Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 749
Filtrar
1.
DNA Repair (Amst) ; 143: 103768, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39332392

RESUMEN

We show that the rates of single base substitutions, additions, and deletions across the nuclear genome are strongly increased in a strain harboring a mutator variant of DNA polymerase α combined with a mutation that inactivates the 3´-5´ exonuclease activity of DNA polymerase δ. Moreover, tetrad dissections attempting to produce a haploid triple mutant lacking Msh6, which is essential for DNA mismatch repair (MMR) of base•base mismatches made during replication, result in tiny colonies that grow very slowly and appear to be aneuploid and/or defective in oxidative metabolism. These observations are consistent with the hypothesis that during initiation of nuclear DNA replication, single-base mismatches made by naturally exonuclease-deficient DNA polymerase α are extrinsically proofread by DNA polymerase δ, such that in the absence of this proofreading, the mutation rate is strongly elevated. Several implications of these data are discussed, including that the mutational signature of defective extrinsic proofreading in yeast could appear in human tumors.


Asunto(s)
ADN Polimerasa III , ADN Polimerasa I , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética , Genoma Fúngico , Reparación de la Incompatibilidad de ADN , Replicación del ADN , Mutación , Tasa de Mutación , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Disparidad de Par Base , ADN de Hongos/metabolismo
2.
Mol Cell ; 84(17): 3223-3236.e4, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39094566

RESUMEN

Chromatin-based epigenetic memory relies on the symmetric distribution of parental histones to newly synthesized daughter DNA strands, aided by histone chaperones within the DNA replication machinery. However, the mechanism of parental histone transfer remains elusive. Here, we reveal that in fission yeast, the replisome protein Mrc1 plays a crucial role in promoting the transfer of parental histone H3-H4 to the lagging strand, ensuring proper heterochromatin inheritance. In addition, Mrc1 facilitates the interaction between Mcm2 and DNA polymerase alpha, two histone-binding proteins critical for parental histone transfer. Furthermore, Mrc1's involvement in parental histone transfer and epigenetic inheritance is independent of its known functions in DNA replication checkpoint activation and replisome speed control. Instead, Mrc1 interacts with Mcm2 outside of its histone-binding region, creating a physical barrier to separate parental histone transfer pathways. These findings unveil Mrc1 as a key player within the replisome, coordinating parental histone segregation to regulate epigenetic inheritance.


Asunto(s)
Replicación del ADN , Epigénesis Genética , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Histonas/genética , Unión Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
3.
Cell ; 187(18): 5010-5028.e24, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39094570

RESUMEN

Faithful transfer of parental histones to newly replicated daughter DNA strands is critical for inheritance of epigenetic states. Although replication proteins that facilitate parental histone transfer have been identified, how intact histone H3-H4 tetramers travel from the front to the back of the replication fork remains unknown. Here, we use AlphaFold-Multimer structural predictions combined with biochemical and genetic approaches to identify the Mrc1/CLASPIN subunit of the replisome as a histone chaperone. Mrc1 contains a conserved histone-binding domain that forms a brace around the H3-H4 tetramer mimicking nucleosomal DNA and H2A-H2B histones, is required for heterochromatin inheritance, and promotes parental histone recycling during replication. We further identify binding sites for the FACT histone chaperone in Swi1/TIMELESS and DNA polymerase α that are required for heterochromatin inheritance. We propose that Mrc1, in concert with FACT acting as a mobile co-chaperone, coordinates the distribution of parental histones to newly replicated DNA.


Asunto(s)
Replicación del ADN , Epigénesis Genética , Heterocromatina , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Heterocromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Chaperonas de Histonas/metabolismo , Chaperonas Moleculares/metabolismo , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética
4.
Sci Rep ; 14(1): 19124, 2024 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155334

RESUMEN

Clustered DNA damage, when multiple lesions are generated in close proximity, has various biological consequences, including cell death, chromosome aberrations, and mutations. It is generally perceived as a hallmark of ionizing radiation. The enhanced mutagenic potential of lesions within a cluster has been suggested to result, at least in part, from the selection of the strand with the mutagenic lesion as the preferred template strand, and that this process is relevant to the tolerance of persistent single-strand breaks generated during an attempted repair. Using a plasmid-based assay in Escherichia coli, we examined how the strand bias is affected in mutant strains deficient in different DNA polymerase I activities. Our study revealed that the strand-displacement and 5'-flap endonuclease activities are required for this process, while 3'-to-5' exonuclease activity is not. We also found the strand template that the mutagenic lesion was located on, whether lagging or leading, had no effect on this strand bias. Our results imply that an unknown pathway operates to repair/tolerate the single-strand break generated at a bi-stranded clustered damage site, and that there exist different backup pathways, depending on which DNA polymerase I activity is compromised.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN Polimerasa I , Reparación del ADN , Escherichia coli , Escherichia coli/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética , Daño del ADN , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
5.
Int J Biol Macromol ; 277(Pt 1): 134075, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39043285

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant bacterium that causes a wide range of illnesses, necessitating the development of new technologies for its detection. Herein, we propose a graphene oxide (GO)-based sensing platform for the detection of mecA gene in MRSA using flap endonuclease 1 (FEN1)-assisted target recycling and Klenow fragment (KF)-triggered signal amplification. Without the target, all the DNA probes were adsorbed onto GO, resulting in fluorescence quenching of the dye. Upon the addition of the target, a triple complex was formed that triggered FEN1-assisted target recycling and initiated two polymerization reactions with the assistance of KF polymerase, generating numerous dsDNA that were repelled by GO. These dsDNAs triggered fluorescence enhancement when SYBR Green I was added. Therefore, the target DNA was quantified by measuring the fluorescence at excitation and emission wavelengths of 480/526 nm. This mecA gene assay showed a good linear range from 1 to 50 nM with a lower limit of detection of 0.26 nM, and displayed good applicability to the analysis of real samples. Thus, a new method for monitoring MRSA has been developed that has great potential for early clinical diagnosis and treatment.


Asunto(s)
Proteínas Bacterianas , Técnicas Biosensibles , Endonucleasas de ADN Solapado , Grafito , Staphylococcus aureus Resistente a Meticilina , Proteínas de Unión a las Penicilinas , Grafito/química , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión a las Penicilinas/genética , Técnicas Biosensibles/métodos , Fluorometría/métodos , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , ADN Bacteriano/genética , Límite de Detección
6.
Subcell Biochem ; 104: 73-100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963484

RESUMEN

Telomeres at the end of eukaryotic chromosomes are extended by a specialized set of enzymes and telomere-associated proteins, collectively termed here the telomere "replisome." The telomere replisome acts on a unique replicon at each chromosomal end of the telomeres, the 3' DNA overhang. This telomere replication process is distinct from the replisome mechanism deployed to duplicate the human genome. The G-rich overhang is first extended before the complementary C-strand is filled in. This overhang is extended by telomerase, a specialized ribonucleoprotein and reverse transcriptase. The overhang extension process is terminated when telomerase is displaced by CTC1-STN1-TEN1 (CST), a single-stranded DNA-binding protein complex. CST then recruits DNA polymerase α-primase to complete the telomere replication process by filling in the complementary C-strand. In this chapter, the recent structure-function insights into the human telomere C-strand fill-in machinery (DNA polymerase α-primase and CST) will be discussed.


Asunto(s)
ADN Polimerasa I , ADN Primasa , Replicación del ADN , Proteínas de Unión a Telómeros , Telómero , Humanos , Telómero/metabolismo , Telómero/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética , ADN Polimerasa I/química , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Primasa/química , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Telomerasa/metabolismo , Telomerasa/genética
7.
Int J Biol Macromol ; 269(Pt 2): 131965, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697428

RESUMEN

In A-family DNA polymerases (dPols), a functional 3'-5' exonuclease activity is known to proofread newly synthesized DNA. The identification of a mismatch in substrate DNA leads to transfer of the primer strand from the polymerase active site to the exonuclease active site. To shed more light regarding the mechanism responsible for the detection of mismatches, we have utilized DNA polymerase 1 from Aquifex pyrophilus (ApPol1). The enzyme synthesized DNA with high fidelity and exhibited maximal exonuclease activity with DNA substrates bearing mismatches at the -2 and - 3 positions. The crystal structure of apo-ApPol1 was utilized to generate a computational model of the functional ternary complex of this enzyme. The analysis of the model showed that N332 forms interactions with minor groove atoms of the base pairs at the -2 and - 3 positions. The majority of known A-family dPols show the presence of Asn at a position equivalent to N332. The N332L mutation led to a decrease in the exonuclease activity for representative purine-pyrimidine, and pyrimidine-pyrimidine mismatches at -2 and - 3 positions, respectively. Overall, our findings suggest that conserved polar residues located towards the minor groove may facilitate the detection of position-specific mismatches to enhance the fidelity of DNA synthesis.


Asunto(s)
Disparidad de Par Base , Modelos Moleculares , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN/química , ADN/metabolismo , ADN/genética , Dominio Catalítico , Secuencia Conservada , Secuencia de Aminoácidos , Mutación , ADN Polimerasa I/química , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética , Especificidad por Sustrato
8.
Virology ; 594: 110035, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38554655

RESUMEN

The herpes simplex virus 1 DNA polymerase contains a highly conserved structural motif found in most family B polymerases and certain RNA-binding proteins. To investigate its importance within cells, we constructed a mutant virus with substitutions in two residues of the motif and a rescued derivative. The substitutions resulted in severe impairment of plaque formation, yields of infectious virus, and viral DNA synthesis while not meaningfully affecting expression of the mutant enzyme, its co-localization with the viral single-stranded DNA binding protein at intranuclear punctate sites in non-complementing cells or in replication compartments in complementing cells, or viral DNA polymerase activity. Taken together, our results indicate that the RNA binding motif plays a crucial role in herpes simplex virus 1 DNA synthesis through a mechanism separate from effects on polymerase activity, thus identifying a distinct essential function of this motif with implications for hypotheses regarding its biochemical functions.


Asunto(s)
Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , ADN Viral/genética , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Replicación Viral , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Replicación del ADN
9.
FEBS J ; 291(8): 1813-1829, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335062

RESUMEN

Eukaryotic DNA replication depends on the primosome - a complex of DNA polymerase alpha (Pol α) and primase - to initiate DNA synthesis by polymerisation of an RNA-DNA primer. Primer synthesis requires the tight coordination of primase and polymerase activities. Recent cryo-electron microscopy (cryoEM) analyses have elucidated the extensive conformational transitions required for RNA primer handover between primase and Pol α and primer elongation by Pol α. Because of the intrinsic flexibility of the primosome, however, structural information about the initiation of RNA primer synthesis is still lacking. Here, we capture cryoEM snapshots of the priming reaction to reveal the conformational trajectory of the human primosome that brings DNA primase subunits 1 and 2 (PRIM1 and PRIM2, respectively) together, poised for RNA synthesis. Furthermore, we provide experimental evidence for the continuous association of primase subunit PRIM2 with the RNA primer during primer synthesis, and for how both initiation and termination of RNA primer polymerisation are licenced by specific rearrangements of DNA polymerase alpha catalytic subunit (POLA1), the polymerase subunit of Pol α. Our findings fill a critical gap in our understanding of the conformational changes that underpin the synthesis of the RNA primer by the primosome. Together with existing evidence, they provide a complete description of the structural dynamics of the human primosome during DNA replication initiation.


Asunto(s)
ADN Polimerasa I , ADN Primasa , Humanos , ADN Primasa/genética , ADN Primasa/metabolismo , Microscopía por Crioelectrón , ADN Polimerasa I/genética , ARN , Replicación del ADN
10.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338670

RESUMEN

In recent years, the loop-mediated isothermal amplification (LAMP) technique, designed for microbial pathogen detection, has acquired fundamental importance in the biomedical field, providing rapid and precise responses. However, it still has some drawbacks, mainly due to the need for a thermostatic block, necessary to reach 63 °C, which is the BstI DNA polymerase working temperature. Here, we report the identification and characterization of the DNA polymerase I Large Fragment from Deinococcus radiodurans (DraLF-PolI) that functions at room temperature and is resistant to various environmental stress conditions. We demonstrated that DraLF-PolI displays efficient catalytic activity over a wide range of temperatures and pH, maintains its activity even after storage under various stress conditions, including desiccation, and retains its strand-displacement activity required for isothermal amplification technology. All of these characteristics make DraLF-PolI an excellent candidate for a cutting-edge room-temperature LAMP that promises to be very useful for the rapid and simple detection of pathogens at the point of care.


Asunto(s)
ADN Polimerasa I , Deinococcus , ADN Polimerasa I/genética , Deinococcus/genética , Temperatura , ADN Polimerasa Dirigida por ADN/genética , Técnicas de Amplificación de Ácido Nucleico , Replicación del ADN
11.
IUBMB Life ; 75(12): 983-1002, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37470284

RESUMEN

Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Humanos , ADN Polimerasa gamma/genética , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Mitocondrial/genética , Mutación , Replicación del ADN/genética
12.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1384-1398, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322421

RESUMEN

This study describes the structure of DNA polymerase I from Thermus phage G20c, termed PolI_G20c. This is the first structure of a DNA polymerase originating from a group of related thermophilic bacteriophages infecting Thermus thermophilus, including phages G20c, TSP4, P74-26, P23-45 and phiFA and the novel phage Tth15-6. Sequence and structural analysis of PolI_G20c revealed a 3'-5' exonuclease domain and a DNA polymerase domain, and activity screening confirmed that both domains were functional. No functional 5'-3' exonuclease domain was present. Structural analysis also revealed a novel specific structure motif, here termed SßαR, that was not previously identified in any polymerase belonging to the DNA polymerases I (or the DNA polymerase A family). The SßαR motif did not show any homology to the sequences or structures of known DNA polymerases. The exception was the sequence conservation of the residues in this motif in putative DNA polymerases encoded in the genomes of a group of thermophilic phages related to Thermus phage G20c. The structure of PolI_G20c was determined with the aid of another structure that was determined in parallel and was used as a model for molecular replacement. This other structure was of a 3'-5' exonuclease termed ExnV1. The cloned and expressed gene encoding ExnV1 was isolated from a thermophilic virus metagenome that was collected from several hot springs in Iceland. The structure of ExnV1, which contains the novel SßαR motif, was first determined to 2.19 Šresolution. With these data at hand, the structure of PolI_G20c was determined to 2.97 Šresolution. The structures of PolI_G20c and ExnV1 are most similar to those of the Klenow fragment of DNA polymerase I (PDB entry 2kzz) from Escherichia coli, DNA polymerase I from Geobacillus stearothermophilus (PDB entry 1knc) and Taq polymerase (PDB entry 1bgx) from Thermus aquaticus.


Asunto(s)
Bacteriófagos , ADN Polimerasa I , ADN Polimerasa I/química , ADN Polimerasa I/genética , Fosfodiesterasa I , Thermus , Polimerasa Taq/química , Escherichia coli
13.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362137

RESUMEN

Azide-alkyne cycloaddition ("click chemistry") has found wide use in the analysis of molecular interactions in living cells. 5-ethynyl-2-(hydroxymethyl)tetrahydrofuran-3-ol (EAP) is a recently developed apurinic/apyrimidinic (AP) site analog functionalized with an ethynyl moiety, which can be introduced into cells in DNA constructs to perform labeling or cross-linking in situ. However, as a non-natural nucleoside, EAP could be subject to removal by DNA repair and misreading by DNA polymerases. Here, we investigate the interaction of this clickable AP site analog with DNA polymerases and base excision repair enzymes. Similarly to the natural AP site, EAP was non-instructive and followed the "A-rule", directing residual but easily detectable incorporation of dAMP by E. coli DNA polymerase I Klenow fragment, bacteriophage RB69 DNA polymerase and human DNA polymerase ß. On the contrary, EAP was blocking for DNA polymerases κ and λ. EAP was an excellent substrate for the major human AP endonuclease APEX1 and E. coli AP exonucleases Xth and Nfo but was resistant to the AP lyase activity of DNA glycosylases. Overall, our data indicate that EAP, once within a cell, would represent a replication block and would be removed through an AP endonuclease-initiated long-patch base excision repair pathway.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , Escherichia coli , Humanos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Escherichia coli/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Reparación del ADN , Daño del ADN , ADN Polimerasa I/genética , Endonucleasas/metabolismo
14.
Eur J Med Genet ; 65(12): 104628, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36182037

RESUMEN

POLA1 encodes a subunit of the DNA polymerase alpha, a key enzyme for the initiation of DNA synthesis. In males, hemizygous hypomorphic variants in POLA1 have been identified as the cause of X-linked pigmentary reticulate disorder (XLPDR) and a novel X-linked neurodevelopmental disorder termed Van Esch-O'Driscoll syndrome (VEODS), while female carriers have been reported to be healthy. Nullisomy for POLA1 was speculated to be lethal due to its crucial function, while the effect of loss of one allele in females remained unknown. Here, we report on a three-generation family harboring a deletion of POLA1 in females showing subfertility as the only phenotype. Our findings show that heterozygous deletions or truncating variants in females with skewed X inactivation do not cause VEODS and support the hypothesis of very early embryonic lethality in males with POLA1 nullisomy.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Discapacidad Intelectual , Masculino , Femenino , Humanos , ADN Polimerasa I/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Genes Ligados a X , Heterocigoto , Discapacidad Intelectual/genética , Fertilidad
15.
Proc Natl Acad Sci U S A ; 119(17): e2111744119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35467978

RESUMEN

Human DNA polymerase α (Polα) does not possess proofreading ability and plays an important role in genome replication and mutagenesis. Polα extends the RNA primers generated by primase and provides a springboard for loading other replication factors. Here we provide the structural and functional analysis of the human Polα interaction with a mismatched template:primer. The structure of the human Polα catalytic domain in the complex with an incoming deoxycytidine triphosphate (dCTP) and the template:primer containing a T-C mismatch at the growing primer terminus was solved at a 2.9 Å resolution. It revealed the absence of significant distortions in the active site and in the conformation of the substrates, except the primer 3'-end. The T-C mismatch acquired a planar geometry where both nucleotides moved toward each other by 0.4 Å and 0.7 Å, respectively, and made one hydrogen bond. The binding studies conducted at a physiological salt concentration revealed that Polα has a low affinity to DNA and is not able to discriminate against a mispaired template:primer in the absence of deoxynucleotide triphosphate (dNTP). Strikingly, in the presence of cognate dNTP, Polα showed a more than 10-fold higher selectivity for a correct duplex versus a mismatched one. According to pre-steady-state kinetic studies, human Polα extends the T-C mismatch with a 249-fold lower efficiency due to reduction of the polymerization rate constant by 38-fold and reduced affinity to the incoming nucleotide by 6.6-fold. Thus, a mismatch at the postinsertion site affects all factors important for primer extension: affinity to both substrates and the rate of DNA polymerization.


Asunto(s)
ADN Polimerasa I , Replicación del ADN , Dominio Catalítico , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Cartilla de ADN/genética , Humanos , Cinética
16.
PLoS Negl Trop Dis ; 15(10): e0009874, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714828

RESUMEN

A recent genome-wide association study (GWAS) identified a locus in chromosome 11 associated with the chronic cardiac form of Chagas disease. Here we aimed to elucidate the potential functional mechanism underlying this genetic association by analyzing the correlation among single nucleotide polymorphisms (SNPs) and DNA methylation (DNAm) levels as cis methylation quantitative trait loci (cis-mQTL) within this region. A total of 2,611 SNPs were tested against 2,647 DNAm sites, in a subset of 37 chronic Chagas cardiomyopathy patients and 20 asymptomatic individuals from the GWAS. We identified 6,958 significant cis-mQTLs (False Discovery Rate [FDR]<0.05) at 1 Mb each side of the GWAS leading variant, where six of them potentially modulate the expression of the SAC3D1 gene, the reported gene in the previous GWAS. In addition, a total of 268 cis-mQTLs showed differential methylation between chronic Chagas cardiomyopathy patients and asymptomatic individuals. The most significant cis-mQTLs mapped in the gene bodies of POLA2 (FDR = 1.04x10-11), PLAAT3 (FDR = 7.22x10-03), and CCDC88B (FDR = 1.89x10-02) that have been associated with cardiovascular and hematological traits in previous studies. One of the most relevant interactions correlated with hypermethylation of CCDC88B. This gene is involved in the inflammatory response, and its methylation and expression levels have been previously reported in Chagas cardiomyopathy. Our findings support the functional relevance of the previously associated genomic region, highlighting the regulation of novel genes that could play a role in the chronic cardiac form of the disease.


Asunto(s)
Cardiomiopatía Chagásica/genética , Adulto , Anciano , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cardiomiopatía Chagásica/metabolismo , Metilación de ADN , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Fosfolipasas A2 Calcio-Independiente/genética , Fosfolipasas A2 Calcio-Independiente/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
17.
Cold Spring Harb Protoc ; 2021(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599075

RESUMEN

In this method, a short primer is hybridized to an oligonucleotide template whose sequence is the complement of the desired radiolabeled probe. The primer is then extended using the Klenow fragment to incorporate [α-32P]dNTPs in a template-directed manner. After the reaction, the template and product are separated by denaturation followed by electrophoresis through a polyacrylamide gel under denaturing conditions. With this method, it is possible to generate oligonucleotide probes that contain several radioactive atoms per molecule of oligonucleotide and to achieve specific activities as high as 2 × 1010 cpm/µg of probe. Because the end product of the reaction is dsDNA, whose strands must be separated and the labeled product isolated, this method is generally not used to prepare nonradiolabeled oligonucleotides.


Asunto(s)
ADN Polimerasa I , Oligonucleótidos , ADN/genética , ADN Polimerasa I/genética , Replicación del ADN , Escherichia coli/genética
18.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502313

RESUMEN

During DNA replication, the WEE1 kinase is responsible for safeguarding genomic integrity by phosphorylating and thus inhibiting cyclin-dependent kinases (CDKs), which are the driving force of the cell cycle. Consequentially, wee1 mutant plants fail to respond properly to problems arising during DNA replication and are hypersensitive to replication stress. Here, we report the identification of the polα-2 mutant, mutated in the catalytic subunit of DNA polymerase α, as a suppressor mutant of wee1. The mutated protein appears to be less stable, causing a loss of interaction with its subunits and resulting in a prolonged S-phase.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , ADN Polimerasa I/genética , Resistencia a Medicamentos/genética , Hidroxiurea/farmacología , Mutación , Proteínas Serina-Treonina Quinasas/deficiencia , Antidrepanocíticos/farmacología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ciclo Celular , Daño del ADN , Fosforilación
19.
Nat Commun ; 12(1): 4843, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376693

RESUMEN

Small tandem duplications of DNA occur frequently in the human genome and are implicated in the aetiology of certain human cancers. Recent studies have suggested that DNA double-strand breaks are causal to this mutational class, but the underlying mechanism remains elusive. Here, we identify a crucial role for DNA polymerase α (Pol α)-primase in tandem duplication formation at breaks having complementary 3' ssDNA protrusions. By including so-called primase deserts in CRISPR/Cas9-induced DNA break configurations, we reveal that fill-in synthesis preferentially starts at the 3' tip, and find this activity to be dependent on 53BP1, and the CTC1-STN1-TEN1 (CST) and Shieldin complexes. This axis generates near-blunt ends specifically at DNA breaks with 3' overhangs, which are subsequently repaired by non-homologous end-joining. Our study provides a mechanistic explanation for a mutational signature abundantly observed in the genomes of species and cancer cells.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Repeticiones de Microsatélite/genética , Proteínas de Unión a Telómeros/metabolismo , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Células Cultivadas , Reparación del ADN por Unión de Extremidades , ADN Polimerasa I/genética , ADN Primasa/genética , ADN de Cadena Simple , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
20.
Eur J Med Genet ; 64(8): 104261, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34119699

RESUMEN

Van Esch-O'Driscoll syndrome (VEODS) is a rare cause of syndromic X-linked intellectual disability characterised by short stature, microcephaly, variable degree of intellectual disability, and hypogonadotropic hypogonadism. To date, heterozygous hypomorphic variants in the gene encoding the DNA Polymerase α subunit, POLA1, have been observed in nine patients from five unrelated families with VEODS. We report a three-year-old child with VEODS having borderline intellectual disability due to a novel splice site variant causing exon 6 skipping and reduced POLA1 expression.


Asunto(s)
ADN Polimerasa I/genética , Hipogonadismo/genética , Discapacidad Intelectual/genética , Fenotipo , Estenosis Hipertrófica del Piloro/genética , Humanos , Hipogonadismo/patología , Lactante , Discapacidad Intelectual/patología , Masculino , Estenosis Hipertrófica del Piloro/patología , Empalme del ARN , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA