Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.455
Filtrar
1.
DNA Repair (Amst) ; 142: 103758, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39236419

RESUMEN

Timely and accurate DNA replication is critical for safeguarding genome integrity and ensuring cell viability. Yet, this process is challenged by DNA damage blocking the progression of the replication machinery. To counteract replication fork stalling, evolutionary conserved DNA damage tolerance (DDT) mechanisms promote DNA damage bypass and fork movement. One of these mechanisms involves "skipping" DNA damage through repriming downstream of the lesion, leaving single-stranded DNA (ssDNA) gaps behind the advancing forks (also known as post-replicative gaps). In vertebrates, repriming in damaged leading templates is proposed to be mainly promoted by the primase and polymerase PRIMPOL. In this review, we discuss recent advances towards our understanding of the physiological and pathological conditions leading to repriming activation in human models, revealing a regulatory network of PRIMPOL activity. Upon repriming by PRIMPOL, post-replicative gaps formed can be filled-in by the DDT mechanisms translesion synthesis and template switching. We discuss novel findings on how these mechanisms are regulated and coordinated in time to promote gap filling. Finally, we discuss how defective gap filling and aberrant gap expansion by nucleases underlie the cytotoxicity associated with post-replicative gap accumulation. Our increasing knowledge of this repriming mechanism - from gap formation to gap filling - is revealing that targeting the last step of this pathway is a promising approach to exploit post-replicative gaps in anti-cancer therapeutic strategies.


Asunto(s)
Daño del ADN , ADN Primasa , Replicación del ADN , ADN Polimerasa Dirigida por ADN , Humanos , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , Reparación del ADN , Enzimas Multifuncionales/metabolismo , ADN de Cadena Simple/metabolismo
2.
Mol Cell ; 84(16): 3044-3060.e11, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39142279

RESUMEN

G-quadruplexes (G4s) form throughout the genome and influence important cellular processes. Their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected role for the double-stranded DNA (dsDNA) translocase helicase-like transcription factor (HLTF) in responding to G4s. We show that HLTF, which is enriched at G4s in the human genome, can directly unfold G4s in vitro and uses this ATP-dependent translocase function to suppress G4 accumulation throughout the cell cycle. Additionally, MSH2 (a component of MutS heterodimers that bind G4s) and HLTF act synergistically to suppress G4 accumulation, restrict alternative lengthening of telomeres, and promote resistance to G4-stabilizing drugs. In a discrete but complementary role, HLTF restrains DNA synthesis when G4s are stabilized by suppressing primase-polymerase (PrimPol)-dependent repriming. Together, the distinct roles of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.


Asunto(s)
ADN Primasa , Replicación del ADN , Proteínas de Unión al ADN , G-Cuádruplex , Inestabilidad Genómica , Proteína 2 Homóloga a MutS , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 2 Homóloga a MutS/genética , ADN Primasa/metabolismo , ADN Primasa/genética , Homeostasis del Telómero , Daño del ADN , Células HEK293 , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/genética , ADN Polimerasa Dirigida por ADN
3.
DNA Repair (Amst) ; 142: 103741, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153403

RESUMEN

PrimPol is a human DNA primase involved in DNA damage tolerance pathways by restarting DNA replication downstream of DNA lesions and non-canonical DNA structures. Activity and affinity to DNA relays on the interaction of PrimPol with replication protein A (RPA). In this work, we report that PrimPol has an intrinsic ability to copy DNA hairpins with a stem length of 5-9 base pairs (bp) but shows pronounced pausing of DNA synthesis. RPA greatly stimulates DNA synthesis across inverted DNA repeats by PrimPol. Moreover, deletion of the C-terminal RPA binding motif (RBM) facilitates DNA hairpin bypass and makes it independent of RPA. This work supports the idea that RBM is a negative regulator of PrimPol and its interaction with RPA is required to achieve the fully active state.


Asunto(s)
ADN Primasa , Replicación del ADN , ADN , Humanos , ADN Primasa/metabolismo , ADN Primasa/química , ADN Primasa/genética , ADN/metabolismo , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/química , Proteína de Replicación A/metabolismo , Conformación de Ácido Nucleico , ADN Polimerasa Dirigida por ADN/metabolismo , Secuencias Invertidas Repetidas , Unión Proteica
4.
Nat Commun ; 15(1): 7375, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191785

RESUMEN

PARP inhibitors (PARPi), known for their ability to induce replication gaps and accelerate replication forks, have become potent agents in anticancer therapy. However, the molecular mechanism underlying PARPi-induced fork acceleration has remained elusive. Here, we show that the first PARPi-induced effect on DNA replication is an increased replication fork rate, followed by a secondary reduction in origin activity. Through the systematic knockdown of human DNA polymerases, we identify POLA1 as mediator of PARPi-induced fork acceleration. This acceleration depends on both DNA polymerase α and primase activities. Additionally, the depletion of POLA1 increases the accumulation of replication gaps induced by PARP inhibition, sensitizing cells to PARPi. BRCA1-depleted cells are especially susceptible to the formation of replication gaps under POLA1 inhibition. Accordingly, BRCA1 deficiency sensitizes cells to POLA1 inhibition. Thus, our findings establish the POLA complex as important player in PARPi-induced fork acceleration and provide evidence that lagging strand synthesis represents a targetable vulnerability in BRCA1-deficient cells.


Asunto(s)
Proteína BRCA1 , ADN Primasa , Replicación del ADN , ADN de Cadena Simple , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , ADN Primasa/metabolismo , ADN Primasa/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Replicación del ADN/efectos de los fármacos , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Línea Celular Tumoral , ADN Polimerasa I
5.
Sci Adv ; 10(34): eadl1150, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39167653

RESUMEN

An outbreak of mpox virus in May 2022 has spread over 110 nonpandemic regions in the world, posing a great threat to global health. Mpox virus E5, a helicase-primase, plays an essential role in DNA replication, but the molecular mechanisms are elusive. Here, we report seven structures of mpox virus E5 in a double hexamer (DH) and six in single hexamer in different conformations, indicating a rotation mechanism for helicase and a coupling action for primase. The DH is formed through the interface of zinc-binding domains, and the central channel density indicates potential double-stranded DNA (dsDNA), which helps to identify dsDNA binding residues Arg249, Lys286, Lys315, and Lys317. Our work is important not only for understanding poxviral DNA replication but also for the development of novel therapeutics for serious poxviral infections including smallpox virus and mpox virus.


Asunto(s)
ADN Helicasas , ADN Primasa , ADN Primasa/metabolismo , ADN Primasa/química , ADN Helicasas/metabolismo , ADN Helicasas/química , Modelos Moleculares , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Multimerización de Proteína , Replicación del ADN , Unión Proteica , ADN Viral/metabolismo
6.
Subcell Biochem ; 104: 73-100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963484

RESUMEN

Telomeres at the end of eukaryotic chromosomes are extended by a specialized set of enzymes and telomere-associated proteins, collectively termed here the telomere "replisome." The telomere replisome acts on a unique replicon at each chromosomal end of the telomeres, the 3' DNA overhang. This telomere replication process is distinct from the replisome mechanism deployed to duplicate the human genome. The G-rich overhang is first extended before the complementary C-strand is filled in. This overhang is extended by telomerase, a specialized ribonucleoprotein and reverse transcriptase. The overhang extension process is terminated when telomerase is displaced by CTC1-STN1-TEN1 (CST), a single-stranded DNA-binding protein complex. CST then recruits DNA polymerase α-primase to complete the telomere replication process by filling in the complementary C-strand. In this chapter, the recent structure-function insights into the human telomere C-strand fill-in machinery (DNA polymerase α-primase and CST) will be discussed.


Asunto(s)
ADN Polimerasa I , ADN Primasa , Replicación del ADN , Proteínas de Unión a Telómeros , Telómero , Humanos , Telómero/metabolismo , Telómero/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética , ADN Polimerasa I/química , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Primasa/química , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Telomerasa/metabolismo , Telomerasa/genética
7.
Nucleic Acids Res ; 52(14): 8320-8331, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38917325

RESUMEN

Replication repriming by the specialized primase-polymerase PRIMPOL ensures the continuity of DNA synthesis during replication stress. PRIMPOL activity generates residual post-replicative single-stranded nascent DNA gaps, which are linked with mutagenesis and chemosensitivity in BRCA1/2-deficient models, and which are suppressed by replication fork reversal mediated by the DNA translocases SMARCAL1 and ZRANB3. Here, we report that the MRE11 regulator MRNIP limits the prevalence of PRIMPOL and MRE11-dependent ssDNA gaps in cells in which fork reversal is perturbed either by treatment with the PARP inhibitor Olaparib, or by depletion of SMARCAL1 or ZRANB3. MRNIP-deficient cells are sensitive to PARP inhibition and accumulate PRIMPOL-dependent DNA damage, supportive of a pro-survival role for MRNIP linked to the regulation of gap prevalence. In MRNIP-deficient cells, post-replicative gap filling is driven in S-phase by UBC13-mediated template switching involving REV1 and the TLS polymerase Pol-ζ. Our findings represent the first report of modulation of post-replicative ssDNA gap dynamics by a direct MRE11 regulator.


Asunto(s)
ADN Helicasas , ADN Primasa , Replicación del ADN , ADN de Cadena Simple , ADN Polimerasa Dirigida por ADN , Proteína Homóloga de MRE11 , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Humanos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Daño del ADN , Ftalazinas/farmacología , Piperazinas/farmacología , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética
8.
RNA ; 30(9): 1213-1226, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38918043

RESUMEN

Telomere replication is essential for continued proliferation of human cells, such as stem cells and cancer cells. Telomerase lengthens the telomeric G-strand, while C-strand replication is accomplished by CST-polymerase α-primase (CST-PP). Replication of both strands is inhibited by formation of G-quadruplex (GQ) structures in the G-rich single-stranded DNA. TMPyP4 and pyridostatin (PDS), which stabilize GQ structures in both DNA and RNA, inhibit telomerase in vitro, and in human cells they cause telomere shortening that has been attributed to telomerase inhibition. Here, we show that TMPyP4 and PDS also inhibit C-strand synthesis by stabilizing DNA secondary structures and thereby preventing CST-PP from binding to telomeric DNA. We also show that these small molecules inhibit CST-PP binding to a DNA sequence containing no consecutive guanine residues, which is unlikely to form GQs. Thus, while these "telomerase inhibitors" indeed inhibit telomerase, they are also robust inhibitors of telomeric C-strand synthesis. Furthermore, given their binding to GQ RNA and their limited specificity for GQ structures, they may disrupt many other protein-nucleic acid interactions in human cells.


Asunto(s)
Inhibidores Enzimáticos , G-Cuádruplex , Telomerasa , Telómero , Telomerasa/antagonistas & inhibidores , Telomerasa/metabolismo , Telomerasa/genética , Humanos , Telómero/metabolismo , G-Cuádruplex/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Ácidos Picolínicos/farmacología , Ácidos Picolínicos/química , Replicación del ADN/efectos de los fármacos , ADN Polimerasa I/antagonistas & inhibidores , ADN Polimerasa I/metabolismo , ADN/metabolismo , Aminoquinolinas , Porfirinas , ADN Primasa
9.
Cell ; 187(14): 3638-3651.e18, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838667

RESUMEN

Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.


Asunto(s)
ADN Polimerasa I , Complejo Shelterina , Proteínas de Unión a Telómeros , Telómero , Humanos , Microscopía por Crioelectrón , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , ADN Primasa/genética , Modelos Moleculares , Fosforilación , Complejo Shelterina/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo
10.
Biophys J ; 123(12): 1648-1653, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38733082

RESUMEN

DNA primase is an iron sulfur enzyme in DNA replication responsible for synthesizing short RNA primers that serve as starting points for DNA synthesis. The role of the [4Fe-4S] cluster is not well determined. Here, we calculate the redox potential of the [4Fe-4S] with and without DNA/RNA using continuum electrostatics. In addition, we identify the structural changes coupled to the oxidation/reduction. Our calculations show that the DNA/RNA primer lowers the redox potential by 110 and 50 mV for the [4Fe-4S]+ and [4Fe-4S]2+ states, respectively. The oxidation of the cluster is coupled to structural changes that significantly reduce the binding energies between the DNA and the nearby residues. The negative charges accumulated by the DNA and the RNA primers induce the oxidation of the [4Fe-4S] cluster. This in turn stimulates structural changes on the DNA-protein interface that significantly reduce the binding energies.


Asunto(s)
ADN Primasa , Proteínas Hierro-Azufre , Oxidación-Reducción , Unión Proteica , ARN , ADN Primasa/metabolismo , ADN Primasa/química , ARN/metabolismo , ARN/química , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , ADN/metabolismo , ADN/química , Termodinámica , Modelos Moleculares
11.
FEBS J ; 291(9): 1889-1891, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581152

RESUMEN

Several recent cryo-electron microscopy (cryo-EM) studies about the eukaryotic primosome, including the human primosome described by Yin et al. in this issue, have uncovered the structural intricacies between the RNA primase and the DNA polymerase. These studies show that these two partners tango on DNA to synthesize a hybrid primer composed of ~ 10 nucleotide (nt) RNA and ~ 10-nt DNA. They reveal key intermediate steps involved in this process; from the self-inhibited apo state to the initiation of RNA primer synthesis, RNA primer handover to the polymerase, primer elongation by polymerase, and finally, primer termination and release. Remarkably, the polymerase domain orchestrates all major steps during primer synthesis.


Asunto(s)
ADN Polimerasa I , ADN , ARN , Humanos , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/química , ADN Primasa/metabolismo , ADN Primasa/química , ADN Primasa/genética , Cartilla de ADN/genética , Replicación del ADN , ARN/química , ARN/metabolismo , ARN/genética
12.
Viruses ; 16(4)2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38675856

RESUMEN

CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative analysis indicated that epsilon crAss-like phages are divided into two putative genera, which were proposed to be named Epsilonunovirus and Epsilonduovirus; CrAssE-Sib belongs to the former. The crAssE-Sib genome contains a diversity-generating retroelement (DGR) cassette with all essential elements, including the reverse transcriptase (RT) and receptor binding protein (RBP) genes. However, this RT contains the GxxxSP motif in its fourth domain instead of the usual GxxxSQ motif found in all known phage and bacterial DGRs. RBP encoded by CrAssE-Sib and other Epsilonunoviruses has an unusual structure, and no similar phage proteins were found. In addition, crAssE-Sib and other Epsilonunoviruses encode conserved prophage repressor and anti-repressors that could be involved in lysogenic-to-lytic cycle switches. Notably, DNA primase sequences of epsilon crAss-like phages are not included in the monophyletic group formed by the DNA primases of all other crAss-like phages. Therefore, epsilon crAss-like phage substantially differ from other crAss-like phages, indicating the need to classify these phages into a separate family.


Asunto(s)
Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/clasificación , Proteínas Virales/genética , Proteínas Virales/metabolismo , Retroelementos , Variación Genética , Profagos/genética , ADN Viral/genética , ADN Primasa/genética , ADN Primasa/metabolismo , Genómica/métodos , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(18): e2319205121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652748

RESUMEN

The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.


Asunto(s)
Escherichia coli , Plásmidos , Plásmidos/metabolismo , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Segregación Cromosómica , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
14.
Nucleic Acids Res ; 52(9): 4818-4829, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38597656

RESUMEN

Protein binding microarrays (PBM), SELEX, RNAcompete and chromatin-immunoprecipitation have been intensively used to determine the specificity of nucleic acid binding proteins. While the specificity of proteins with pronounced sequence specificity is straightforward, the determination of the sequence specificity of proteins of modest sequence specificity is more difficult. In this work, an explorative data analysis workflow for nucleic acid binding data was developed that can be used by scientists that want to analyse their binding data. The workflow is based on a regressor realized in scikit-learn, the major machine learning module for the scripting language Python. The regressor is built on a thermodynamic model of nucleic acid binding and describes the sequence specificity with base- and position-specific energies. The regressor was used to determine the binding specificity of the T7 primase. For this, we reanalysed the binding data of the T7 primase obtained with a custom PBM. The binding specificity of the T7 primase agrees with the priming specificity (5'-GTC) and the template (5'-GGGTC) for the preferentially synthesized tetraribonucleotide primer (5'-pppACCC) but is more relaxed. The dominant contribution of two positions in the motif can be explained by the involvement of the initiating and elongating nucleotides for template binding.


Asunto(s)
Bacteriófago T7 , ADN Primasa , Bacteriófago T7/enzimología , Sitios de Unión , ADN Primasa/metabolismo , ADN Primasa/química , Análisis por Matrices de Proteínas/métodos , Unión Proteica , Termodinámica , Proteínas Virales/metabolismo , Proteínas Virales/química
15.
Bioorg Med Chem Lett ; 106: 129761, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642810

RESUMEN

Helicase-primase is an interesting target for the therapy of herpes simplex virus (HSV) infections. Since amenamevir is already approved for varicella-zoster virus (VZV) and HSV in Japan and pritelivir has received breakthrough therapy status for the treatment of acyclovir-resistant HSV infections in immunocompromised patients, the target has sparked interest in me-too approaches. Here, we describe the attempt to improve nervous tissue penetration in Phaeno Therapeutics drug candidate HN0037 to target the latent reservoir of HSV by installing less polar moieties, mainly a difluorophenyl instead of a pyridyl group, and replacing the primary sulfonamide with a methyl sulfoximine moiety. However, all obtained stereoisomers exhibited a weaker inhibitory activity on HSV-1 and HSV-2.


Asunto(s)
Antivirales , ADN Primasa , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , ADN Primasa/antagonistas & inhibidores , ADN Primasa/metabolismo , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/metabolismo , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 2/efectos de los fármacos , Humanos , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Relación Dosis-Respuesta a Droga , Iminas/química , Iminas/farmacología , Iminas/síntesis química
16.
J Am Chem Soc ; 146(14): 9583-9596, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38538061

RESUMEN

Primases are crucial enzymes for DNA replication, as they synthesize a short primer required for initiating DNA replication. We herein present time-resolved nuclear magnetic resonance (NMR) spectroscopy in solution and in the solid state to study the initial dinucleotide formation reaction of archaeal pRN1 primase. Our findings show that the helix-bundle domain (HBD) of pRN1 primase prepares the two substrates and then hands them over to the catalytic domain to initiate the reaction. By using nucleotide triphosphate analogues, the reaction is substantially slowed down, allowing us to study the initial dinucleotide formation in real time. We show that the sedimented protein-DNA complex remains active in the solid-state NMR rotor and that time-resolved 31P-detected cross-polarization experiments allow monitoring the kinetics of dinucleotide formation. The kinetics in the sedimented protein sample are comparable to those determined by solution-state NMR. Protein conformational changes during primer synthesis are observed in time-resolved 1H-detected experiments at fast magic-angle spinning frequencies (100 kHz). A significant number of spectral changes cluster in the HBD pointing to the importance of the HBD for positioning the nucleotides and the dinucleotide.


Asunto(s)
Carcinoma Papilar , Carcinoma de Células Renales , ADN Primasa , Replicación del ADN , Neoplasias de la Tiroides , ADN Primasa/química , Nucleótidos , Espectroscopía de Resonancia Magnética
17.
Nature ; 629(8011): 467-473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471529

RESUMEN

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Asunto(s)
Bacillus cereus , Proteínas Bacterianas , Bacteriófagos , Microscopía por Crioelectrón , Inmunidad Innata , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Apoproteínas/química , Apoproteínas/inmunología , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Bacteriófagos/inmunología , ADN/metabolismo , ADN/química , División del ADN , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Viabilidad Microbiana , Bacillus cereus/química , Bacillus cereus/inmunología , Bacillus cereus/metabolismo , Bacillus cereus/ultraestructura , Estructura Cuaternaria de Proteína , ADN Primasa/química , ADN Primasa/metabolismo , ADN Primasa/ultraestructura , ADN-Topoisomerasas/química , ADN-Topoisomerasas/metabolismo , ADN-Topoisomerasas/ultraestructura
18.
Nat Struct Mol Biol ; 31(5): 777-790, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491139

RESUMEN

The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of Xenopus laevis polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5' end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer-template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.


Asunto(s)
Microscopía por Crioelectrón , ADN Polimerasa I , ADN Primasa , Replicación del ADN , Modelos Moleculares , Xenopus laevis , ADN Primasa/química , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/química , Animales , Dominio Catalítico , ADN/metabolismo , ADN/química , ADN/biosíntesis , Cartilla de ADN/metabolismo , Cartilla de ADN/genética , ARN/metabolismo , ARN/química , Conformación Proteica
19.
J Mol Biol ; 436(9): 168542, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492718

RESUMEN

PrimPol is a human DNA primase-polymerase which restarts DNA synthesis beyond DNA lesions and non-B DNA structures blocking replication. Disfunction of PrimPol in cells leads to slowing of DNA replication rates in mitochondria and nucleus, accumulation of chromosome aberrations, cell cycle delay, and elevated sensitivity to DNA-damaging agents. A defective PrimPol has been suggested to be associated with the development of ophthalmic diseases, elevated mitochondrial toxicity of antiviral drugs and increased cell resistance to chemotherapy. Here, we describe a rare missense PrimPol variant V102A with altered biochemical properties identified in patients suffering from ovarian and cervical cancer. The Val102 to Ala substitution dramatically reduced both the primase and DNA polymerase activities of PrimPol as well as specifically decreased its ability to incorporate ribonucleotides. Structural analysis indicates that the V102A substitution can destabilize the hydrophobic pocket adjacent to the active site, affecting dNTP binding and catalysis.


Asunto(s)
ADN Primasa , ADN Polimerasa Dirigida por ADN , Enzimas Multifuncionales , Mutación Missense , Neoplasias Ováricas , Neoplasias del Cuello Uterino , Femenino , Humanos , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , ADN Primasa/metabolismo , ADN Primasa/química , ADN Primasa/genética , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/química , Modelos Moleculares , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/química , Conformación Proteica , Neoplasias del Cuello Uterino/genética , Neoplasias Ováricas/genética
20.
Cancer Genomics Proteomics ; 21(2): 186-202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38423596

RESUMEN

BACKGROUND/AIM: Gliomas are the most prevalent brain tumors with metabolic alterations playing a pivotal role in disease progression. However, the precise coordination of metabolic alterations with tumor-promoting cellular mechanisms, leading to tumor initiation, progression, and aggressiveness, resulting in poor outcomes, remains poorly understood in gliomas. MATERIALS AND METHODS: We conducted a metabolism-targeted differential gene expression analysis using glioma patients' expression profiling data from The Cancer Genome Atlas (TCGA) database. In addition, pathway enrichment analysis, gene set enrichment analysis (GSEA), transcription factor prediction, network construction, and correlation analyses were performed. Survival analyses were performed in R. All results were validated using independent GEO expression datasets. RESULTS: Metabolism-targeted analysis identified 5 hits involved in diverse metabolic processes linking them to disease aggressiveness in gliomas. Subsequently, we established that cell cycle progression and hyper-proliferation are key drivers of tumor progression and aggressiveness in gliomas. One of the identified metabolic hits, DNA primase 2 (PRIM2), a gene involved in DNA replication was found directly associated with cell cycle progression in gliomas. Furthermore, our analysis indicated that PRIM2, along with other cell cycle-related genes, is under the control of and regulated by the oncogenic MYC transcription factor in gliomas. In addition, PRIM2 expression alone is enough to predict MYC-driven cell cycle progression and is associated with tumor progression, aggressive disease state, and poor survival in glioma patients. CONCLUSION: Our findings highlight PRIM2 as a marker of MYC-driven cell cycle progression and hyper-proliferation, disease onset and progression, tumor aggressiveness, and poor survival in glioma patients.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/patología , Proliferación Celular/genética , Progresión de la Enfermedad , ADN Primasa , Glioma/genética , Glioma/patología , Pronóstico , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA