Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Oncol Rep ; 34(3): 1211-20, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26134445

RESUMEN

DNA ligases are essential for the maintenance of genome integrity as they are indispensable for DNA replication, recombination and repair. The present study was undertaken to gain insights into the prevalence and clinical significance of ligase IV (LIG4) expression in prostate cancer. A total of 11,152 prostate cancer specimens were analyzed by immunohistochemistry for LIG4 expression. Results were compared to follow-up data, ERG status and deletions at PTEN, 3p13, 5q21 and 6q15. LIG4 expression was predominantly localized in the nucleus of the cells with increased intensities in malignant as compared to benign prostate epithelium. In prostate cancer, LIG4 expression was found in 91% of interpretable tumors, including 12% cancers with weak, 23% with moderate and 56% with strong LIG4 positivity. Strong LIG4 expression was tightly linked to advanced Gleason score (P<0.0001) and positive nodal involvement (P=0.03). There was a remarkable accumulation of strong LIG4 expression in tumors harboring TMPRSS2:ERG fusion and PTEN deletions (P<0.0001 each). High LIG4 expression was also tightly related to early biochemical recurrence when all tumors (P<0.0001) or the subsets of ERG-negative (P=0.0004) or ERG-positive prostate cancers (P=0.006) were analyzed. Multivariate analysis including parameters that are available before surgery demonstrated independent association with biochemical recurrence for advanced Gleason grade on biopsy, high preoperative PSA level, high clinical stage (P<0.0001 each) and for LIG4 immunostaining (P=0.03). Our study identifies LIG4 as a predictor of an increased risk for early PSA recurrence in prostate cancer. Moreover, the strong association with TMPRSS2:ERG fusion and PTEN deletions suggest important interactions between these pathways in prostate cancers.


Asunto(s)
ADN Ligasas/biosíntesis , Proteínas de Fusión Oncogénica/genética , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Biomarcadores de Tumor/genética , ADN Ligasa (ATP) , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Masculino , Recurrencia Local de Neoplasia/enzimología , Recurrencia Local de Neoplasia/genética , Pronóstico , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/mortalidad , Análisis de Matrices Tisulares
2.
Mutat Res ; 779: 112-23, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26201248

RESUMEN

Although studies have shown that cadmium (Cd) interfered with DNA damage repair (DDR), whether Cd could affect non-homologous end joining (NHEJ) repair remains elusive. To further understand the effect of Cd on DDR, we used X-ray irradiation of Hela cells as an in vitro model system, along with γH2AX and 53BP1 as markers for DNA damage. Results showed that X-ray significantly increased γH2AX and 53BP1 foci in Hela cells (p < 0.01), all of which are characteristic of accrued DNA damage. The number of foci declined rapidly over time (1-8h postirradiation), indicating an initiation of NHEJ process. However, the disappearance of γH2AX and 53BP1 foci was remarkably slowed by Cd pretreatment (p < 0.01), suggesting that Cd reduced the efficiency of NHEJ. To further elucidate the mechanisms of Cd toxicity, several markers of NHEJ pathway including Ku70, DNA-PKcs, XRCC4 and Ligase IV were examined. Our data showed that Cd altered the phosphorylation of DNA-PKcs, and reduced the expression of both XRCC4 and Ligase IV in irradiated cells. These observations are indicative of the impairment of NHEJ-dependent DNA repair pathways. In addition, zinc (Zn) mitigated the effects of Cd on NHEJ, suggesting that the Cd-induced NHEJ alteration may partly result from the displacement of Zn or from an interference with the normal function of Zn-containing proteins by Cd. Our findings provide a new insight into the toxicity of Cd on NHEJ repair and its underlying mechanisms in human cells.


Asunto(s)
Cadmio/toxicidad , Reparación del ADN por Unión de Extremidades/genética , ADN Ligasas/biosíntesis , Proteína Quinasa Activada por ADN/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Daño del ADN/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de la radiación , ADN Ligasa (ATP) , ADN Ligasas/genética , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Células HeLa , Histonas/biosíntesis , Humanos , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Proteína 1 de Unión al Supresor Tumoral P53 , Rayos X
3.
Mol Cell Biol ; 35(17): 3017-28, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26100018

RESUMEN

The classic nonhomologous end-joining (c-NHEJ) pathway is largely responsible for repairing double-strand breaks (DSBs) in mammalian cells. XLF stimulates the XRCC4/DNA ligase IV complex by an unknown mechanism. XLF interacts with XRCC4 to form filaments of alternating XRCC4 and XLF dimers that bridge DNA ends in vitro, providing a mechanism by which XLF might stimulate ligation. Here, we characterize two XLF mutants that do not interact with XRCC4 and cannot form filaments or bridge DNA in vitro. One mutant is fully sufficient in stimulating ligation by XRCC4/Lig4 in vitro; the other is not. This separation-of-function mutant (which must function as an XLF homodimer) fully complements the c-NHEJ deficits of some XLF-deficient cell strains but not others, suggesting a variable requirement for XRCC4/XLF interaction in living cells. To determine whether the lack of XRCC4/XLF interaction (and potential bridging) can be compensated for by other factors, candidate repair factors were disrupted in XLF- or XRCC4-deficient cells. The loss of either ATM or the newly described XRCC4/XLF-like factor, PAXX, accentuates the requirement for XLF. However, in the case of ATM/XLF loss (but not PAXX/XLF loss), this reflects a greater requirement for XRCC4/XLF interaction.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Secuencia de Bases , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Ligasa (ATP) , ADN Ligasas/biosíntesis , ADN Ligasas/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HCT116 , Células HEK293 , Humanos , Análisis de Secuencia de ADN , Recombinación V(D)J/genética
4.
Cell Res ; 25(3): 351-69, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25698579

RESUMEN

The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.


Asunto(s)
Apoptosis/genética , Senescencia Celular/genética , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/genética , Proteína p53 Supresora de Tumor/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Línea Celular , ADN/genética , ADN Ligasa (ATP) , ADN Ligasas/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Humanos , Regiones Promotoras Genéticas/genética , Unión Proteica , Isoformas de Proteínas/genética , Interferencia de ARN , ARN Interferente Pequeño , Recombinasa Rad51/biosíntesis , Pez Cebra , Proteínas de Pez Cebra/biosíntesis
5.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 5): 624-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24817724

RESUMEN

Prodigiosin, a member of the prodiginines, is a tripyrrole red pigment synthesized by Serratia and some other microbes. A bifurcated biosynthesis pathway of prodigiosin has been proposed in Serratia in which MBC (4-methoxy-2,2'-bipyrrole-5-carbaldehyde) and MAP (2-methyl-3-N-amyl-pyrrole) are synthesized separately and then condensed by PigC to form prodigiosin. The first step for the synthesis of MBC is the activation of L-proline by PigI, but its catalytic mechanism has remained elusive. To elucidate its mechanism, recombinant PigI was purified and crystallized. Crystals obtained by the sitting-drop method belonged to space group P1 and diffracted to 2.0 Å resolution, with unit-cell parameters a = 51.2, b = 62.8, c = 91.3 Å, α = 105.1, ß = 90.1, γ = 92.2°. Matthews coefficient analysis suggested two molecules in the asymmetric unit, with a VM of 2.6 Å(3) Da(-1) and a solvent content of 52.69%.


Asunto(s)
ADN Ligasas/biosíntesis , ADN Ligasas/química , Regulación Enzimológica de la Expresión Génica , Prodigiosina/biosíntesis , Prodigiosina/química , Serratia/enzimología , Cristalización , Cristalografía por Rayos X , Transducción de Señal/fisiología
6.
Mol Biol Cell ; 25(10): 1641-52, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24648491

RESUMEN

Nucleophosmin (NPM1) is a multifunctional protein that controls cell growth and genome stability via a mechanism that involves nucleolar-cytoplasmic shuttling. It is clear that NPM1 also contributes to the DNA damage response, yet its exact function is poorly understood. We recently linked NPM1 expression to the functional activation of the major abasic endonuclease in mammalian base excision repair (BER), apurinic/apyrimidinic endonuclease 1 (APE1). Here we unveil a novel role for NPM1 as a modulator of the whole BER pathway by 1) controlling BER protein levels, 2) regulating total BER capacity, and 3) modulating the nucleolar localization of several BER enzymes. We find that cell treatment with the genotoxin cisplatin leads to concurrent relocalization of NPM1 and BER components from nucleoli to the nucleoplasm, and cellular experiments targeting APE1 suggest a role for the redistribution of nucleolar BER factors in determining cisplatin toxicity. Finally, based on the use of APE1 as a representative protein of the BER pathway, our data suggest a function for BER proteins in the regulation of ribogenesis.


Asunto(s)
Reparación del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Proteínas Nucleares/genética , Animales , Nucléolo Celular/genética , Cisplatino/farmacología , Reactivos de Enlaces Cruzados/farmacología , Daño del ADN/genética , ADN Ligasa (ATP) , ADN Ligasas/biosíntesis , ADN Ligasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/biosíntesis , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Doxiciclina/farmacología , Endonucleasas de ADN Solapado/biosíntesis , Endonucleasas de ADN Solapado/metabolismo , Células HeLa , Humanos , Ratones , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/metabolismo , Nucleofosmina , Transporte de Proteínas/genética , Interferencia de ARN , ARN Interferente Pequeño , Ribosomas/genética , Proteína p53 Supresora de Tumor/genética
7.
Stem Cells ; 31(1): 137-45, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22961695

RESUMEN

The regeneration of the hematopoietic system following total body irradiation is supported by host-derived mesenchymal stromal cells (MSCs) within the bone marrow. The mechanisms used by MSCs to survive radiation doses that are lethal to the hematopoietic system are poorly understood. The DNA damage response (DDR) represents a cohort of signaling pathways that enable cells to execute biological responses to genotoxic stress. Here, we examine the role of the DDR in mediating the resistance of MSCs to ionizing radiation (IR) treatment using two authentic clonal mouse MSC lines, MS5 and ST2, and primary bulk mouse MSCs. We show that multiple DDR mechanisms contribute to the radio-resistance of MSCs: robust DDR activation via rapid γ-H2AX formation, activation of effective S and G(2)/M DNA damage checkpoints, and efficient repair of IR-induced DNA double-strand breaks. We show that MSCs are intrinsically programmed to maximize survival following IR treatment by expressing high levels of key DDR proteins including ATM, Chk2, and DNA Ligase IV; high levels of the anti-apoptotic, Bcl-2 and Bcl-(XL); and low levels of the pro-apoptotic, Bim and Puma. As a result, we demonstrate that irradiated mouse MSCs withstand IR-induced genotoxic stress, continue to proliferate, and retain their capacity to differentiate long-term along mesenchymal-derived lineages. We have shown, for the first time, that the DDR plays key roles in mediating the radioresistance of mouse MSCs which may have important implications for the study and application of MSCs in allogeneic bone marrow transplantation, graft-versus-host disease, and cancer treatment.


Asunto(s)
Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Células Madre Mesenquimatosas/efectos de la radiación , Tolerancia a Radiación/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Linfocitos T CD4-Positivos/efectos de la radiación , Linfocitos T CD8-positivos/efectos de la radiación , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/biosíntesis , Diferenciación Celular/efectos de la radiación , Línea Celular , Proliferación Celular/efectos de la radiación , Quinasa de Punto de Control 2 , Roturas del ADN de Doble Cadena/efectos de la radiación , ADN Ligasa (ATP) , ADN Ligasas/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Histonas/biosíntesis , Histonas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Radiación Ionizante , Transducción de Señal , Proteínas Supresoras de Tumor/biosíntesis , Proteína bcl-X/biosíntesis
8.
Protein Expr Purif ; 87(2): 79-86, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23147204

RESUMEN

We describe the biochemical characterization of Methanocaldococcus jannaschii (M. jannaschii) DNA ligase and its potential application in single nucleotide polymorphism (SNP) genotyping. The recombinant M. jannaschii DNA ligase is an ATP-dependent ligase. The ligase activity was dependent on metal ions of Mg(2+) and Mn(2+). The optimal concentrations of ATP cofactor and Mg(2+) ion were 0.01-2 and 10 mM, respectively. The optimal pH value for DNA ligation was 8.5. High concentrations of NaCl inhibited DNA ligation. The effects of mismatches on joining short oligonucleotides by M. jannaschii DNA ligase were fully characterized. The mismatches at the first position 5' to the nick inhibited ligation more than those at the first position 3' to the nick. The mismatches at other positions 5' to the nick (3rd to 7th sites) exhibited less inhibition on ligation. However, the introduction of a C/C mismatch at the third position 5' to the nick could completely inhibit the ligation of the terminal-mismatched nick of an oligonucleotide duplex by M. jannaschii DNA ligase. Therefore, introducing an additional mismatch at the third position 5' to the SNP site is a more effective approach in genotyping by M. jannaschii DNA ligase.


Asunto(s)
Proteínas Bacterianas/biosíntesis , ADN Ligasas/biosíntesis , Técnicas de Genotipaje/métodos , Methanococcales/enzimología , Proteínas Recombinantes/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Disparidad de Par Base , ADN Ligasas/química , ADN Ligasas/genética , ADN Ligasas/aislamiento & purificación , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Methanococcales/genética , Polimorfismo de Nucleótido Simple , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Cloruro de Sodio/química
9.
Biochem Biophys Res Commun ; 380(3): 650-4, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19285016

RESUMEN

Lithium chloride is a therapeutic agent for treatment of bipolar affective disorders. Increasing numbers of studies have indicated that lithium has neuroprotective effects. However, the molecular mechanisms underlying the actions of lithium have not been fully elucidated. This study aimed to investigate whether lithium chloride produces neuroprotective function by improving DNA repair pathway in retinal neurocyte. In vitro, the primary cultured retinal neurocytes (85.7% are MAP-2 positive cells) were treated with lithium chloride, then cultured with serum-free media to simulate the nutrient deprived state resulting from ischemic insult. The neurite outgrowth of the cultured cells increased significantly in a dose-dependent manner when exposed to different levels of lithium chloride. Genomic DNA electrophoresis demonstrated greater DNA integrity of retinal neurocytes when treated with lithium chloride as compared to the control. Moreover, mRNA and protein levels of Ligase IV (involved in DNA non-homologous end-joining (NHEJ) pathway) in retinal neurocytes increased with lithium chloride. The end joining activity assay was performed to determine the role of lithium on NHEJ in the presence of extract from retinal neurocytes. The rejoining levels in retinal neurocytes treated with lithium were significantly increased as compared to the control. Furthermore, XRCC4, the Ligase IV partner, and the transcriptional factor, CREB and CTCF, were up-regulated in retinal cells after treating with 1.0mM lithium chloride. Therefore, our data suggest that lithium chloride protects the retinal neural cells from nutrient deprivation in vitro, which may be similar to the mechanism of cell death in glaucoma. The improvement in DNA repair pathway involving in Ligase IV might have an important role in lithium neuroprotection. This study provides new insights into the neural protective mechanisms of lithium chloride.


Asunto(s)
Antimaníacos/farmacología , Citoprotección , ADN/efectos de los fármacos , Cloruro de Litio/farmacología , Recombinación Genética/efectos de los fármacos , Neuronas Retinianas/efectos de los fármacos , Animales , Factor de Unión a CCCTC , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/biosíntesis , ADN/genética , ADN Ligasa (ATP) , ADN Ligasas/biosíntesis , Reparación del ADN , Proteínas de Unión al ADN/biosíntesis , Neuritas/efectos de los fármacos , Neuritas/fisiología , Ratas , Proteínas Represoras/biosíntesis , Neuronas Retinianas/fisiología
10.
Biochem Soc Trans ; 32(Pt 4): 614-6, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15270689

RESUMEN

DNA ligase 1 (AtLIG1) is the only essential DNA ligase activity in Arabidopsis and is implicated in the important processes of DNA replication, repair and recombination and in transgene insertion during Agrobacterium-mediated plant transformations. The mitochondrial and nuclear forms of DNA ligase 1 in Arabidopsis are translated from a single mRNA species through the control of translation initiation from either the first (M1) or second (M2) in-frame AUG codons respectively. Translation from a third in-frame AUG codon (M3) occurs on transcripts in which M1 and M2 are mutagenized to stop codons. Wild-type AtLIG1-GFP constructs (where GFP stands for green fluorescent protein) can be targeted in planta to both the nucleus and mitochondria. AtLIG1-GFP translation from M1 specifically targets the fusion protein only to mitochondria in planta, whereas translation from M2 or M3 targets the fusion protein only to the nucleus. Interestingly, the AtLIG1-GFP fusion protein in which translation is initiated from M1 contains both an N-terminal mtPS (mitochondrial targeting presequence) and a nuclear localization signal; nonetheless, this protein is only targeted to the mitochondria. This result raises intriguing questions on the translational control mechanisms that regulate how the protein products of a single transcript are targeted to more than one cellular compartment.


Asunto(s)
Codón Iniciador , ADN Ligasas/metabolismo , Isoenzimas/metabolismo , ARN Mensajero/genética , Secuencia de Aminoácidos , ADN Ligasas/biosíntesis , ADN Ligasas/química , Isoenzimas/biosíntesis , Isoenzimas/química , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
11.
Biochem J ; 383(Pt. 3): 551-9, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15283677

RESUMEN

DNA ligases are key enzymes involved in the repair and replication of DNA. Prokaryotic DNA ligases uniquely use NAD+ as the adenylate donor during catalysis, whereas eukaryotic enzymes use ATP. This difference in substrate specificity makes the bacterial enzymes potential targets for therapeutic intervention. We have developed a homogeneous chemiluminescence-based hybridization protection assay for Staphylococcus aureus DNA ligase that uses novel acridinium ester technology and demonstrate that it is an alternative to the commonly used radiometric assays for ligases. The assay has been used to determine a number of kinetic constants for S. aureus DNA ligase catalysis. These included the K(m) values for NAD+ (2.75+/-0.1 microM) and the acridinium-ester-labelled DNA substrate (2.5+/-0.2 nM). A study of the pH-dependencies of kcat, K(m) and kcat/K(m) has revealed values of kinetically influential ionizations within the enzyme-substrate complexes (kcat) and free enzyme (kcat/K(m)). In each case, the curves were shown to be composed of one kinetically influential ionization, for k(cat), pK(a)=6.6+/-0.1 and kcat/K(m), pK(a)=7.1+/-0.1. Inhibition characteristics of the enzyme against two Escherichia coli DNA ligase inhibitors have also been determined with IC50 values for these being 3.30+/-0.86 microM for doxorubicin and 1.40+/-0.07 microM for chloroquine diphosphate. The assay has also been successfully miniaturized to a sufficiently low volume to allow it to be utilized in a high-throughput screen (384-well format; 20 microl reaction volume), enabling the assay to be used in screening campaigns against libraries of compounds to discover leads for further drug development.


Asunto(s)
ADN Ligasas/metabolismo , Mediciones Luminiscentes/métodos , Hibridación de Ácido Nucleico/métodos , Staphylococcus aureus/enzimología , Acridinas/química , Acridinas/metabolismo , Catálisis , Clonación Molecular , ADN Ligasas/biosíntesis , ADN Ligasas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Hidrólisis , Cinética , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Proyectos de Investigación/normas , Coloración y Etiquetado/métodos , Staphylococcus aureus/genética , Especificidad por Sustrato
12.
FEBS Lett ; 552(1): 7-11, 2003 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-12972144

RESUMEN

The K+ channel Kcv is encoded by the chlorella virus PBCV-1. There is evidence that this channel plays an essential role in the replication of the virus, because both PBCV-1 plaque formation and Kcv channel activity in Xenopus oocytes have similar sensitivities to inhibitors. Here we report circumstantial evidence that the Kcv channel is important during virus infection. Recordings of membrane voltage in the host cells Chlorella NC64A reveal a membrane depolarization within the first few minutes of infection. This depolarization displays the same sensitivity to cations as Kcv conductance; depolarization also requires the intact membrane of the virion. Together these data are consistent with the idea that the virus carries functional K+ channels in the virion and inserts them into the host cell plasma membrane during infection.


Asunto(s)
ADN Ligasas/biosíntesis , Canales de Potasio/química , Canales de Potasio/fisiología , Proteínas Virales , Animales , Membrana Celular/metabolismo , Membrana Celular/virología , ADN Ligasas/genética , Relación Dosis-Respuesta a Droga , Ionóforos/farmacología , Iones , Potenciales de la Membrana , Modelos Biológicos , Nistatina/farmacología , Phycodnaviridae/metabolismo , Factores de Tiempo , Xenopus
13.
Biochim Biophys Acta ; 1627(1): 47-55, 2003 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-12759191

RESUMEN

DNA ligase I is thought to be essential for DNA replication, repair and recombination, at least in the mitotic cell cycle, but whether this is also the case during the meiotic cell cycle is still obscure. To investigate the role of DNA ligase I during the meiotic cell cycle, we cloned the Coprinus cinereus DNA ligase I cDNA (CcLIG1). Northern blotting analysis indicated that CcLIG1 is expressed not only in the premeiotic S-phase but also during the meiotic cell cycle itself. Especially, intense signals were observed in the leptotene and zygotene stages. Western blotting analysis indicated that CcLIG1 is expressed through the meiotic cell cycle and immunofluorescence also showed CcLIG1 protein staining in meiotic cells. Interestingly, the patterns was similar to that for the C. cinereus proliferating cell nuclear antigen gene (CcPCNA) and immunoprecipitation analysis suggested that CcPCNA binds to CcLIG1 in crude extracts of meiotic prophase I tissues. Based on these observations, relationships and roles during the meiotic cell cycle are discussed.


Asunto(s)
Coprinus/enzimología , Coprinus/genética , ADN Ligasas/biosíntesis , Meiosis/fisiología , Secuencia de Aminoácidos , Northern Blotting , Western Blotting , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Complementario , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dosificación de Gen , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Profase/fisiología
14.
J Immunol ; 170(4): 2214-20, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12574395

RESUMEN

Reactive oxygen and nitrogen are produced by rheumatoid arthritis (RA) synovial tissue and can potentially induce mutations in key genes. Normally, this process is prevented by a DNA mismatch repair (MMR) system that maintains sequence fidelity during DNA replication. Key members of the MMR system include MutSalpha (hMSH2 and hMSH6) and MutSbeta (hMSH2 and hMSH3). To provide evidence of DNA damage in inflamed synovium, we analyzed synovial tissues for microsatellite instability (MSI). MSI was examined by PCR on genomic DNA of paired synovial tissue and peripheral blood cells of RA patients using specific primer sequences for five key microsatellites. Surprisingly, abundant MSI was observed in RA synovium compared with osteoarthritis tissue. Western blot analysis for the expression of MMR proteins demonstrated decreased hMSH6 and increased hMSH3 in RA synovium. To evaluate potential mechanisms of MMR regulation in arthritis, fibroblast-like synoviocytes (FLS) were isolated from synovial tissues and incubated with the NO donor S-nitroso-N-acetylpenicillamine. Western blot analysis demonstrated constitutive expression of hMSH2, 3, and 6 in RA and osteoarthritis FLS. When FLS were cultured with S-nitroso-N-acetylpenicillamine, the pattern of MMR expression in RA synovium was reproduced (high hMSH3, low hMSH6). Therefore, oxidative stress can relax the DNA MMR system in RA by suppressing hMSH6. Decreased hMSH6 can subsequently interfere with repair of single base mutations, which is the type observed in RA. We propose that oxidative stress not only creates DNA adducts that are potentially mutagenic, but also suppresses the mechanisms that limit the DNA damage.


Asunto(s)
Artritis Reumatoide/enzimología , Proteínas Bacterianas , ADN Ligasas/biosíntesis , Reparación del ADN/inmunología , Proteínas de Unión al ADN/biosíntesis , Repeticiones de Microsatélite/inmunología , Proteínas Proto-Oncogénicas/biosíntesis , Adenosina Trifosfatasas/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Disparidad de Par Base/inmunología , Células Cultivadas , ADN Ligasas/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Relación Dosis-Respuesta Inmunológica , Represión Enzimática/inmunología , Proteínas de Escherichia coli/biosíntesis , Femenino , Fibroblastos/enzimología , Fibroblastos/patología , Humanos , Persona de Mediana Edad , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN , Proteína 2 Homóloga a MutS , Proteína 3 Homóloga de MutS , Osteoartritis/enzimología , Osteoartritis/genética , Osteoartritis/patología , Estrés Oxidativo/genética , Estrés Oxidativo/inmunología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Especies de Nitrógeno Reactivo/farmacología , Especies Reactivas de Oxígeno/farmacología , Membrana Sinovial/enzimología , Membrana Sinovial/metabolismo , Membrana Sinovial/patología
15.
Curr Genet ; 42(1): 9-20, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12420141

RESUMEN

The 26 S proteasome degrades a broad spectrum of proteins and interacts with several nucleotide excision repair (NER) proteins, including the complex of Rad4 and Rad23 that binds preferentially to UV-damaged DNA. The rate of NER is increased in yeast strains with mutations in genes encoding subunits of the 26 S proteasome, indicating that it could negatively regulate a repair process. The specific function of the 26 S proteasome in DNA repair is unclear. It might degrade DNA repair proteins after repair is completed or act as a molecular chaperone to promote the assembly or disassembly of the repair complex. In this study, we show that Rad4 is ubiquitylated and that Rad23 can control this process. We also find that ubiquitylated Rad4 is degraded by the 26 S proteasome. However, the interaction of Rad23 with Rad4 is not only to control degradation of Rad4, but also to assist in assembling the NER incision complex at UV-induced cyclobutane pyrimidine dimers. We speculate that, following the completion of DNA repair, specific repair proteins might be degraded by the proteasome to regulate repair.


Asunto(s)
ADN Ligasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Péptido Hidrolasas/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , ADN Ligasas/biosíntesis , ADN Ligasas/genética , Reparación del ADN/fisiología , Mutación , Péptido Hidrolasas/genética , Ubiquitina/metabolismo , Rayos Ultravioleta
16.
Exp Cell Res ; 280(1): 90-6, 2002 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-12372342

RESUMEN

Exposure of MiaPaCa cells to 1-beta-D-arabinosylcytosine (ara-C) resulted in an increase in DNA ligase levels up to threefold compared to that in the untreated control cells, despite significant growth inhibition. Increased levels of DNA ligase I protein appear to correlate with the appearance of increased mRNA levels. The [(3)H]thymidine incorporation experiment and the biochemical assay of total polymerase activity revealed that an increase in DNA ligase I levels after treatment with ara-C was not accompanied by an increase of DNA synthesis or an increased presence of DNA polymerase activity inside cells. When cells resumed DNA synthesis after drug treatment, DNA ligase I levels began to drop, indicating that increased DNA ligase I is not required for DNA synthesis. An increase in DNA ligase I was also observed in cells treated with aphidicolin, another inhibitor of DNA synthesis that inhibits DNA polymerases without incorporating itself into DNA, indicating that an increase in DNA ligase I levels could be caused by the arrest of DNA replication by these agents. Interestingly, caffeine, which is a well-known inhibitor of DNA damage checkpoint kinases, abrogated the increase in DNA ligase I in MiaPaCa cells treated with ara-C and aphidicolin, suggesting that caffeine-sensitive kinases might be important mediators in the pathway leading to the increase in DNA ligase I levels in response to anticancer drugs, including ara-C and aphidicolin. We propose that ara-C and aphidicolin induce damage to the DNA strand by arresting DNA replication forks and subsequently increase DNA ligase I levels to facilitate repair of DNA damage.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Afidicolina/farmacología , Citarabina/farmacología , ADN Ligasas/biosíntesis , Inhibidores Enzimáticos/farmacología , Neoplasias Pancreáticas/enzimología , Antimetabolitos Antineoplásicos/farmacocinética , Afidicolina/farmacocinética , Cafeína/farmacología , Recuento de Células , División Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citarabina/farmacocinética , ADN Ligasa (ATP) , ADN Ligasas/genética , Reparación del ADN/efectos de los fármacos , ADN de Neoplasias/biosíntesis , ADN Polimerasa Dirigida por ADN/análisis , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacocinética , Humanos , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Inhibidores de Fosfodiesterasa/farmacología , ARN Mensajero/metabolismo , Células Tumorales Cultivadas
17.
Toxicol In Vitro ; 16(4): 383-7, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12110276

RESUMEN

DNA repair efficiency may play a significant role in individual susceptibility to bladder cancer, the third most common cancer in Europe. Bladder cancer arises from the urothelial cell layer which lines the urinary tract. As DNA repair gene expression levels should reflect DNA repair capacity, we investigated the expression of genes from the base excision, nucleotide excision and mismatch repair pathways in normal human urothelial (NHU) cells in vitro. RNA was extracted from six independent NHU cell lines and expression of 26 DNA repair genes was determined by ribonuclease protection assay. The results show that all the genes analysed were detected in NHU cells in vitro with a similar expression pattern in most cell lines. However, there was some variation between cell lines, with one expressing base excision repair genes very strongly, but another having weak expression of mismatch repair genes. These results suggest that DNA repair genes are constitutively expressed by NHU cells and that there is some inter-individual variation. Prospective studies are required to determine whether these differences in gene expression may play a role in susceptibility to bladder cancer.


Asunto(s)
Daño del ADN , ADN Ligasas/biosíntesis , Reparación del ADN/genética , Regulación de la Expresión Génica , Variación Genética , Neoplasias de la Vejiga Urinaria/etiología , Neoplasias de la Vejiga Urinaria/genética , Urotelio/fisiología , Línea Celular , Predisposición Genética a la Enfermedad , Humanos , Ribonucleasas/farmacología
18.
Carcinogenesis ; 22(9): 1335-41, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11532852

RESUMEN

DNA damage of endogenous origin may significantly contribute to human cancer. A major pathway involved in DNA repair of endogenous damage is DNA base excision repair (BER). BER is rather efficient in human cells but a certain amount of endogenous damage inevitably escapes mending and likely contributes to human carcinogenesis. Apart from some glycosylases that are particularly sluggish (e.g. 8-oxoG DNA glycosylase), recent work suggests that the general rate-limiting steps of BER may be trimming of 2-deoxyribose 5-phosphate in case the process is started by a monofunctional glycosylase or trimming of a 3'-blocking fragment, in case BER is started by a bifunctional glycosylase or in the case of single-strand breaks produced by free radical attack. Overexpression of the 5'-deoxyribophosphodiesterase (dRPase) domain of DNA polymerase beta, on the one hand, and of yeast APN1 protein, containing an efficient 3' repair activity, on the other, may lead to improved BER in mammals. The recently characterized S3 protein of Drosophila, containing both dRPase and 3'-trimming activities, could also be considered for overexpression studies. The possible protecting role of enhanced BER could be investigated in cultured rodent embryonic fibroblasts undergoing spontaneous transformation, a most interesting system that merits rediscovery.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , ADN Ligasas/biosíntesis , Animales , Transformación Celular Neoplásica/genética , Reparación del ADN/fisiología , Humanos
19.
J Biol Chem ; 276(39): 36100-9, 2001 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-11459847

RESUMEN

We report the production, purification, and characterization of an NAD(+)-dependent DNA ligase encoded by the Amsacta moorei entomopoxvirus (AmEPV), the first example of an NAD(+) ligase from a source other than eubacteria. AmEPV ligase lacks the zinc-binding tetracysteine domain and the BRCT domain that are present in all eubacterial NAD(+) ligases. Nonetheless, the monomeric 532-amino acid AmEPV ligase catalyzed strand joining on a singly nicked DNA in the presence of a divalent cation and NAD(+). Neither ATP, dATP, nor any other nucleoside triphosphate could substitute for NAD(+). Structure probing by limited proteolysis showed that AmEPV ligase is punctuated by a surface-accessible loop between the nucleotidyltransferase domain, which is common to all ligases, and the N-terminal domain Ia, which is unique to the NAD(+) ligases. Deletion of domain Ia of AmEPV ligase abolished the sealing of 3'-OH/5'-PO(4) nicks and the reaction with NAD(+) to form ligase-adenylate, but had no effect on phosphodiester formation at a pre-adenylated nick. Alanine substitutions at residues within domain Ia either reduced (Tyr(39), Tyr(40), Asp(48), and Asp(52)) or abolished (Tyr(51)) sealing of a 5'-PO(4) nick and adenylyl transfer from NAD(+) without affecting ligation of DNA-adenylate. We conclude that: (i) NAD(+)-dependent ligases exist in the eukaryotic domain of the phylogenetic tree; and (ii) ligase structural domain Ia is a determinant of cofactor specificity and is likely to interact directly with the nicotinamide mononucleotide moiety of NAD(+).


Asunto(s)
ADN Ligasas/biosíntesis , ADN Ligasas/genética , NAD/metabolismo , Poxviridae/genética , Alanina/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ácido Aspártico/química , Secuencia de Bases , Catálisis , Cisteína/química , ADN Ligasas/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Evolución Molecular , Eliminación de Gen , Vectores Genéticos , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Filogenia , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Factores de Tiempo , Tirosina/química , Zinc/metabolismo , Dedos de Zinc
20.
Nucleic Acids Res ; 29(2): 553-64, 2001 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11139626

RESUMEN

The Escherichia coli DNA repair enzyme MutY plays an important role in the prevention of DNA mutations by removing misincorporated adenine residues from 7, 8-dihydro-8-oxo-2'-deoxyguanosine:2'-deoxyadenosine (OG:A) mispairs. The N-terminal domain of MutY (Stop 225, Met1-Lys225) has a sequence and structure that is characteristic of a superfamily of base excision repair glycosylases; however, MutY and its homologs contain a unique C-terminal domain. Previous studies have shown that the C-terminal domain confers specificity for OG:A substrates over G:A substrates and exhibits homology to the d(OG)TPase MutT, suggesting a role in OG recognition. In order to provide additional information on the importance of the C-terminal domain in damage recognition, we have investigated the kinetic properties of a form lacking this domain (Stop 225) under multiple- and single-turnover conditions. In addition, the interaction of Stop 225 with a series of non-cleavable substrate and product analogs was evaluated using gel retardation assays and footprinting experiments. Under multiple-turnover conditions Stop 225 exhibits biphasic kinetic behavior with both OG:A and G:A substrates, likely due to rate-limiting DNA product release. However, the rate of turnover of Stop 225 was increased 2-fold with OG:A substrates compared to the wild-type enzyme. In contrast, the intrinsic rate for adenine removal by Stop 225 from both G:A and OG:A substrates is significantly reduced (10- to 25-fold) compared to the wild-type. The affinity of Stop 225 for substrate analogs was dramatically reduced, as was the ability to discriminate between substrate analogs paired with OG over G. Interestingly, similar hydroxyl radical and DMS footprinting patterns are observed for Stop 225 and wild-type MutY bound to DNA duplexes containing OG opposite an abasic site mimic or a non-hydrogen bonding A analog, suggesting that similar regions of the DNA are contacted by both enzyme forms. Importantly, Stop 225 has a reduced ability to prevent DNA mutations in vivo. This implies that the reduced adenine glycosylase activity translates to a reduced capacity of Stop 225 to prevent DNA mutations in vivo.


Asunto(s)
ADN Ligasas/metabolismo , Reparación del ADN , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Empalme Alternativo/genética , Clonación Molecular , Huella de ADN , ADN Glicosilasas , ADN Ligasas/biosíntesis , ADN Ligasas/genética , ADN Ligasas/aislamiento & purificación , Cinética , Mutagénesis Sitio-Dirigida/genética , Mutación Missense/genética , N-Glicosil Hidrolasas/biosíntesis , N-Glicosil Hidrolasas/aislamiento & purificación , Fragmentos de Péptidos/aislamiento & purificación , Estructura Terciaria de Proteína/genética , Especificidad por Sustrato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA