Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.339
Filtrar
1.
Methods Enzymol ; 705: 271-309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39389667

RESUMEN

In humans, DNA polymerase δ (pol δ) holoenzymes, comprised of pol δ and the processivity sliding clamp, proliferating cell nuclear antigen (PCNA), carry out DNA synthesis during lagging strand replication, the initiation of leading strand DNA replication as well as most of the major DNA damage repair pathways. In each of these contexts, pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a stepwise process that involves the PCNA clamp loader, replication factor C and, depending on the DNA synthesis pathway, the major single strand DNA-binding protein complex, replication protein A (RPA). In a recent report from our laboratory, we designed and utilized direct, ensemble Förster Resonance Energy Transfer approaches to monitor the transient state kinetics of pol δ holoenzyme assembly and initiation of DNA synthesis on P/T junctions engaged by RPA. In this chapter, we detail the original approaches and discuss adaptations that can be utilized to monitor fast kinetic reactions in the millisecond (ms) timescale. All approaches described in this chapter utilize a commercially-available fluorescence spectrophotometer, can be readily evolved for alternative DNA polymerases and P/T DNA substrates, and permit incorporation of protein posttranslational modifications, accessory factors, DNA covalent modifications, accessory factors, enzymes, etc. Hence, these approaches are widely accessible and broadly applicable for characterizing DNA polymerase holoenzyme assembly and initiation of DNA synthesis during any PCNA-dependent DNA synthesis pathway.


Asunto(s)
ADN Polimerasa III , Replicación del ADN , ADN , Transferencia Resonante de Energía de Fluorescencia , Antígeno Nuclear de Célula en Proliferación , Transferencia Resonante de Energía de Fluorescencia/métodos , ADN Polimerasa III/metabolismo , ADN Polimerasa III/química , Humanos , Cinética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Holoenzimas/metabolismo , Holoenzimas/química , ADN/metabolismo , ADN/química , Proteína de Replicación A/metabolismo , Proteína de Replicación A/química , Proteína de Replicación C/metabolismo , Proteína de Replicación C/genética , Proteína de Replicación C/química
2.
Nat Commun ; 15(1): 8372, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333521

RESUMEN

Ring-shaped DNA sliding clamps are essential for DNA replication and genome maintenance. Clamps need to be opened and chaperoned onto DNA by clamp loader complexes (CLCs). Detailed understanding of the mechanisms by which CLCs open and place clamps around DNA remains incomplete. Here, we present a series of six structures of the Escherichia coli CLC bound to an open or closed clamp prior to and after binding to a primer-template DNA, representing the most significant intermediates in the clamp loading process. We show that the ATP-bound CLC first binds to a clamp, then constricts to hold onto it. The CLC then expands to open the clamp with a gap large enough for double-stranded DNA to enter. Upon binding to DNA, the CLC constricts slightly, allowing clamp closing around DNA. These structures provide critical high-resolution snapshots of clamp loading by the E. coli CLC, revealing how the molecular machine works.


Asunto(s)
ADN Bacteriano , Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Adenosina Trifosfato/metabolismo , Replicación del ADN , Modelos Moleculares , Microscopía por Crioelectrón , ADN Polimerasa III/metabolismo , ADN Polimerasa III/química
3.
PLoS One ; 19(9): e0310601, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39288122

RESUMEN

Non-enzymatic spontaneous deamination of 5-methylcytosine, producing thymine, is the proposed etiology of cancer mutational signature 1, which is the most predominant signature in all cancers. Here, the proposed mutational process was reconstituted using synthetic DNA and purified proteins. First, single-stranded DNA containing 5-methylcytosine at CpG context was incubated at an elevated temperature to accelerate spontaneous DNA damage. Then, the DNA was treated with uracil DNA glycosylase to remove uracil residues that were formed by deamination of cytosine. The resulting DNA was then used as a template for DNA synthesis by yeast DNA polymerase δ. The DNA products were analyzed by next-generation DNA sequencing, and mutation frequencies were quantified. The observed mutations after this process were exclusively C>T mutations at CpG context, which was very similar to signature 1. When 5-methylcytosine modification and uracil DNA glycosylase were both omitted, C>T mutations were produced on C residues in all sequence contexts, but these mutations were diminished by uracil DNA glycosylase-treatment. These results indicate that the CpG>TpG mutations were produced by the deamination of 5-methylcytosine. Additional mutations, mainly C>G, were introduced by yeast DNA polymerase ζ on the heat-damaged DNA, indicating that G residues of the templates were also damaged. However, the damage on G residues was not converted to mutations with DNA polymerase δ or ε.


Asunto(s)
5-Metilcitosina , Calor , Mutación , Uracil-ADN Glicosidasa , 5-Metilcitosina/metabolismo , Uracil-ADN Glicosidasa/metabolismo , Uracil-ADN Glicosidasa/genética , Daño del ADN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Desaminación , Humanos , Islas de CpG , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética
4.
DNA Repair (Amst) ; 143: 103768, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39332392

RESUMEN

We show that the rates of single base substitutions, additions, and deletions across the nuclear genome are strongly increased in a strain harboring a mutator variant of DNA polymerase α combined with a mutation that inactivates the 3´-5´ exonuclease activity of DNA polymerase δ. Moreover, tetrad dissections attempting to produce a haploid triple mutant lacking Msh6, which is essential for DNA mismatch repair (MMR) of base•base mismatches made during replication, result in tiny colonies that grow very slowly and appear to be aneuploid and/or defective in oxidative metabolism. These observations are consistent with the hypothesis that during initiation of nuclear DNA replication, single-base mismatches made by naturally exonuclease-deficient DNA polymerase α are extrinsically proofread by DNA polymerase δ, such that in the absence of this proofreading, the mutation rate is strongly elevated. Several implications of these data are discussed, including that the mutational signature of defective extrinsic proofreading in yeast could appear in human tumors.


Asunto(s)
ADN Polimerasa III , ADN Polimerasa I , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética , Genoma Fúngico , Reparación de la Incompatibilidad de ADN , Replicación del ADN , Mutación , Tasa de Mutación , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Disparidad de Par Base , ADN de Hongos/metabolismo
5.
Nucleic Acids Res ; 52(17): 10416-10430, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39119921

RESUMEN

Tn3 family transposons are a widespread group of replicative transposons, notorious for contributing to the dissemination of antibiotic resistance, particularly the global prevalence of carbapenem resistance. The transposase (TnpA) of these elements catalyzes DNA breakage and rejoining reactions required for transposition. However, the molecular mechanism for target site selection with these elements remains unclear. Here, we identify a QLxxLR motif in N-terminal of Tn3 TnpAs and demonstrate that this motif allows interaction between TnpA of Tn3 family transposon Tn1721 and the host ß-sliding clamp (DnaN), the major processivity factor of the DNA replication machinery. The TnpA-DnaN interaction is essential for Tn1721 transposition. Our work unveils a mechanism whereby Tn3 family transposons can bias transposition into certain replisomes through an interaction with the host replication machinery. This study further expands the diversity of mobile elements that use interaction with the host replication machinery to bias integration.


Asunto(s)
Replicación del ADN , Elementos Transponibles de ADN , Transposasas , Elementos Transponibles de ADN/genética , Transposasas/metabolismo , Transposasas/genética , Replicación del ADN/genética , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Unión Proteica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Secuencias de Aminoácidos
6.
Neoplasia ; 57: 101038, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39128273

RESUMEN

The ATR-CHK1 pathway plays a fundamental role in the DNA damage response and is therefore an attractive target in cancer therapy. The antitumorous effect of ATR inhibitors is at least partly caused by synthetic lethality between ATR and various DNA repair genes. In previous studies, we have identified members of the B-family DNA polymerases as potential lethal partner for ATR, i.e. POLD1 and PRIM1. In this study, we validated and characterized the synthetic lethality between ATR and POLA1. First, we applied a model of ATR-deficient DLD-1 human colorectal cancer cells to confirm synthetic lethality by using chemical POLA1 inhibition. Analyzing cell cycle and apoptotic markers via FACS and Western blotting, we were able to show that apoptosis and S phase arrest contributed to the increased sensitivity of ATR-deficient cancer cells towards POLA1 inhibitors. Importantly, siRNA-mediated POLA1 depletion in ATR-deficient cells caused similar effects in regard to impaired cell viability and cumulation of apoptotic markers, thus excluding toxic effects of chemical POLA1 inhibition. Conversely, we demonstrated that siRNA-mediated POLA1 depletion sensitized several cancer cell lines towards chemical inhibition of ATR and its main effector kinase CHK1. In conclusion, the synthetic lethality between ATR/CHK1 and POLA1 might represent a novel and promising approach for individualized cancer therapy: First, alterations of POLA1 could serve as a screening parameter for increased sensitivity towards ATR and CHK1 inhibitors. Second, alterations in the ATR-CHK1 pathway might predict in increased sensitivity towards POLA1 inhibitors.


Asunto(s)
Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada , Mutaciones Letales Sintéticas , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Medicina de Precisión/métodos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Supervivencia Celular/efectos de los fármacos , Terapia Molecular Dirigida , Daño del ADN
7.
Sci Adv ; 10(32): eado1739, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121223

RESUMEN

During lagging strand chromatin replication, multiple Okazaki fragments (OFs) require processing and nucleosome assembly, but the mechanisms linking these processes remain unclear. Here, using transmission electron microscopy and rapid degradation of DNA ligase Cdc9, we observed flap structures accumulated on lagging strands, controlled by both Pol δ's strand displacement activity and Fen1's nuclease digestion. The distance between neighboring flap structures exhibits a regular pattern, indicative of matured OF length. While fen1Δ or enhanced strand displacement activities by polymerase δ (Pol δ; pol3exo-) minimally affect inter-flap distance, mutants affecting replication-coupled nucleosome assembly, such as cac1Δ and mcm2-3A, do significantly alter it. Deletion of Pol32, a subunit of DNA Pol δ, significantly increases this distance. Mechanistically, Pol32 binds to histone H3-H4 and is critical for nucleosome assembly on the lagging strand. Together, we propose that Pol32 establishes a connection between nucleosome assembly and the processing of OFs on lagging strands.


Asunto(s)
ADN Polimerasa III , ADN , Histonas , Nucleosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Nucleosomas/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , ADN/metabolismo , Replicación del ADN , Unión Proteica , ADN Polimerasa Dirigida por ADN
8.
DNA Repair (Amst) ; 141: 103740, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096696

RESUMEN

An organism's genomic DNA must be accurately duplicated during each cell cycle. DNA synthesis is catalysed by DNA polymerase enzymes, which extend nucleotide polymers in a 5' to 3' direction. This inherent directionality necessitates that one strand is synthesised forwards (leading), while the other is synthesised backwards discontinuously (lagging) to couple synthesis to the unwinding of duplex DNA. Eukaryotic cells possess many diverse polymerases that coordinate to replicate DNA, with the three main replicative polymerases being Pol α, Pol δ and Pol ε. Studies conducted in yeasts and human cells utilising mutant polymerases that incorporate molecular signatures into nascent DNA implicate Pol ε in leading strand synthesis and Pol α and Pol δ in lagging strand replication. Recent structural insights have revealed how the spatial organization of these enzymes around the core helicase facilitates their strand-specific roles. However, various challenging situations during replication require flexibility in the usage of these enzymes, such as during replication initiation or encounters with replication-blocking adducts. This review summarises the roles of the replicative polymerases in bulk DNA replication and explores their flexible and dynamic deployment to complete genome replication. We also examine how polymerase usage patterns can inform our understanding of global replication dynamics by revealing replication fork directionality to identify regions of replication initiation and termination.


Asunto(s)
Replicación del ADN , Humanos , ADN/metabolismo , ADN/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , ADN Polimerasa II/metabolismo , Eucariontes/enzimología , Eucariontes/genética , ADN Polimerasa III/metabolismo , Células Eucariotas/metabolismo , Células Eucariotas/enzimología , ADN Polimerasa I/metabolismo
9.
Nucleic Acids Res ; 52(15): 8880-8896, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38967018

RESUMEN

The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45-MCM-GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.


Asunto(s)
Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma , Proteína de Replicación A , Virus 40 de los Simios , Virus 40 de los Simios/metabolismo , Virus 40 de los Simios/genética , Humanos , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Proteína de Replicación A/metabolismo , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , ADN Viral/metabolismo , ADN Viral/genética , Replicación Viral , Imagen Individual de Molécula , Antígenos Transformadores de Poliomavirus/metabolismo , Antígenos Transformadores de Poliomavirus/genética , ADN de Cadena Simple/metabolismo , ADN Polimerasa Dirigida por ADN , Complejos Multienzimáticos
11.
Sci Adv ; 10(23): eadn5175, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38838138

RESUMEN

Inheritance of epigenetic information is critical for maintaining cell identity. The transfer of parental histone H3-H4 tetramers, the primary carrier of epigenetic modifications on histone proteins, represents a crucial yet poorly understood step in the inheritance of epigenetic information. Here, we show the lagging strand DNA polymerase, Pol δ, interacts directly with H3-H4 and that the interaction between Pol δ and the sliding clamp PCNA regulates parental histone transfer to lagging strands, most likely independent of their roles in DNA synthesis. When combined, mutations at Pol δ and Mcm2 that compromise parental histone transfer result in a greater reduction in nucleosome occupancy at nascent chromatin than mutations in either alone. Last, PCNA contributes to nucleosome positioning on nascent chromatin. On the basis of these results, we suggest that the PCNA-Pol δ complex couples lagging strand DNA synthesis to parental H3-H4 transfer, facilitating epigenetic inheritance.


Asunto(s)
ADN Polimerasa III , Replicación del ADN , Epigénesis Genética , Histonas , Antígeno Nuclear de Célula en Proliferación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Histonas/metabolismo , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Nucleosomas/metabolismo , Nucleosomas/genética , ADN/metabolismo , Humanos , Unión Proteica , Mutación , Cromatina/metabolismo , Cromatina/genética
12.
Nucleic Acids Res ; 52(13): 7650-7664, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38842913

RESUMEN

DNA polymerase δ (pol δ) holoenzymes, comprised of pol δ and the processivity sliding clamp, PCNA, carry out DNA synthesis during lagging strand replication, initiation of leading strand replication, and the major DNA damage repair and tolerance pathways. Pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a stepwise process involving the major single strand DNA (ssDNA)-binding protein complex, RPA, the processivity sliding clamp loader, RFC, PCNA and pol δ. During this process, the interactions of RPA, RFC and pol δ with a P/T junction all significantly overlap. A burning issue that has yet to be resolved is how these overlapping interactions are accommodated during this process. To address this, we design and utilize novel, ensemble FRET assays that continuously monitor the interactions of RPA, RFC, PCNA and pol δ with DNA as pol δ holoenzymes are assembled and initiate DNA synthesis. Results from the present study reveal that RPA remains engaged with P/T junctions throughout this process and the RPA•DNA complexes dynamically re-organize to allow successive binding of RFC and pol δ. These results have broad implications as they highlight and distinguish the functional consequences of dynamic RPA•DNA interactions in RPA-dependent DNA metabolic processes.


Asunto(s)
ADN Polimerasa III , Replicación del ADN , ADN , Antígeno Nuclear de Célula en Proliferación , Proteína de Replicación A , Proteína de Replicación C , Moldes Genéticos , Proteína de Replicación A/metabolismo , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Holoenzimas/metabolismo , ADN/metabolismo , ADN/biosíntesis , Proteína de Replicación C/metabolismo , Proteína de Replicación C/genética , Cartilla de ADN/genética , Transferencia Resonante de Energía de Fluorescencia , Humanos
13.
Int J Biol Macromol ; 273(Pt 2): 133187, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38880460

RESUMEN

The coordination of enzymes and regulatory proteins for eukaryotic DNA replication and repair is largely achieved by Proliferating Cell Nuclear Antigen (PCNA), a toroidal homotrimeric protein that embraces the DNA duplex. Many proteins bind PCNA through a conserved sequence known as the PCNA interacting protein motif (PIP). PCNA is further regulated by different post-translational modifications. Phosphorylation at residue Y211 facilitates unlocking stalled replication forks to bypass DNA damage repair processes but increasing nucleotide misincorporation. We explore here how phosphorylation at Y211 affects PCNA recognition of the canonical PIP sequences of the regulatory proteins p21 and p15, which bind with nM and µM affinity, respectively. For that purpose, we have prepared PCNA with p-carboxymethyl-L-phenylalanine (pCMF, a mimetic of phosphorylated tyrosine) at position 211. We have also characterized PCNA binding to the non-canonical PIP sequence of the catalytic subunit of DNA polymerase δ (p125), and to the canonical PIP sequence of the enzyme ubiquitin specific peptidase 29 (USP29) which deubiquitinates PCNA. Our results show that Tyr211 phosphorylation has little effect on the molecular recognition of p21 and p15, and that the PIP sequences of p125 and USP29 bind to the same site on PCNA as other PIP sequences, but with very low affinity.


Asunto(s)
Antígeno Nuclear de Célula en Proliferación , Unión Proteica , Tirosina , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Fosforilación , Tirosina/metabolismo , Tirosina/química , Humanos , Secuencias de Aminoácidos , ADN Polimerasa III/metabolismo , ADN Polimerasa III/química , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/química
14.
Proc Natl Acad Sci U S A ; 121(20): e2400610121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713623

RESUMEN

Chromatin replication is intricately intertwined with the recycling of parental histones to the newly duplicated DNA strands for faithful genetic and epigenetic inheritance. The transfer of parental histones occurs through two distinct pathways: leading strand deposition, mediated by the DNA polymerase ε subunits Dpb3/Dpb4, and lagging strand deposition, facilitated by the MCM helicase subunit Mcm2. However, the mechanism of the facilitation of Mcm2 transferring parental histones to the lagging strand while moving along the leading strand remains unclear. Here, we show that the deletion of Pol32, a nonessential subunit of major lagging-strand DNA polymerase δ, results in a predominant transfer of parental histone H3-H4 to the leading strand during replication. Biochemical analyses further demonstrate that Pol32 can bind histone H3-H4 both in vivo and in vitro. The interaction of Pol32 with parental histone H3-H4 is disrupted through the mutation of the histone H3-H4 binding domain within Mcm2. Our findings identify the DNA polymerase δ subunit Pol32 as a critical histone chaperone downstream of Mcm2, mediating the transfer of parental histones to the lagging strand during DNA replication.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , Proteínas de Saccharomyces cerevisiae , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Histonas/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ADN Polimerasa Dirigida por ADN/metabolismo
15.
Cell Rep ; 43(5): 114205, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753485

RESUMEN

The advent of PARP inhibitors (PARPis) has profoundly changed the treatment landscape of BRCA1/BRCA2-mutated cancers. Despite this, the development of resistance to these compounds has become a major challenge. Hence, a detailed understanding of the mechanisms underlying PARPi sensitivity is crucially needed. Here, we show that loss of the POLE3-POLE4 subunits of DNA polymerase epsilon (Polε) strongly sensitizes cancer cells to PARPis in a Polε level-independent manner. Loss of POLE3-POLE4 is not associated with defective RAD51 foci formation, excluding a major defect in homologous recombination. On the contrary, treatment with PARPis triggers replicative gap accumulation in POLE3-POLE4 knockout (KO) cells in a PRIMPOL-dependent manner. In addition to this, the loss of POLE3-POLE4 further sensitizes BRCA1-silenced cells to PARPis. Importantly, the knockdown of 53BP1 does not rescue PARPi sensitivity in POLE3-POLE4 KO cells, bypassing a common PARPi resistance mechanism and outlining a potential strategy to sensitize cancer cells to PARPis.


Asunto(s)
ADN Polimerasa III , Replicación del ADN , ADN Polimerasa Dirigida por ADN , Resistencia a Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Línea Celular Tumoral , ADN Polimerasa II/metabolismo , Replicación del ADN/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Recombinasa Rad51/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , ADN Polimerasa III/efectos de los fármacos , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , ADN Polimerasa Dirigida por ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética
16.
Cell Mol Life Sci ; 81(1): 245, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814467

RESUMEN

DNA replication is a tightly coordinated event carried out by a multiprotein replication complex. An essential factor in the bacterial replication complex is the ring-shaped DNA sliding clamp, ß-clamp, ensuring processive DNA replication and DNA repair through tethering of polymerases and DNA repair proteins to DNA. ß -clamp is a hub protein with multiple interaction partners all binding through a conserved clamp binding sequence motif. Due to its central role as a DNA scaffold protein, ß-clamp is an interesting target for antimicrobial drugs, yet little effort has been put into understanding the functional interactions of ß-clamp. In this review, we scrutinize the ß-clamp structure and dynamics, examine how its interactions with a plethora of binding partners are regulated through short linear binding motifs and discuss how contexts play into selection. We describe the dynamic process of clamp loading onto DNA and cover the recent advances in drug development targeting ß-clamp. Despite decades of research in ß-clamps and recent landmark structural insight, much remains undisclosed fostering an increased focus on this very central protein.


Asunto(s)
Proteínas Bacterianas , Replicación del ADN , ADN Bacteriano , Descubrimiento de Drogas , ADN Bacteriano/metabolismo , ADN Bacteriano/química , Descubrimiento de Drogas/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Unión Proteica , ADN Polimerasa III/metabolismo , ADN Polimerasa III/química , Modelos Moleculares , Bacterias/metabolismo , Bacterias/genética , Reparación del ADN
17.
Sci Rep ; 14(1): 9988, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693346

RESUMEN

mRNA medicines can be used to express therapeutic proteins, but the production of such proteins in non-target cells has a risk of adverse effects. To accurately distinguish between therapeutic target and nontarget cells, it is desirable to utilize multiple proteins expressed in each cell as indicators. To achieve such multi-input translational regulation of mRNA medicines, in this study, we engineered Rhodothermus marinus (Rma) DnaB intein to develop "caged Rma DnaB intein" that enables conditional reconstitution of full-length translational regulator protein from split fragments. By combining the caged Rma DnaB intein, the split translational regulator protein, and target protein-binding domains, we succeeded in target protein-dependent translational repression of mRNA in human cells. In addition, the caged Rma intein showed orthogonality to the previously reported Nostoc punctiforme (Npu) DnaE-based caged intein. Finally, by combining these two orthogonal caged inteins, we developed an mRNA-based logic gate that regulates translation based on the expression of multiple intracellular proteins. This study provides important information to develop safer mRNA medicines.


Asunto(s)
Inteínas , Biosíntesis de Proteínas , ARN Mensajero , Inteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humanos , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(19): e2318438121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38696464

RESUMEN

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication, evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), including C-circles, are unique to ALT cells, their generation process remains undefined. Here, we introduce a method to detect single-stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single-stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear and circular C-rich ssDNAs are generated concurrently. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.


Asunto(s)
ADN de Cadena Simple , Homeostasis del Telómero , Telómero , Telómero/genética , Telómero/metabolismo , Humanos , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Replicación del ADN , ADN/genética , ADN/metabolismo , ADN Circular/genética , ADN Circular/metabolismo , Southern Blotting , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética
19.
Biochemistry ; 63(8): 969-983, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623046

RESUMEN

Fragile sites are unstable genomic regions that are prone to breakage during stressed DNA replication. Several common fragile sites (CFS) contain A+T-rich regions including perfect [AT/TA] microsatellite repeats that may collapse into hairpins when in single-stranded DNA (ssDNA) form and coincide with chromosomal hotspots for breakage and rearrangements. While many factors contribute to CFS instability, evidence exists for replication stalling within [AT/TA] microsatellite repeats. Currently, it is unknown how stress causes replication stalling within [AT/TA] microsatellite repeats. To investigate this, we utilized FRET to characterize the structures of [AT/TA]25 sequences and also reconstituted lagging strand replication to characterize the progression of pol δ holoenzymes through A+T-rich sequences. The results indicate that [AT/TA]25 sequences adopt hairpins that are unwound by the major ssDNA-binding complex, RPA, and the progression of pol δ holoenzymes through A+T-rich sequences saturated with RPA is dependent on the template sequence and dNTP concentration. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on dNTP concentration, whereas the effects of RPA on the replication of A+T-rich, nonstructure-forming sequences are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how [AT/TA] microsatellite repeats contribute to genome instability.


Asunto(s)
ADN Polimerasa III , Replicación del ADN , Humanos , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , ADN de Cadena Simple/genética , Holoenzimas/genética , Repeticiones de Microsatélite , Nucleótidos
20.
Eur J Hum Genet ; 32(7): 837-845, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38658779

RESUMEN

Constitutional heterozygous pathogenic variants in the exonuclease domain of POLE and POLD1, which affect the proofreading activity of the corresponding polymerases, cause a cancer predisposition syndrome characterized by increased risk of gastrointestinal polyposis, colorectal cancer, endometrial cancer and other tumor types. The generally accepted explanation for the connection between the disruption of the proofreading activity of polymerases epsilon and delta and cancer development is through an increase in the somatic mutation rate. Here we studied an extended family with multiple members heterozygous for the pathogenic POLD1 variant c.1421T>C p.(Leu474Pro), which segregates with the polyposis and cancer phenotypes. Through the analysis of mutational patterns of patient-derived fibroblasts colonies and de novo mutations obtained by parent-offspring comparisons, we concluded that heterozygous POLD1 L474P just subtly increases the somatic and germline mutation burden. In contrast, tumors developed in individuals with a heterozygous mutation in the exonuclease domain of POLD1, including L474P, have an extremely high mutation rate (>100 mut/Mb) associated with signature SBS10d. We solved this contradiction through the observation that tumorigenesis involves somatic inactivation of the wildtype POLD1 allele. These results imply that exonuclease deficiency of polymerase delta has a recessive effect on mutation rate.


Asunto(s)
ADN Polimerasa III , Humanos , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Femenino , Masculino , Linaje , Heterocigoto , Genes Recesivos , Neoplasias/genética , Neoplasias/patología , Mutación , Mutación de Línea Germinal , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA