of this process is an early event in carcinogenesis. However, studying 5mC functions is limited by the inability to control individual DNMTs with spatiotemporal resolution in vivo. We report light-control of DNMT catalysis by genetically encoding a photocaged cysteine as a catalytic residue. This enables translation of inactive DNMTs, their rapid activation by light-decaging, and subsequent monitoring of de novo DNA methylation. We provide insights into how cancer-related DNMT mutations alter de novo methylation in vivo, and demonstrate local and tuneable cytosine methylation by light-controlled DNMTs fused to a programmable transcription activator-like effector domain targeting pericentromeric satellite-3 DNA. We further study early events of transcriptome alterations upon DNMT-catalyzed cytosine methylation. Our study sets a basis to dissect the order and kinetics of diverse chromatin-associated events triggered by normal and aberrant DNA methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de la radiación , Luz , 5-Metilcitosina/metabolismo , Biocatálisis , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Células HEK293 , Humanos , Mutación , Transcriptoma/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA