Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.913
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39408606

RESUMEN

A hereditary component of breast (BC) and colorectal cancer (CRC) has been described in approximately one-third of these tumor types. BC patients have an increased risk of developing CRC as a second primary tumor and vice versa. Germline genomic variants (NextSeq550, Illumina) were investigated in 24 unrelated BC and/or CRC patients and 7 relatives from 3 index patients. Fifty-six pathogenic or likely pathogenic variants were identified in 19 of 24 patients. We detected single-nucleotide variants (SNVs) in CRC predisposition genes (MLH1 and MUTYH) and other promising candidates (CDK5RAP3, MAD1L1, NOS3, and POLM). Eighteen patients presented SNVs or copy number variants (CNVs) in DNA damage repair genes. We also identified SNVs recently associated with BC or CRC predisposition (PABPC1, TYRO3, MAP3K1, SLC15A4, and LAMA1). The PABPC1c.1255C>T variant was detected in nine unrelated patients. Each patient presented at least one SNV/CNV in a candidate gene, and most had alterations in more than one gene, reinforcing a polygenic model for BC/CRC predisposition. A significant fraction of BC/CRC patients with a family history of these tumors harbored deleterious germline variants in DNA repair genes. Our findings can lead to strategies to improve the diagnosis, genetic counseling, and treatment of patients and their relatives.


Asunto(s)
Neoplasias de la Mama , Neoplasias Colorrectales , Reparación del ADN , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Neoplasias Colorrectales/genética , Femenino , Neoplasias de la Mama/genética , Persona de Mediana Edad , Reparación del ADN/genética , Masculino , Anciano , Variaciones en el Número de Copia de ADN , Adulto , Polimorfismo de Nucleótido Simple , Daño del ADN/genética , Neoplasias Primarias Secundarias/genética , Homólogo 1 de la Proteína MutL/genética , ADN Glicosilasas/genética
2.
Fetal Pediatr Pathol ; 43(5): 387-398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219028

RESUMEN

BACKGROUND: Neuroblastoma, a pediatric malignancy, is significantly influenced by genetic factors. Prior research indicates that the OGG1 rs1052133 G > C polymorphism correlates with a decreased risk of neuroblastoma. METHODS: We analyzed 57 neuroblastoma and 21 adrenal samples, using immunohistochemistry to measure OGG1 and STUB1 expression levels. We conducted a survival analysis to explore relationship between the expressions and neuroblastoma prognosis. RESULTS: Notably higher OGG1 expression and significantly lower STUB1 expression in neuroblastoma. OGG1 levels were significantly correlated with patient age, tumor location, histological grade, Shimada classification, INSS stage, and risk category. A negative association was observed between OGG1 and STUB1 expressions. Higher OGG1 expression was linked to reduced PFS and OS. Lower STUB1 expression was associated with unfavorable PFS. Additionally, OGG1 expression and risk category emerged as independent predictors of prognosis. CONCLUSION: OGG1 potentially functions as an oncogene in NB, with its activity possibly modulated by STUB1 through the ubiquitination pathway.


Asunto(s)
ADN Glicosilasas , Neuroblastoma , Ubiquitina-Proteína Ligasas , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Femenino , Masculino , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Preescolar , Lactante , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Niño , Pronóstico , Ubiquitinación , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Reparación del ADN
3.
Nat Commun ; 15(1): 8352, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333110

RESUMEN

Although DNA methylation primarily represses TEs, it also represses select genes that are methylated in plant body tissues but demethylated by DNA glycosylases (DNGs) in endosperm or pollen. Either one of two DNGs, MATERNAL DEREPRESSION OF R1 (MDR1) or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen-segregating mutations in both genes, we identify 58 candidate DNG target genes that account for 11.1% of the wild-type transcriptome but are silent or barely detectable in other tissues. They are unusual in their tendency to lack introns but even more so in their TE-like methylation (teM) in coding DNA. The majority have predicted functions in cell wall modification, and they likely support the rapid tip growth characteristic of pollen tubes. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with the potential for extremely high expression in pollen but constitutive silencing elsewhere.


Asunto(s)
ADN Glicosilasas , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Polen , Zea mays , Zea mays/genética , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Polen/genética , Polen/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación , Tubo Polínico/metabolismo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo
4.
Asian Pac J Cancer Prev ; 25(8): 2645-2654, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39205561

RESUMEN

BACKGROUND: Radiotherapy (RT) is a crucial treatment for head and neck cancer however, it causes adverse reactions to the normal tissue and organs adjacent to target tumor. The present study was carried out to investigate possible association of single nucleotide polymorphism in DNA repair genes with toxicity effects of radiotherapy on normal tissue. METHODS: Three hundred and fifty head and neck cancer patients receiving radiotherapy treatment were enrolled in this study. The adverse after effects of radiotherapy on the normal tissue in the form of skin reactions were recorded. Single nucleotide polymorphisms of APE1 (rs1130409), hOGG1 (rs1052133) and Rad51 (rs1801320, rs1801321) genes were studied by polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP) and direct DNA sequencing methods and their association with development of severe radio-toxicity effects was evaluated logistic regression analysis. RESULTS: The 172G/T polymorphism of Rad51 was 2.85 times higher and significantly associated with skin reactions (OR=2.85, 95% CI: 1.50-5.41; p=0.001) and severe oral mucositis (OR=4.96, 95% CI: 2.40-10.25; p<0.0001). These results suggested that the polymorphic nature of Rad51 is responsible for risk of radiotherapy adverse effects in HNC patients. The variant 326Cys and heterozygous 326Ser/Cys genotype of hOGG1 was significantly associated with high tumor grade (OR=3.16 95% CI: 1.66-5.99; p=0.0004, and OR=3.97 95% CI: 2.15-7.34; p=<0.0001 respectively). The homozygous variant 172TT genotype of Rad51 showed positive association with poor response of both tumor and nodes towards radiotherapy treatment (p=0.007 and p=0.022). CONCLUSIONS: Interpretation of our results revealed significant association of rs1801321 SNP of Rad51 with development of adverse toxicity reactions in normal tissue of head and neck cancer patients treated with radiotherapy.


Asunto(s)
ADN Glicosilasas , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Neoplasias de Cabeza y Cuello , Polimorfismo de Nucleótido Simple , Recombinasa Rad51 , Humanos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Masculino , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Femenino , Recombinasa Rad51/genética , Persona de Mediana Edad , ADN Glicosilasas/genética , Estudios de Seguimiento , Pronóstico , Traumatismos por Radiación/genética , Traumatismos por Radiación/etiología , Anciano , Adulto , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/patología , Genotipo , Reparación del ADN/genética , Biomarcadores de Tumor/genética , Radioterapia/efectos adversos
5.
Nucleic Acids Res ; 52(18): 10965-10985, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39149885

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder representing a major burden on families and society. Some of the main pathological hallmarks of AD are the accumulation of amyloid plaques (Aß) and tau neurofibrillary tangles. However, it is still unclear how Aß and tau aggregates promote specific phenotypic outcomes and lead to excessive oxidative DNA damage, neuronal cell death and eventually to loss of memory. Here we utilized a Caenorhabditis elegans (C. elegans) model of human tauopathy to investigate the role of DNA glycosylases in disease development and progression. Transgenic nematodes expressing a pro-aggregate form of tau displayed altered mitochondrial content, decreased lifespan, and cognitive dysfunction. Genetic ablation of either of the two DNA glycosylases found in C. elegans, NTH-1 and UNG-1, improved mitochondrial function, lifespan, and memory impairment. NTH-1 depletion resulted in a dramatic increase of differentially expressed genes, which was not apparent in UNG-1 deficient nematodes. Our findings clearly show that in addition to its enzymatic activity, NTH-1 has non-canonical functions highlighting its modulation as a potential therapeutic intervention to tackle tau-mediated pathology.


Asunto(s)
Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , ADN Glicosilasas , Modelos Animales de Enfermedad , Tauopatías , Proteínas tau , Animales , Caenorhabditis elegans/genética , Tauopatías/genética , Tauopatías/metabolismo , Humanos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas tau/metabolismo , Proteínas tau/genética , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Cognición , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Longevidad/genética
6.
Nat Commun ; 15(1): 7541, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215025

RESUMEN

A diverse antibody repertoire is essential for humoral immunity. Antibody diversification requires the introduction of deoxyuridine (dU) mutations within immunoglobulin genes to initiate somatic hypermutation (SHM) and class switch recombination (CSR). dUs are normally recognized and excised by the base excision repair (BER) protein uracil-DNA glycosylase 2 (UNG2). However, FAM72A downregulates UNG2 permitting dUs to persist and trigger SHM and CSR. How FAM72A promotes UNG2 degradation is unknown. Here, we show that FAM72A recruits a C-terminal to LisH (CTLH) E3 ligase complex to target UNG2 for proteasomal degradation. Deficiency in CTLH complex components result in elevated UNG2 and reduced SHM and CSR. Cryo-EM structural analysis reveals FAM72A directly binds to MKLN1 within the CTLH complex to recruit and ubiquitinate UNG2. Our study further suggests that FAM72A hijacks the CTLH complex to promote mutagenesis in cancer. These findings show that FAM72A is an E3 ligase substrate adaptor critical for humoral immunity and cancer development.


Asunto(s)
Cambio de Clase de Inmunoglobulina , Ubiquitina-Proteína Ligasas , Humanos , Animales , Cambio de Clase de Inmunoglobulina/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ratones , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Células HEK293 , Ubiquitinación , Hipermutación Somática de Inmunoglobulina/genética , Mutagénesis , Reparación del ADN , Proteolisis , Inmunidad Humoral , Ratones Endogámicos C57BL
7.
Environ Toxicol Pharmacol ; 110: 104495, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38950873

RESUMEN

This study aimed to explore whether there is an association between environmental exposure to POPs and kidney tumor induction, and whether blood POP concentrations reflect kidney tissue concentrations. POP derivatives were determined in blood, tumor tissue, tumor surrounding tissue, and perirenal fat tissue samples taken from patients who underwent surgery for renal tumors. A voluntary control group was recruited for blood and urine samples as well. Urinary excretions of o,o'-dityrosine, chlorotyrosine, nitrotyrosine, and 8-OHdG were measured in the same patients. The possible role of genetic polymorphisms in CYP1A1, GST isozymes P, M, and T, and hOGG1 genes on the predisposition to renal cancer was investigated. Some POPs have been found to be associated with kidney cancer, as evidenced by their significantly high ORs. 8-OHdG levels were significantly higher compared to the control group. The GSTT1 null polymorphism can be a risk factor for malignant but not for benign kidney tumors.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina , Glutatión Transferasa , Neoplasias Renales , Polimorfismo Genético , Humanos , Neoplasias Renales/genética , Neoplasias Renales/orina , Masculino , Femenino , Persona de Mediana Edad , Glutatión Transferasa/genética , 8-Hidroxi-2'-Desoxicoguanosina/orina , Contaminantes Orgánicos Persistentes/orina , Citocromo P-450 CYP1A1/genética , Anciano , Adulto , ADN Glicosilasas/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/orina , Tirosina/análogos & derivados , Tirosina/orina , Riñón/metabolismo
8.
J Biol Chem ; 300(9): 107579, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025455

RESUMEN

NEIL1 is a DNA glycosylase that recognizes and initiates base excision repair of oxidized bases. The ubiquitous ssDNA binding scaffolding protein, replication protein A (RPA), modulates NEIL1 activity in a manner that depends on DNA structure. Interaction between NEIL1 and RPA has been reported, but the molecular basis of this interaction has yet to be investigated. Using a combination of NMR spectroscopy and isothermal titration calorimetry (ITC), we show that NEIL1 interacts with RPA through two contact points. An interaction with the RPA32C protein recruitment domain was mapped to a motif in the common interaction domain (CID) of NEIL1 and a dissociation constant (Kd) of 200 nM was measured. A substantially weaker secondary interaction with the tandem RPA70AB ssDNA binding domains was also mapped to the CID. Together these two contact points reveal NEIL1 has a high overall affinity (Kd ∼ 20 nM) for RPA. A homology model of the complex of RPA32C with the NEIL1 RPA binding motif in the CID was generated and used to design a set of mutations in NEIL1 to disrupt the interaction, which was confirmed by ITC. The mutant NEIL1 remains catalytically active against a thymine glycol lesion in duplex DNA in vitro. Testing the functional effect of disrupting the NEIL1-RPA interaction in vivo using a Fluorescence Multiplex-Host Cell Reactivation (FM-HCR) reporter assay revealed an unexpected role for NEIL1 in nucleotide excision repair. These findings are discussed in the context of the role of NEIL1 in replication-associated repair.


Asunto(s)
ADN Glicosilasas , Reparación del ADN , Unión Proteica , Proteína de Replicación A , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/química , ADN Glicosilasas/metabolismo , ADN Glicosilasas/química , ADN Glicosilasas/genética , Humanos , Modelos Moleculares , Dominios Proteicos , Reparación por Escisión
9.
Sci Rep ; 14(1): 15506, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969725

RESUMEN

Relatively low levels of antioxidant enzymes coupled with high oxygen metabolism result in the formation of numerous oxidative DNA damages in the tissues of the central nervous system. Recently, kynurenic acid (KYNA), knowns for its neuroprotective properties, has gained increasing attention in this context. Therefore, our hypothesis assumed that increased KYNA levels in the brain would positively influence mRNA expression of selected enzymes of the base excision repair pathway as well as enhance their efficiency in excising damaged nucleobases in specific areas of the sheep brain. The study was conducted on adult anestrous sheep (n = 18), in which two different doses of KYNA (20 and 100 µg/day) were infused into the third brain ventricle for three days. Molecular and biochemical analysis included the hypothalamus (preoptic and mediol-basal areas), hippocampus (CA3 field) and amygdala (central amygdaloid nucleus), dissected from the brain of sheep euthanized immediately after the last infusion. The results revealed a significant increase P < 0.001) in the relative mRNA abundance of N-methylpurine DNA glycosylase (MPG) following administration of both dose of KYNA across all examined tissues. The transcription of thymine-DNA glycosylase (TDG) increased significantly (P < 0.001) in all tissues in response to the lower KYNA dose compared to the control group. Moreover, 8-oxoguanine (8-oxoG) DNA glycosylase (OGG1) mRNA levels were also higher in both animal groups (P < 0.001). In addition, in the hypothalamus, hippocampus and amygdala, AP endonuclease 1 (APE1) mRNA expression increased under both doses of KYNA. Moreover, the both dose of KYNA significantly stimulated the efficiency of 8-oxoG excision in hypothalamus and amygdala (P < 0.05-0.001). The lower and higher doses of KYNA significantly influenced the effectiveness of εA and εC in all structures (P < 0.01-0.001). In conclusion, the favorable effect of KYNA in the brain may include the protection of genetic material in nerve and glial cells by stimulating the expression and efficiency of BER pathway enzymes.


Asunto(s)
Encéfalo , ADN Glicosilasas , Reparación del ADN , Ácido Quinurénico , Animales , Reparación del ADN/efectos de los fármacos , Ovinos , Ácido Quinurénico/metabolismo , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Daño del ADN/efectos de los fármacos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Femenino , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Reparación por Escisión
10.
Plant J ; 119(4): 2021-2032, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963754

RESUMEN

DNA glycosylases initiate the base excision repair (BER) pathway by catalyzing the removal of damaged or mismatched bases from DNA. The Arabidopsis DNA glycosylase methyl-CpG-binding domain protein 4 like (MBD4L) is a nuclear enzyme triggering BER in response to the genotoxic agents 5-fluorouracil and 5-bromouracil. To date, the involvement of MBD4L in plant physiological processes has not been analyzed. To address this, we studied the enzyme functions in seeds. We found that imbibition induced the MBD4L gene expression by generating two alternative transcripts, MBD4L.3 and MBD4L.4. Gene activation was stronger in aged than in non-aged seeds. Seeds from mbd4l-1 mutants displayed germination failures when maintained under control or ageing conditions, while 35S:MBD4L.3/mbd4l-1 and 35S:MBD4L.4/mbd4l-1 seeds reversed these phenotypes. Seed nuclear DNA repair, assessed by comet assays, was exacerbated in an MBD4L-dependent manner at 24 h post-imbibition. Under this condition, the BER genes ARP, APE1L, and LIG1 showed higher expression in 35S:MBD4L.3/mbd4l-1 and 35S:MBD4L.4/mbd4l-1 than in mbd4l-1 seeds, suggesting that these components could coordinate with MBD4L to repair damaged DNA bases in seeds. Interestingly, the ATM, ATR, BRCA1, RAD51, and WEE1 genes associated with the DNA damage response (DDR) pathway were activated in mbd4l-1, but not in 35S:MBD4L.3/mbd4l-1 or 35S:MBD4L.4/mbd4l-1 seeds. These results indicate that MBD4L is a key enzyme of a BER cascade that operates during seed imbibition, whose deficiency would cause genomic damage detected by DDR, generating a delay or reduction in germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ADN Glicosilasas , Reparación del ADN , Germinación , Semillas , Semillas/genética , Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Regulación de la Expresión Génica de las Plantas , Daño del ADN
11.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2136-2149, 2024 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-39044580

RESUMEN

African swine fever virus (ASFV), as a contagious viral pathogen, is responsible for the occurrence of African swine fever (ASF), a rapidly spreading and highly lethal disease. Since ASFV was introduced into China in 2018, it has been quickly spread to many provinces, which brought great challenges to the pig industry in China. Due to the limited knowledge about the pathogenesis of ASFV, neither vaccines nor antiviral drugs are available. We have found that ASFV infection can induce oxidative stress responses in cells, and DNA repair enzymes play a key role in this process. This study employed RNA interference, RT-qPCR, Western blotting, Hemadsorption (HAD), and flow cytometry to investigate the effects of the inhibitors of DNA repair enzymes OGG1 and MTH1 on ASFV replication and evaluated the anti-ASFV effects of the inhibitors. This study provides reference for the development of anti-viral drugs.


Asunto(s)
Virus de la Fiebre Porcina Africana , ADN Glicosilasas , Monoéster Fosfórico Hidrolasas , Replicación Viral , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/efectos de los fármacos , Animales , Replicación Viral/efectos de los fármacos , Porcinos , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Fiebre Porcina Africana/virología , Antivirales/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , Inhibidores Enzimáticos/farmacología , Estrés Oxidativo/efectos de los fármacos , Células Vero
12.
Technol Cancer Res Treat ; 23: 15330338241246457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836311

RESUMEN

Objectives: Exploring the relationship between the hOGG1 rs1052133 polymorphism and the occurrence of nasopharyngeal carcinoma (NPC). Methods: PubMed, Web of Science, Scopus, CNKI, Wanfangdata, and VIP were used to search for studies and the NOS evaluation scale was used to evaluate the quality. All studies were grouped according to different genotypes. The Cochrane's Q test and I2 test were used for heterogeneity evaluations. If heterogeneity was small, the fixed effects model was used, and conversely, the random effects model was used. Publication bias was also detected. P < .05 in all results indicated statistically significant. Results: We ultimately included 6 studies with 2021 NPC patients in the study group and 2375 healthy populations in the control group. After meta-analysis, it was found that the total OR value of the "Ser/Cys (CG) vs Ser/Ser (CC)" group was 1.00 (95% CI: 0.85-1.18) and the "Cys/Cys (GG) vs Ser/Ser (CC)" group was 1.06 (95% CI: 0.87-1.28). These results were not statistically significant (P > .05). Furthermore, the integrated total OR values of each group were not statistically significant with or without the smoking history, even in other genotype models (Allele, Dominant, Recessive, and Additive) (P > .05). Conclusion: There is no clear correlation between the hOGG1 rs1052133 polymorphism and the occurrence of NPC, even with or without the smoking history.


Asunto(s)
Alelos , ADN Glicosilasas , Predisposición Genética a la Enfermedad , Genotipo , Carcinoma Nasofaríngeo , Polimorfismo de Nucleótido Simple , Humanos , Carcinoma Nasofaríngeo/genética , ADN Glicosilasas/genética , Neoplasias Nasofaríngeas/genética , Oportunidad Relativa , Estudios de Asociación Genética , Sesgo de Publicación , Estudios de Casos y Controles
13.
J Mol Biol ; 436(16): 168672, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38908783

RESUMEN

CTC1-STN1-TEN1 (CST) is a single-stranded DNA binding protein vital for telomere length maintenance with additional genome-wide roles in DNA replication and repair. While CST was previously shown to function in double-strand break repair and promote replication restart, it is currently unclear whether it has specialized roles in other DNA repair pathways. Proper and efficient repair of DNA is critical to protecting genome integrity. Telomeres and other G-rich regions are strongly predisposed to oxidative DNA damage in the form of 8-oxoguanines, which are typically repaired by the base-excision repair (BER) pathway. Moreover, recent studies suggest that CST functions in the repair of oxidative DNA lesions. Therefore, we tested whether CST interacts with and regulates BER protein activity. Here, we show that CST robustly stimulates proteins involved in BER, including OGG1, Pol ß, APE1, and LIGI, on both telomeric and non-telomeric DNA substrates. Biochemical reconstitution of the pathway indicates that CST stimulates BER. Finally, knockout of STN1 or CTC1 leads to increased levels of 8-oxoguanine, suggesting defective BER in the absence of CST. Combined, our results define an undiscovered function of CST in BER, where it acts as a stimulatory factor to promote efficient genome-wide oxidative repair.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Unión a Telómeros , Humanos , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Telómero/metabolismo , Telómero/genética , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Estrés Oxidativo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Guanina/análogos & derivados , Guanina/metabolismo , ADN Polimerasa beta/metabolismo , ADN Polimerasa beta/genética , Reparación por Escisión
14.
J Integr Plant Biol ; 66(8): 1557-1560, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38934772

RESUMEN

Two guanine base editors created using an engineered N-methylpurine DNA glycosylase with CRISPR systems achieved targeted G-to-T editing with 4.94-12.50% efficiency in rice (Oryza sativa). The combined use of the DNA glycosylase and deaminases enabled co-editing of target guanines with adenines or cytosines.


Asunto(s)
Edición Génica , Guanina , Oryza , Oryza/genética , Edición Génica/métodos , Guanina/metabolismo , Sistemas CRISPR-Cas/genética , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Timina/metabolismo
15.
J Mol Cell Cardiol ; 194: 3-15, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38844061

RESUMEN

Diabetic cardiomyopathy (DCM) is a heart failure syndrome, and is one of the major causes of morbidity and mortality in diabetes. DCM is mainly characterized by ventricular dilation, myocardial hypertrophy, myocardial fibrosis and cardiac dysfunction. Clinical studies have found that insulin resistance is an independent risk factor for DCM. However, its specific mechanism of DCM remains unclear. 8-hydroxyguanine DNA glycosylase 1(OGG1)is involved in DNA base repair and the regulation of inflammatory genes. In this study, we show that OGG1 was associated with the occurrence of DCM. for the first time. The expression of OGG1 was increased in the heart tissue of DCM mice, and OGG1 deficiency aggravated the cardiac dysfunction of DCM mice. Metabolomics show that OGG1 deficiency resulted in obstruction of glycolytic pathway. At the molecular level, OGG1 regulated glucose uptake and insulin resistance by interacting with PPAR-γ in vitro. In order to explore the protective effect of exogenous OGG1 on DCM, OGG1 adeno-associated virus was injected into DCM mice through tail vein in the middle stage of the disease. We found that the overexpression of OGG1 could improve cardiac dysfunction of DCM mice, indicating that OGG1 had a certain therapeutic effect on DCM. These results demonstrate that OGG1 is a new molecular target for the treatment of DCM and has certain clinical significance.


Asunto(s)
ADN Glicosilasas , Cardiomiopatías Diabéticas , Resistencia a la Insulina , Animales , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/deficiencia , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Ratones , Masculino , PPAR gamma/metabolismo , Glucosa/metabolismo , Miocardio/metabolismo , Miocardio/patología , Modelos Animales de Enfermedad , Glucólisis , Humanos , Ratones Endogámicos C57BL
16.
Proc Natl Acad Sci U S A ; 121(27): e2402422121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38923984

RESUMEN

Maintenance of DNA integrity is essential to all forms of life. DNA damage generated by reaction with genotoxic chemicals results in deleterious mutations, genome instability, and cell death. Pathogenic bacteria encounter several genotoxic agents during infection. In keeping with this, the loss of DNA repair networks results in virulence attenuation in several bacterial species. Interstrand DNA crosslinks (ICLs) are a type of DNA lesion formed by covalent linkage of opposing DNA strands and are particularly toxic as they interfere with replication and transcription. Bacteria have evolved specialized DNA glycosylases that unhook ICLs, thereby initiating their repair. In this study, we describe AlkX, a DNA glycosylase encoded by the multidrug resistant pathogen Acinetobacter baumannii. AlkX exhibits ICL unhooking activity similar to that of its Escherichia coli homolog YcaQ. Interrogation of the in vivo role of AlkX revealed that its loss sensitizes cells to DNA crosslinking and impairs A. baumannii colonization of the lungs and dissemination to distal tissues during pneumonia. These results suggest that AlkX participates in A. baumannii pathogenesis and protects the bacterium from stress conditions encountered in vivo. Consistent with this, we found that acidic pH, an environment encountered during host colonization, results in A. baumannii DNA damage and that alkX is induced by, and contributes to, defense against acidic conditions. Collectively, these studies reveal functions for a recently described class of proteins encoded in a broad range of pathogenic bacterial species.


Asunto(s)
Acinetobacter baumannii , Daño del ADN , ADN Glicosilasas , Acinetobacter baumannii/patogenicidad , Acinetobacter baumannii/genética , Acinetobacter baumannii/enzimología , Acinetobacter baumannii/metabolismo , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Reparación del ADN , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/patología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Ratones , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Virulencia , Escherichia coli/genética , Escherichia coli/metabolismo
17.
Mol Med ; 30(1): 72, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822247

RESUMEN

BACKGROUND: 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS: A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS: In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION: OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.


Asunto(s)
Bleomicina , ADN Glicosilasas , Modelos Animales de Enfermedad , Macrófagos , Mitofagia , Proteínas Quinasas , Fibrosis Pulmonar , Animales , Mitofagia/efectos de los fármacos , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Ratones , Macrófagos/metabolismo , Proteínas Quinasas/metabolismo , Bleomicina/efectos adversos , Masculino , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Activación de Macrófagos , Humanos , Quinazolinonas
18.
Curr Probl Cancer ; 50: 101104, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718710

RESUMEN

OBJECTIVE: DNA repair genes and their variants have been found to alter the risk of oral cancer. METHOD: The level of expression of XRCC3, NBS1, and OGG1 genes among 20 cases of oral cancer, 6 pre-oral cancer, and 50 healthy control subjects was measured with RT-PCR. All the subjects were also genotyped for XRCC3 rs861539 C>T, NBS1 rs1805794 C>G, and OGG1 rs1052133 C>G polymorphisms by the PCR-RFLP method; their genotypes were correlated with their level of expression. Further, a localized fold structure analysis of the mRNA sequence surrounding the studied SNPs was performed with RNAfold. RESULTS: Results showed increased expression of XRCC3, NBS1, and OGG1 transcripts among oral cancer (4.49 fold, 3.45 fold, and 3.27 fold) as well as pre-oral cancer (3.04 fold, 5.32 fold, and 1.74 fold) as compared to control subjects. The transcript level of OGG1 was found to be significantly increased (6.68 fold, p-value 0.009) with the GG genotype compared to the CC genotype. The C>T polymorphism of XRCC3 and the C>G polymorphism of OGG1 result in an apparent change in its mRNA secondary structure. Folding energy with the C allele for XRCC3 C>T polymorphism was lower than that of the T allele (MFE C vs T: -50.20 kcal/mol vs -48.70 kcal/mol). In the case of OGG1 C>G polymorphism MFE for the C allele was higher (-23.30 kcal/mole) than with the G allele (-24.80 kcal/mol). CONCLUSION: Our results showed elevated levels of XRCC3, NBS1, and OGG1 both in oral cancer and pre-oral cancer conditions, which indicates their role as prospective biomarkers of oral cancer and pre-cancerous lesions. SNPs in these genes alter their level of expression, possibly by altering the secondary structure of their transcript. However, due to the small sample size our study can only provide a suggestive conclusion and warned future study with large sample size to verify our findings.


Asunto(s)
Biomarcadores de Tumor , Proteínas de Ciclo Celular , ADN Glicosilasas , Reparación del ADN , Proteínas de Unión al ADN , Neoplasias de la Boca , Proteínas Nucleares , Polimorfismo de Nucleótido Simple , Humanos , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , ADN Glicosilasas/genética , Biomarcadores de Tumor/genética , Masculino , Reparación del ADN/genética , Estudios de Casos y Controles , Persona de Mediana Edad , Proteínas de Unión al ADN/genética , Femenino , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética , Genotipo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Adulto , ARN Mensajero/genética , Predisposición Genética a la Enfermedad
19.
Transl Psychiatry ; 14(1): 207, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789433

RESUMEN

Previous evidence suggests elevated levels of oxidatively-induced DNA damage, particularly 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and abnormalities in the repair of 8-OH-dG by the base excision repair (BER) in bipolar disorder (BD). However, the genetic disposition of these abnormalities remains unknown. In this study, we aimed to investigate the levels of oxidatively-induced DNA damage and BER mechanisms in individuals with BD and their siblings, as compared to healthy controls (HCs). 46 individuals with BD, 41 siblings of individuals with BD, and 51 HCs were included in the study. Liquid chromatography-tandem mass spectrometry was employed to evaluate the levels of 8-OH-dG in urine, which were then normalized based on urine creatinine levels. The real-time-polymerase chain reaction was used to measure the expression levels of 8-oxoguanine DNA glycosylase 1 (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), poly ADP-ribose polymerase 1 (PARP1), and DNA polymerase beta (POLß). The levels of 8-OH-dG were found to be elevated in both individuals with BD and their siblings when compared to the HCs. The OGG1 and APE1 expressions were downregulated, while POLß expressions were upregulated in both the patient and sibling groups compared to the HCs. Age, smoking status, and the number of depressive episodes had an impact on APE1 expression levels in the patient group while body mass index, smoking status, and past psychiatric history had an impact on 8-OH-dG levels in siblings. Both individuals with BD and unaffected siblings presented similar abnormalities regarding oxidatively-induced DNA damage and BER, suggesting a link between abnormalities in DNA damage/BER mechanisms and familial susceptibility to BD. Our findings suggest that targeting the oxidatively-induced DNA damage and BER pathway could offer promising therapeutic strategies for reducing the risk of age-related diseases and comorbidities in individuals with a genetic predisposition to BD.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina , Trastorno Bipolar , Daño del ADN , ADN Glicosilasas , Reparación del ADN , Estrés Oxidativo , Hermanos , Humanos , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Femenino , Masculino , Adulto , ADN Glicosilasas/genética , Estrés Oxidativo/genética , Persona de Mediana Edad , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Estudios de Casos y Controles , Adulto Joven , Desoxiguanosina/análogos & derivados , Desoxiguanosina/orina , Reparación por Escisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA