Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.421
Filtrar
1.
RNA Biol ; 21(1): 1-9, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38785360

RESUMEN

The RNA world hypothesis confers a central role to RNA molecules in information encoding and catalysis. Even though evidence in support of this hypothesis has accumulated from both experiments and computational modelling, the transition from an RNA world to a world where heritable genetic information is encoded in DNA remains an open question. Recent experiments show that both RNA and DNA templates can extend complementary primers using free RNA/DNA nucleotides, either non-enzymatically or in the presence of a replicase ribozyme. Guided by these experiments, we analyse protocellular evolution with an expanded set of reaction pathways made possible through the presence of DNA nucleotides. By encapsulating these reactions inside three different types of protocellular compartments, each subject to distinct modes of selection, we show how protocells containing DNA-encoded replicases in low copy numbers and replicases in high copy numbers can dominate the population. This is facilitated by a reaction that leads to auto-catalytic synthesis of replicase ribozymes from DNA templates encoding the replicase after the chance emergence of a replicase through non-enzymatic reactions. Our work unveils a pathway for the transition from an RNA world to a mixed RNA-DNA world characterized by Darwinian evolution, where DNA sequences encode heritable phenotypes.


Asunto(s)
ADN , ARN Catalítico , ARN , ADN/genética , ADN/metabolismo , ADN/química , ARN/genética , ARN/metabolismo , ARN/química , ARN Catalítico/genética , ARN Catalítico/metabolismo , Evolución Molecular , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Células Artificiales/metabolismo
2.
Nat Commun ; 15(1): 3863, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769315

RESUMEN

Mars is a particularly attractive candidate among known astronomical objects to potentially host life. Results from space exploration missions have provided insights into Martian geochemistry that indicate oxychlorine species, particularly perchlorate, are ubiquitous features of the Martian geochemical landscape. Perchlorate presents potential obstacles for known forms of life due to its toxicity. However, it can also provide potential benefits, such as producing brines by deliquescence, like those thought to exist on present-day Mars. Here we show perchlorate brines support folding and catalysis of functional RNAs, while inactivating representative protein enzymes. Additionally, we show perchlorate and other oxychlorine species enable ribozyme functions, including homeostasis-like regulatory behavior and ribozyme-catalyzed chlorination of organic molecules. We suggest nucleic acids are uniquely well-suited to hypersaline Martian environments. Furthermore, Martian near- or subsurface oxychlorine brines, and brines found in potential lifeforms, could provide a unique niche for biomolecular evolution.


Asunto(s)
Evolución Molecular , Medio Ambiente Extraterrestre , Marte , Percloratos , ARN Catalítico , ARN Catalítico/metabolismo , ARN Catalítico/genética , Percloratos/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(11): e2321592121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437533

RESUMEN

An RNA polymerase ribozyme that was obtained by directed evolution can propagate a functional RNA through repeated rounds of replication and selection, thereby enabling Darwinian evolution. Earlier versions of the polymerase did not have sufficient copying fidelity to propagate functional information, but a new variant with improved fidelity can replicate the hammerhead ribozyme through reciprocal synthesis of both the hammerhead and its complement, with the products then being selected for RNA-cleavage activity. Two evolutionary lineages were carried out in parallel, using either the prior low-fidelity or the newer high-fidelity polymerase. The former lineage quickly lost hammerhead functionality as the population diverged toward random sequences, whereas the latter evolved new hammerhead variants with improved fitness compared to the starting RNA. The increase in fitness was attributable to specific mutations that improved the replicability of the hammerhead, counterbalanced by a small decrease in hammerhead activity. Deep sequencing analysis was used to follow the course of evolution, revealing the emergence of a succession of variants that progressively diverged from the starting hammerhead as fitness increased. This study demonstrates the critical importance of replication fidelity for maintaining heritable information in an RNA-based evolving system, such as is thought to have existed during the early history of life on Earth. Attempts to recreate RNA-based life in the laboratory must achieve further improvements in replication fidelity to enable the fully autonomous Darwinian evolution of RNA enzymes as complex as the polymerase itself.


Asunto(s)
ARN Catalítico , ARN Catalítico/genética , ARN/genética , Planeta Tierra , Ejercicio Físico , Nucleotidiltransferasas , Catálisis
4.
Nucleic Acids Res ; 52(7): 3938-3949, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38477328

RESUMEN

In the hypothetical RNA world, ribozymes could have acted as modern aminoacyl-tRNA synthetases (ARSs) to charge tRNAs, thus giving rise to the peptide synthesis along with the evolution of a primitive translation apparatus. We previously reported a T-boxzyme, Tx2.1, which selectively charges initiator tRNA with N-biotinyl-phenylalanine (BioPhe) in situ in a Flexible In-vitro Translation (FIT) system to produce BioPhe-initiating peptides. Here, we performed in vitro selection of elongation-capable T-boxzymes (elT-boxzymes), using para-azido-l-phenylalanine (PheAZ) as an acyl-donor. We implemented a new strategy to enrich elT-boxzyme-tRNA conjugates that self-aminoacylated on the 3'-terminus selectively. One of them, elT32, can charge PheAZ onto tRNA in trans in response to its cognate anticodon. Further evolution of elT32 resulted in elT49, with enhanced aminoacylation activity. We have demonstrated the translation of a PheAZ-containing peptide in an elT-boxzyme-integrated FIT system, revealing that elT-boxzymes are able to generate the PheAZ-tRNA in response to the cognate anticodon in situ of a custom-made translation system. This study, together with Tx2.1, illustrates a scenario where a series of ribozymes could have overseen aminoacylation and co-evolved with a primitive RNA-based translation system.


Asunto(s)
Anticodón , Biosíntesis de Proteínas , ARN Catalítico , Aminoacil-ARN de Transferencia , ARN Catalítico/metabolismo , ARN Catalítico/genética , Anticodón/genética , Aminoacil-ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/genética , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacilación de ARN de Transferencia , Aminoacilación , Extensión de la Cadena Peptídica de Translación
5.
Trends Genet ; 40(4): 291-292, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485607

RESUMEN

'Ribo-organisms' of the primordial RNA World would have needed ribozymes that catalyze RNA replication. McRae, Wan, Kristoffersen et al. recently revealed how these RNA replicases might have functioned by solving the structure of an artificial polymerase ribozyme. This work illustrates how complex RNA structures evolve, with implications for the origins of life.


Asunto(s)
ARN Catalítico , ARN , ARN/genética , ARN/química , ARN Catalítico/genética , Conformación de Ácido Nucleico , ARN Polimerasas Dirigidas por ADN/genética
6.
J Biol Chem ; 300(3): 105729, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336296

RESUMEN

RNase P and RNase mitochondrial RNA processing (MRP) are ribonucleoproteins (RNPs) that consist of a catalytic RNA and a varying number of protein cofactors. RNase P is responsible for precursor tRNA maturation in all three domains of life, while RNase MRP, exclusive to eukaryotes, primarily functions in rRNA biogenesis. While eukaryotic RNase P is associated with more protein cofactors and has an RNA subunit with fewer auxiliary structural elements compared to its bacterial cousin, the double-anchor precursor tRNA recognition mechanism has remarkably been preserved during evolution. RNase MRP shares evolutionary and structural similarities with RNase P, preserving the catalytic core within the RNA moiety inherited from their common ancestor. By incorporating new protein cofactors and RNA elements, RNase MRP has established itself as a distinct RNP capable of processing ssRNA substrates. The structural information on RNase P and MRP helps build an evolutionary trajectory, depicting how emerging protein cofactors harmonize with the evolution of RNA to shape different functions for RNase P and MRP. Here, we outline the structural and functional relationship between RNase P and MRP to illustrate the coevolution of RNA and protein cofactors, a key driver for the extant, diverse RNP world.


Asunto(s)
Endorribonucleasas , Evolución Molecular , Subunidades de Proteína , ARN Catalítico , Ribonucleasa P , Coenzimas , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ribonucleasa P/química , Ribonucleasa P/metabolismo , Procesamiento Postranscripcional del ARN , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Especificidad por Sustrato , Eucariontes/enzimología
7.
RNA ; 30(6): 710-727, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38423625

RESUMEN

All kinds of RNA molecules can be produced by in vitro transcription using T7 RNA polymerase using DNA templates obtained by solid-phase chemical synthesis, primer extension, PCR, or DNA cloning. The oligonucleotide design, however, is a challenge to nonexperts as this relies on a set of rules that have been established empirically over time. Here, we describe a Python program to facilitate the rational design of oligonucleotides, calculated with kinetic parameters for enhanced in vitro transcription (ROCKET). The Python tool uses thermodynamic parameters, performs folding-energy calculations, and selects oligonucleotides suitable for the polymerase extension reaction. These oligonucleotides improve yields of template DNA. With the oligonucleotides selected by the program, the tRNA transcripts can be prepared by a one-pot reaction of the DNA polymerase extension reaction and the transcription reaction. Also, the ROCKET-selected oligonucleotides provide greater transcription yields than that from oligonucleotides selected by Primerize, a leading software for designing oligonucleotides for in vitro transcription, due to the enhancement of template DNA synthesis. Apart from over 50 tRNA genes tested, an in vitro transcribed self-cleaving ribozyme was found to have catalytic activity. In addition, the program can be applied to the synthesis of mRNA, demonstrating the wide applicability of the ROCKET software.


Asunto(s)
Oligonucleótidos , Programas Informáticos , Transcripción Genética , Oligonucleótidos/química , Oligonucleótidos/genética , Oligonucleótidos/síntesis química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN Catalítico/química , Termodinámica , ARN de Transferencia/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Cinética , ARN Mensajero/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
Science ; 383(6682): eadh4859, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38301022

RESUMEN

Ribozymes are catalytic RNAs with diverse functions including self-splicing and polymerization. This work aims to discover natural ribozymes that behave as hydrolytic and sequence-specific DNA endonucleases, which could be repurposed as DNA manipulation tools. Focused on bacterial group II-C introns, we found that many systems without intron-encoded protein propagate multiple copies in their resident genomes. These introns, named HYdrolytic Endonucleolytic Ribozymes (HYERs), cleaved RNA, single-stranded DNA, bubbled double-stranded DNA (dsDNA), and plasmids in vitro. HYER1 generated dsDNA breaks in the mammalian genome. Cryo-electron microscopy analysis revealed a homodimer structure for HYER1, where each monomer contains a Mg2+-dependent hydrolysis pocket and captures DNA complementary to the target recognition site (TRS). Rational designs including TRS extension, recruiting sequence insertion, and heterodimerization yielded engineered HYERs showing improved specificity and flexibility for DNA manipulation.


Asunto(s)
División del ADN , Endonucleasas , ARN Catalítico , Animales , Microscopía por Crioelectrón , Endonucleasas/química , Endonucleasas/genética , Hidrólisis , Intrones , Conformación de Ácido Nucleico , Empalme del ARN , ARN Catalítico/química , ARN Catalítico/genética
9.
Elife ; 132024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319152

RESUMEN

A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the Cpeb3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.


Stored within DNA are the instructions cells need to make proteins. In order for proteins to get made, the region of DNA that codes for the desired protein (known as the gene) must first be copied into a molecule called messenger RNA (or mRNA for short). Once transcribed, the mRNA undergoes further modifications, including removing redundant segments known as introns. It then travels to molecular machines that translate its genetic sequence into the building blocks of the protein. Following transcription, some RNAs can fold into catalytic segments known as self-cleaving ribozymes which promote the scission of their own genetic sequence. One such ribozyme resides in the intron of a gene for CPEB3, a protein which adds a poly(A) tail to various mRNAs, including some involved in learning and memory. Although this ribozyme is found in most mammals, its biological role is poorly understood. Previous studies suggested that the ribozyme cleaves itself at the same time as the mRNA for CPEB3 is transcribed. This led Chen et al. to hypothesize that the rate at which these two events occur impacts the amount of CPEB3 produced, resulting in changes in memory and learning. If the ribozyme cleaves quickly, the intron is disrupted and may not be properly removed, leading to less CPEB3 being made. However, if the ribozyme is inhibited, the intron remains intact and is efficiently excised, resulting in higher levels of CPEB3 protein. To test how the ribozyme impacts CPEB3 production, Chen et al. inhibited the enzyme from cutting itself with antisense oligonucleotides (ASOs). The ASOs were applied to in vitro transcription systems, neurons cultured in the laboratory and the brains of living mice in an area called the hippocampus. The in vitro and cell culture experiments led to higher levels of CPEB3 protein and the addition of more poly(A) tails to mRNAs involved in neuron communication. Injection of the ASOs into the brains of mice had the same effect, and also improved their memory and learning. The findings of Chen et al. show a new mechanism for controlling protein production, and suggest that ASOs could be used to increase the levels of CPEB3 and modulate neuronal activity. This is the first time a biological role for a self-cleaving ribozyme in mammals has been identified, and the approach used could be applied to investigate the function of two other self-cleaving ribozymes located in introns in humans.


Asunto(s)
ARN Catalítico , Ratones , Humanos , Animales , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Poliadenilación , Memoria a Largo Plazo , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo
10.
Nucleic Acids Res ; 52(6): 3262-3277, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38296822

RESUMEN

The SARS-CoV-2 RNA virus and variants, responsible for the COVID-19 pandemic has become endemic, raised a need for further understanding of the viral genome and biology. Despite vast research on SARS-CoV-2, no ribozymes have been found in the virus genome. Here we report the identification of 39 Hammerhead-variant ribozyme sequences (CoV-HHRz) in SARS-CoV-2. These sequences are highly conserved within SARS-CoV-2 variants but show large diversity among other coronaviruses. In vitro CoV-HHRz sequences possess the characteristics of typical ribozymes; cleavage is pH and ion dependent, although their activity is relatively low and Mn2+ is required for cleavage. The cleavage sites of four CoV-HHRz coincide with the breakpoint of expressed subgenomic RNA (sgRNAs) in SARS-CoV-2 transcriptome data suggesting in vivo activity. The CoV-HHRz are involved in processing sgRNAs for ORF7b, ORF 10 and ORF1ab nsp13 which are essential for viral packaging and life cycle.


Asunto(s)
ARN Catalítico , SARS-CoV-2 , Humanos , COVID-19 , Pandemias , ARN Catalítico/genética , ARN Viral/genética , SARS-CoV-2/genética , ARN Subgenómico
11.
Adv Sci (Weinh) ; 11(12): e2304519, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38227373

RESUMEN

The regulation of gene expression by light enables the versatile, spatiotemporal manipulation of biological function in bacterial and mammalian cells. Optoribogenetics extends this principle by molecular RNA devices acting on the RNA level whose functions are controlled by the photoinduced interaction of a light-oxygen-voltage photoreceptor with cognate RNA aptamers. Here light-responsive ribozymes, denoted optozymes, which undergo light-dependent self-cleavage and thereby control gene expression are described. This approach transcends existing aptamer-ribozyme chimera strategies that predominantly rely on aptamers binding to small molecules. The optozyme method thus stands to enable the graded, non-invasive, and spatiotemporally resolved control of gene expression. Optozymes are found efficient in bacteria and mammalian cells and usher in hitherto inaccessible optoribogenetic modalities with broad applicability in synthetic and systems biology.


Asunto(s)
ARN Catalítico , ARN , Animales , Motivos de Nucleótidos , ARN/genética , ARN Catalítico/química , ARN Catalítico/genética , ARN Catalítico/metabolismo , Bacterias/metabolismo , Expresión Génica , Mamíferos/metabolismo
12.
Nat Methods ; 21(3): 435-443, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38238559

RESUMEN

RNA engineering has immense potential to drive innovation in biotechnology and medicine. Despite its importance, a versatile platform for the automated design of functional RNA is still lacking. Here, we propose RNA family sequence generator (RfamGen), a deep generative model that designs RNA family sequences in a data-efficient manner by explicitly incorporating alignment and consensus secondary structure information. RfamGen can generate novel and functional RNA family sequences by sampling points from a semantically rich and continuous representation. We have experimentally demonstrated the versatility of RfamGen using diverse RNA families. Furthermore, we confirmed the high success rate of RfamGen in designing functional ribozymes through a quantitative massively parallel assay. Notably, RfamGen successfully generates artificial sequences with higher activity than natural sequences. Overall, RfamGen significantly improves our ability to design functional RNA and opens up new potential for generative RNA engineering in synthetic biology.


Asunto(s)
ARN Catalítico , Humanos , ARN Catalítico/genética , ARN Catalítico/química , ARN/genética , Biotecnología , Biología Sintética
13.
RNA Biol ; 20(1): 817-829, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-38044595

RESUMEN

An increased appreciation of the role of RNA dynamics in governing RNA function is ushering in a new wave of dynamic RNA synthetic biology. Here, we review recent advances in engineering dynamic RNA systems across the molecular, circuit and cellular scales for important societal-scale applications in environmental and human health, and bioproduction. For each scale, we introduce the core concepts of dynamic RNA folding and function at that scale, and then discuss technologies incorporating these concepts, covering new approaches to engineering riboswitches, ribozymes, RNA origami, RNA strand displacement circuits, biomaterials, biomolecular condensates, extracellular vesicles and synthetic cells. Considering the dynamic nature of RNA within the engineering design process promises to spark the next wave of innovation that will expand the scope and impact of RNA biotechnologies.


Asunto(s)
ARN Catalítico , ARN , Humanos , ARN/genética , Biología Sintética , ARN Catalítico/genética , Biotecnología , Pliegue del ARN
15.
Nat Chem ; 15(11): 1523-1531, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37667013

RESUMEN

Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes.


Asunto(s)
ARN Catalítico , ARN , Humanos , ARN/metabolismo , ARN Catalítico/genética , S-Adenosilmetionina , Células HEK293 , Alquilación
16.
Commun Biol ; 6(1): 816, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542105

RESUMEN

Investigating gene function relies on the efficient manipulation of endogenous gene expression. Currently, a limited number of tools are available to robustly manipulate endogenous gene expression between "on" and "off" states. In this study, we insert a 63 bp coding sequence of T3H38 ribozyme into the 3' untranslated region (UTR) of C. elegans endogenous genes using the CRISPR/Cas9 technology, which reduces the endogenous gene expression to a nearly undetectable level and generated loss-of-function phenotypes similar to that of the genetic null animals. To achieve conditional knockout, a cassette of loxP-flanked transcriptional termination signal and ribozyme is inserted into the 3' UTR of endogenous genes, which eliminates gene expression spatially or temporally via the controllable expression of the Cre recombinase. Conditional endogenous gene turn-on can be achieved by either injecting morpholino, which blocks the ribozyme self-cleavage activity or using the Cre recombinase to remove the loxP-flanked ribozyme. Together, our results demonstrate that these ribozyme-based tools can efficiently manipulate endogenous gene expression both in space and time and expand the toolkit for studying the functions of endogenous genes.


Asunto(s)
ARN Catalítico , Animales , ARN Catalítico/genética , ARN Catalítico/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Expresión Génica
17.
RNA ; 29(11): 1644-1657, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37580126

RESUMEN

The identification of catalytic RNAs is typically achieved through primarily experimental means. However, only a small fraction of sequence space can be analyzed even with high-throughput techniques. Methods to extrapolate from a limited data set to predict additional ribozyme sequences, particularly in a human-interpretable fashion, could be useful both for designing new functional RNAs and for generating greater understanding about a ribozyme fitness landscape. Using information theory, we express the effects of epistasis (i.e., deviations from additivity) on a ribozyme. This representation was incorporated into a simple model of the epistatic fitness landscape, which identified potentially exploitable combinations of mutations. We used this model to theoretically predict mutants of high activity for a self-aminoacylating ribozyme, identifying potentially active triple and quadruple mutants beyond the experimental data set of single and double mutants. The predictions were validated experimentally, with nine out of nine sequences being accurately predicted to have high activity. This set of sequences included mutants that form a previously unknown evolutionary "bridge" between two ribozyme families that share a common motif. Individual steps in the method could be examined, understood, and guided by a human, combining interpretability and performance in a simple model to predict ribozyme sequences by extrapolation.


Asunto(s)
ARN Catalítico , Humanos , ARN Catalítico/genética , ARN Catalítico/metabolismo , Epistasis Genética , Mutación , Evolución Biológica , Aptitud Genética
18.
J Biotechnol ; 373: 82-89, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37499876

RESUMEN

High-speed allosteric hammerhead ribozymes can be engineered to distinguish well between a perfectly matching effector and the nucleic acid sequences with a few mismatches under physiologically relevant conditions. Such ribozymes can be designed to control the expression of exogenous mRNAs and can be used to develop new gene therapies, including anticancer treatments. The in vivo selection of such ribozymes is a complicated and lengthy procedure with no guarantee of success. Thus, in silico selection of high-speed ribozymes can be employed using secondary RNA structure computation based on the partition function of the RNA folding in combination with random search algorithms. This approach has already been proven very accurate in designing allosteric hammerhead ribozymes. Herein, we present two programs for the computational design of allosteric ribozymes sensing randomized oligonucleotides based on the extended version of the hammerhead ribozyme. A Generator for High-speed Oligonucleotide Sensing allosteric ribozymes with NOT logic function (GHOST-NOT) and a Generator for High-speed Oligonucleotide Sensing allosteric ribozymes with YES logic function (GHOST-YES) for computational design of high-speed allosteric ribozymes are described. The allosteric hammerhead ribozymes had a high self-cleavage rate of about 1.8 per minute and were very selective in sensing an effector sequence.


Asunto(s)
Técnicas Biosensibles , ARN Catalítico , ARN Catalítico/genética , ARN Catalítico/química , ARN Catalítico/metabolismo , Oligonucleótidos , Secuencia de Bases , Sitios de Unión , Algoritmos , Conformación de Ácido Nucleico
19.
Nucleic Acids Res ; 51(14): e78, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37378451

RESUMEN

Classic strategies for circular RNA (circRNA) preparation always introduce large numbers of linear transcripts or extra nucleotides to the circularized product. In this study, we aimed to develop an efficient system for circRNA preparation based on a self-splicing ribozyme derived from an optimized Tetrahymena thermophila group Ⅰ intron. The target RNA sequence was inserted downstream of the ribozyme and a complementary antisense region was added upstream of the ribozyme to assist cyclization. Then, we compared the circularization efficiency of ribozyme or flanking intronic complementary sequence (ICS)-mediated methods through the DNMT1, CDR1as, FOXO3, and HIPK3 genes and found that the efficiency of our system was remarkably higher than that of flanking ICS-mediated method. Consequently, the circularized products mediated by ribozyme are not introduced with additional nucleotides. Meanwhile, the overexpressed circFOXO3 maintained its biological functions in regulating cell proliferation, migration, and apoptosis. Finally, a ribozyme-based circular mRNA expression system was demonstrated with a split green fluorescent protein (GFP) using an optimized Coxsackievirus B3 (CVB3) internal ribosome entry site (IRES) sequence, and this system achieved successful translation of circularized mRNA. Therefore, this novel, convenient, and rapid engineering RNA circularization system can be applied for the functional study and large-scale preparation of circular RNA in the future.


Asunto(s)
ARN Catalítico , ARN Circular , Tetrahymena thermophila , Secuencia de Bases , Nucleótidos/metabolismo , Empalme del ARN , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN Circular/metabolismo , ARN Mensajero/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo
20.
Nat Commun ; 14(1): 2591, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147358

RESUMEN

Earth's life may have originated as self-replicating RNA, and it has been argued that RNA viruses and viroid-like elements are remnants of such pre-cellular RNA world. RNA viruses are defined by linear RNA genomes encoding an RNA-dependent RNA polymerase (RdRp), whereas viroid-like elements consist of small, single-stranded, circular RNA genomes that, in some cases, encode paired self-cleaving ribozymes. Here we show that the number of candidate viroid-like elements occurring in geographically and ecologically diverse niches is much higher than previously thought. We report that, amongst these circular genomes, fungal ambiviruses are viroid-like elements that undergo rolling circle replication and encode their own viral RdRp. Thus, ambiviruses are distinct infectious RNAs showing hybrid features of viroid-like RNAs and viruses. We also detected similar circular RNAs, containing active ribozymes and encoding RdRps, related to mitochondrial-like fungal viruses, highlighting fungi as an evolutionary hub for RNA viruses and viroid-like elements. Our findings point to a deep co-evolutionary history between RNA viruses and subviral elements and offer new perspectives in the origin and evolution of primordial infectious agents, and RNA life.


Asunto(s)
Virus ARN , ARN Catalítico , Viroides , Viroides/genética , ARN Catalítico/genética , ARN Viral/genética , Replicación Viral/genética , ARN/genética , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/genética , Hongos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA