Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
2.
Science ; 379(6637): 1149-1156, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36927025

RESUMEN

Therapeutic manipulation of the gut microbiota holds great potential for human health. The mechanisms bacteria use to colonize the gut therefore present valuable targets for clinical intervention. We now report that bacteria use phase separation to enhance fitness in the mammalian gut. We establish that the intrinsically disordered region (IDR) of the broadly and highly conserved transcription termination factor Rho is necessary and sufficient for phase separation in vivo and in vitro in the human commensal Bacteroides thetaiotaomicron. Phase separation increases transcription termination by Rho in an IDR-dependent manner. Moreover, the IDR is critical for gene regulation in the gut. Our findings expose phase separation as vital for host-commensal bacteria interactions and relevant for novel clinical applications.


Asunto(s)
Proteínas Bacterianas , Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Aptitud Genética , Proteínas Intrínsecamente Desordenadas , ARN Helicasas , Factor Rho , Animales , Humanos , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/fisiología , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/fisiología , Factor Rho/química , Factor Rho/genética , Factor Rho/fisiología , Terminación de la Transcripción Genética , Dominios Proteicos , Ratones , Vida Libre de Gérmenes , Ratones Endogámicos C57BL , Masculino , Femenino
3.
Pathol Res Pract ; 229: 153734, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35030351

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is recognized as one of the most lethal malignancies among the urological system, with constantly increasing mortality. While the molecular mechanisms underlying ccRCC progression are still poorly understood, the molecular and functional role of lncRNA in multiple diseases has been well demonstrated. In this study, we hypothesized that lncRNA MEG8 might participate in ccRCC development. At first, we found that MEG8 expression was increased in ccRCC tumor tissues and cells. Next, we demonstrated that MEG8 knockdown suppressed cell viability, migration, and invasion in vitro and inhibited tumor growth in vivo. Subsequently, we utilized bioinformatics analysis, ChIP, and luciferase assays, and we found that PLAG1 could transcriptionally regulate MEG8 in ccRCC cells. Furthermore, MEG8 promoted G3BP1 expression to aggravate ccRCC tumorigenic properties through sponging miR-495-3p. Our study identified a novel PLAG1/MEG8/miR-495-3p/G3BP1 network in ccRCC development, which might be a promising direction for developing new diagnoses or therapeutic agents for ccRCC.


Asunto(s)
Carcinoma de Células Renales/genética , ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Neoplasias Renales/genética , MicroARNs/fisiología , Proteínas de Unión a Poli-ADP-Ribosa/fisiología , ARN Helicasas/fisiología , Proteínas con Motivos de Reconocimiento de ARN/fisiología , ARN Largo no Codificante , Humanos , Células Tumorales Cultivadas
4.
J Immunol ; 208(3): 753-761, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34996837

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has seriously threatened global public health. Severe COVID-19 has been reported to be associated with an impaired IFN response. However, the mechanisms of how SARS-CoV-2 antagonizes the host IFN response are poorly understood. In this study, we report that SARS-CoV-2 helicase NSP13 inhibits type I IFN production by directly targeting TANK-binding kinase 1 (TBK1) for degradation. Interestingly, inhibition of autophagy by genetic knockout of Beclin1 or pharmacological inhibition can rescue NSP13-mediated TBK1 degradation in HEK-293T cells. Subsequent studies revealed that NSP13 recruits TBK1 to p62, and the absence of p62 can also inhibit TBK1 degradation in HEK-293T and HeLa cells. Finally, TBK1 and p62 degradation and p62 aggregation were observed during SARS-CoV-2 infection in HeLa-ACE2 and Calu3 cells. Overall, our study shows that NSP13 inhibits type I IFN production by recruiting TBK1 to p62 for autophagic degradation, enabling it to evade the host innate immune response, which provides new insights into the transmission and pathogenesis of SARS-CoV-2 infection.


Asunto(s)
Autofagia , COVID-19/inmunología , ARN Polimerasa Dependiente de ARN de Coronavirus/fisiología , Interferón Tipo I/biosíntesis , Metiltransferasas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Helicasas/fisiología , SARS-CoV-2/fisiología , Proteína Sequestosoma-1/metabolismo , Proteínas no Estructurales Virales/fisiología , Beclina-1/antagonistas & inhibidores , Línea Celular , Regulación hacia Abajo , Humanos , Evasión Inmune , Inmunidad Innata , Inmunoprecipitación , Interferón Tipo I/genética , Complejos Multiproteicos , Agregado de Proteínas , Mapeo de Interacción de Proteínas
5.
Int J Cancer ; 150(4): 551-561, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34460104

RESUMEN

Stress granules (SGs) contain mRNAs and proteins stalled in translation during stress; these are increasingly being implicated in diseases, including neurological disorders and cancer. The dysregulated assembly, persistence, disassembly and clearance of SGs contribute to the process of senescence. Senescence has long been a mysterious player in cellular physiology and associated diseases. The systemic process of aging has been pivotal in the development of various neurological disorders like age-related neuropathy, Alzheimer's disease and Parkinson's disease. Glioma is a cancer of neurological origin with a very poor prognosis and high rate of recurrence, SGs have only recently been implicated in its pathogenesis. Senescence has long been established to play an antitumorigenic role, however, relatively less studied is its protumorigenic importance. Here, we have evaluated the existing literature to assess the crosstalk of the two biological phenomena of senescence and SG formation in the context of tumorigenesis. In this review, we have attempted to analyze the contribution of senescence in regulating diverse cellular processes, like, senescence associated secretory phenotype (SASP), microtubular reorganization, telomeric alteration, autophagic clearance and how intricately these phenomena are tied with the formation of SGs. Finally, we propose that interplay between senescence, its contributing factors and the genesis of SGs can drive tumorigenicity of gliomas, which can potentially be utilized for therapeutic intervention.


Asunto(s)
Neoplasias Encefálicas/etiología , Senescencia Celular/fisiología , Glioma/etiología , Gránulos de Estrés/fisiología , Autofagia , Neoplasias Encefálicas/patología , ADN Helicasas/fisiología , Progresión de la Enfermedad , Glioma/patología , Humanos , Microtúbulos/química , Proteínas de Unión a Poli-ADP-Ribosa/fisiología , ARN Helicasas/fisiología , Proteínas con Motivos de Reconocimiento de ARN/fisiología , Telómero , Quinasas Asociadas a rho/fisiología
6.
Cell Rep ; 37(11): 110110, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34910909

RESUMEN

Mechanisms driving the prolonged meiotic prophase I in mammals are poorly understood. RNA helicase YTHDC2 is critical for mitosis to meiosis transition. However, YTHDC2 is highly expressed in pachytene cells. Here we identify an essential role for YTHDC2 in meiotic progression. Specifically, YTHDC2 deficiency causes microtubule-dependent telomere clustering and apoptosis at the pachytene stage of prophase I. Depletion of YTHDC2 results in a massively dysregulated transcriptome in pachytene cells, with a tendency toward upregulation of genes normally expressed in mitotic germ cells and downregulation of meiotic transcripts. Dysregulation does not correlate with m6A status, and YTHDC2-bound mRNAs are enriched in genes upregulated in mutant germ cells, revealing that YTHDC2 primarily targets mRNAs for degradation. Furthermore, altered transcripts in mutant pachytene cells encode microtubule network proteins. Our results demonstrate that YTHDC2 regulates the pachytene stage by perpetuating a meiotic transcriptome and preventing microtubule network changes that could lead to telomere clustering.


Asunto(s)
Meiosis , Microtúbulos/fisiología , Fase Paquiteno , ARN Helicasas/fisiología , Espermatocitos/citología , Telómero , Transcriptoma , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Espermatocitos/metabolismo
7.
J Cell Mol Med ; 25(18): 8615-8627, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34312987

RESUMEN

YTH domain containing 2 (YTHDC2) is the largest N6-Methyladenosine (m6 A) binding protein of the YTH protein family and the only member containing ATP-dependent RNA helicase activity. For further analysing its biological role in epigenetic modification, we comprehensively explored YTHDC2 from gene expression, genetic alteration, protein-protein interaction (PPI) network, immune infiltration, diagnostic value and prognostic value in pan-cancer, using a series of databases and bioinformatic tools. We found that YTHDC2 with Missense mutation could cause a different prognosis in uterine corpus endometrial carcinoma (UCEC), and its different methylation level could lead to a totally various prognosis in adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), lung squamous cell carcinoma (LUSC) and UCEC. The main molecular mechanisms of YTHDC2 focused on catalytic activity, helicase activity, snRNA binding, spliceosome and mRNA surveillance. Additionally, YTHDC2 was notably correlated with tumour immune infiltration. Moreover, YTHDC2 had a high diagnostic value for seven cancer types and a prognostic value for brain lower grade glioma (LGG), rectum adenocarcinoma (READ) and skin cutaneous melanoma (SKCM). Collectively, YTHDC2 plays a significant role in epigenetic modification and immune infiltration and maybe a potential biomarker for diagnosis and prognosis in certain cancers.


Asunto(s)
Adenosina/análogos & derivados , Neoplasias/metabolismo , ARN Helicasas/fisiología , Adenosina/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico
8.
Expert Opin Ther Pat ; 31(4): 339-350, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33593200

RESUMEN

Introduction: Coronaviruses encode a helicase that is essential for viral replication and represents an excellent antiviral target. However, only a few coronavirus helicase inhibitors have been patented. These patents include drug-like compound SSYA10-001, aryl diketo acids (ADK), and dihydroxychromones. Additionally, adamantane-derived bananins, natural flavonoids, one acrylamide derivative [(E)-3-(furan-2-yl)-N-(4-sulfamoylphenyl)acrylamide], a purine derivative (7-ethyl-8-mercapto-3-methyl-3,7-dihydro-1 H-purine-2,6-dione), and a few bismuth complexes. The IC50 of patented inhibitors ranges between 0.82 µM and 8.95 µM, depending upon the assays used. Considering the urgency of clinical interventions against Coronavirus Disease-19 (COVID-19), it is important to consider developing antiviral portfolios consisting of small molecules.Areas covered: This review examines coronavirus helicases as antiviral targets, and the potential of previously patented and experimental compounds to inhibit the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) helicase.Expert opinion: Small molecule coronavirus helicase inhibitors represent attractive pharmacological modalities for the treatment of coronaviruses such as SARS-CoV and SARS-CoV-2. Rightfully so, the current emphasis is focused upon the development of vaccines. However, vaccines may not work for everyone and broad-based adoption of vaccinations is an increasingly challenging societal endeavor. Therefore, it is important to develop additional pharmacological antivirals against the highly conserved coronavirus helicases to broadly protect against this and subsequent coronavirus epidemics.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Desarrollo de Medicamentos , Metiltransferasas/antagonistas & inhibidores , ARN Helicasas/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Humanos , Metiltransferasas/química , Metiltransferasas/fisiología , Patentes como Asunto , ARN Helicasas/química , ARN Helicasas/fisiología , Triazoles/farmacología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/fisiología
9.
Methods Mol Biol ; 2209: 35-52, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33201461

RESUMEN

RNA helicases are proteins found in all kingdoms of life, and they are associated with all processes involving RNA from transcription to decay. They use NTP binding and hydrolysis to unwind duplexes, to remodel RNA structures and protein-RNA complexes, and to facilitate the unidirectional metabolism of biological processes. Viral, bacterial, and eukaryotic parasites have an intimate need for RNA helicases in their reproduction. Moreover, various disorders, like cancers, are often associated with a perturbation of the host's helicase activity. Thus, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. In this review, we provide an overview of the different targeting strategies against helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on the proteins, and the therapeutic potential of these compounds in the treatment of various disorders.


Asunto(s)
Inhibidores Enzimáticos , ARN Helicasas , Animales , Infecciones Bacterianas/tratamiento farmacológico , Línea Celular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Infecciones por Protozoos/tratamiento farmacológico , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/fisiología , Virosis/tratamiento farmacológico
10.
Mol Cell ; 77(6): 1222-1236.e13, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32048998

RESUMEN

RNA decay is crucial for mRNA turnover and surveillance and misregulated in many diseases. This complex system is challenging to study, particularly in mammals, where it remains unclear whether decay pathways perform specialized versus redundant roles. Cytoplasmic pathways and links to translation are particularly enigmatic. By directly profiling decay factor targets and normal versus aberrant translation in mouse embryonic stem cells (mESCs), we uncovered extensive decay pathway specialization and crosstalk with translation. XRN1 (5'-3') mediates cytoplasmic bulk mRNA turnover whereas SKIV2L (3'-5') is universally recruited by ribosomes, tackling aberrant translation and sometimes modulating mRNA abundance. Further exploring translation surveillance revealed AVEN and FOCAD as SKIV2L interactors. AVEN prevents ribosome stalls at structured regions, which otherwise require SKIV2L for clearance. This pathway is crucial for histone translation, upstream open reading frame (uORF) regulation, and counteracting ribosome arrest on small ORFs. In summary, we uncovered key targets, components, and functions of mammalian RNA decay pathways and extensive coupling to translation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas de Unión al ADN/fisiología , Exorribonucleasas/fisiología , Células Madre Embrionarias de Ratones/metabolismo , Biosíntesis de Proteínas , ARN Helicasas/fisiología , Estabilidad del ARN , ARN Mensajero/metabolismo , Animales , Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Sistemas de Lectura Abierta , Proteínas Proto-Oncogénicas/fisiología , ARN Mensajero/química , ARN Mensajero/genética , Ribosomas/genética , Ribosomas/metabolismo
11.
Plant Sci ; 287: 110183, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31481206

RESUMEN

In plants, sugar acts as an essential signaling molecule that modulates various aspects of metabolism, growth and development, which are also controlled by phytohormones. However, the molecular mechanism of cross-talk between sugar and phytohormones still remains to be elucidated. We have identified gsm1 (glucose-hypersensitive mutant 1) as a mutant with impaired cotyledon development that shows sensitivity to exogenous abscisic acid (ABA). The addition of fluridone can reverse the glucose (Glc) inhibitory effect in gsm1, implying that endogenous ABA is involved in the Glc response of gsm1. In 4.5% Glc, the expression of Glc-induced ABA-responsive genes in gsm1-1 was nearly two times higher than that in the wild type. Compared to gsm1-1, the gsm1-1 abi4-1 double mutant exhibited reduced sensitivity to Glc and ABA, which was similar to the Glc and ABA insensitive phenotype of abi4-1, suggesting that ABI4 is epistatic to GSM1. In the treatment with 4.5% Glc, the GSM1 transcript level was greatly increased in abi4-1 by almost 4-fold of that in the wild type. These data suggest that GSM1 plays an important role in the ABI4-regulated Glc-ABA signaling cascade during Arabidopsis early seedling growth.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/fisiología , ARN Helicasas/fisiología , Plantones/crecimiento & desarrollo , Transducción de Señal/fisiología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Clorofila/metabolismo , Glucosa/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/metabolismo , Plantones/fisiología , Factores de Transcripción/fisiología
12.
Nat Commun ; 10(1): 1545, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30948716

RESUMEN

Extrinsic transcription termination typically involves remodeling of RNA polymerase by an accessory helicase. In yeast this is accomplished by the Sen1 helicase homologous to human senataxin (SETX). To gain insight into these processes we develop a DNA scaffold construct compatible with magnetic-trapping assays and from which S. cerevisiae RNA polymerase II (Pol II), as well as E. coli RNA polymerase (ecRNAP), can efficiently initiate transcription without transcription factors, elongate, and undergo extrinsic termination. By stalling Pol II TECs on the construct we can monitor Sen1-induced termination in real-time, revealing the formation of an intermediate in which the Pol II transcription bubble appears half-rewound. This intermediate requires ~40 sec to form and lasts ~20 sec prior to final dissociation of the stalled Pol II. The experiments enabled by the scaffold construct permit detailed statistical and kinetic analysis of Pol II interactions with a range of cofactors in a multi-round, high-throughput fashion.


Asunto(s)
ADN Helicasas/fisiología , Escherichia coli/genética , ARN Helicasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Terminación de la Transcripción Genética/fisiología , Transcripción Genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Escherichia coli/metabolismo , Modelos Moleculares , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa II/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
PLoS Pathog ; 15(2): e1007596, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30785952

RESUMEN

Nuclear RNAs are subject to a number of RNA decay pathways that serve quality control and regulatory functions. As a result, any virus that expresses its genes in the nucleus must have evolved mechanisms that avoid these pathways, but the how viruses evade nuclear RNA decay remains largely unknown. The multifunctional Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 (Mta) protein is required for the nuclear stability of viral transcripts. In the absence of ORF57, we show that viral transcripts are subject to degradation by two specific nuclear RNA decay pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) in which decay factors are recruited through poly(A) tails, and an ARS2-mediated RNA decay pathway dependent on the 5' RNA cap. In transcription pulse chase assays, ORF57 appears to act primarily by inhibiting the ARS2-mediated RNA decay pathway. In the context of viral infection in cultured cells, inactivation of both decay pathways by RNAi is necessary for the restoration of ORF57-dependent viral genes produced from an ORF57-null bacmid. Mechanistically, we demonstrate that ORF57 protects viral transcripts by preventing the recruitment of the exosome co-factor hMTR4. In addition, our data suggest that ORF57 recruitment of ALYREF inhibits hMTR4 association with some viral RNAs, whereas other KSHV transcripts are stabilized by ORF57 in an ALYREF-independent fashion. In conclusion, our studies show that KSHV RNAs are subject to nuclear degradation by two specific host pathways, PPD and ARS2-mediated decay, and ORF57 protects viral transcripts from decay by inhibiting hMTR4 recruitment.


Asunto(s)
ARN Helicasas/metabolismo , Estabilidad del ARN/fisiología , Proteínas Reguladoras y Accesorias Virales/metabolismo , Línea Celular , Núcleo Celular , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/fisiología , Regulación Viral de la Expresión Génica/genética , Genes Virales/genética , Células HEK293 , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/patogenicidad , Humanos , Proteínas Nucleares , Proteína I de Unión a Poli(A)/metabolismo , Proteína I de Unión a Poli(A)/fisiología , Unión Proteica , ARN Helicasas/fisiología , Estabilidad del ARN/genética , ARN Nuclear/fisiología , ARN Viral , Proteínas de Unión al ARN , Factores de Transcripción , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/fisiología , Replicación Viral
14.
RNA Biol ; 16(6): 754-769, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30810475

RESUMEN

Prp16 is a DEAH box pre-mRNA splicing factor that triggers a key spliceosome conformational switch to facilitate second step splicing in Saccharomyces cerevisiae. However, Prp16 functions are largely unexplored in Schizosaccharomyces pombe, an attractive model with exon-intron architecture more relevant to several other eukaryotes. Here, we generated mis-sense alleles in SpPrp16 whose consequences on genome-wide splicing uncover its nearly global splicing role with only a small subset of unaffected introns. Prp16 dependent and independent intron categories displayed a striking difference in the strength of intronic 5' splice site (5'SS)-U6 snRNA and branch site (BS)-U2 snRNA interactions. Selective weakening of these interactions could convert a Prp16 dependent intron into an independent one. These results point to the role of SpPrp16 in destabilizing 5'SS-U6snRNA and BS-U2snRNA interactions which plausibly trigger structural alterations in the spliceosome to facilitate first step catalysis. Our data suggest that SpPrp16 interactions with early acting factors, its enzymatic activities and association with intronic elements collectively account for efficient and accurate first step catalysis. In addition to splicing derangements in the spprp16F528S mutant, we show that SpPrp16 influences cell cycle progression and centromeric heterochromatinization. We propose that strong 5'SS-U6 snRNA and BS-U2 snRNA complementarity of intron-like elements in non-coding RNAs which lead to complete splicing arrest and impaired Seb1 functions at the pericentromeric loci may cumulatively account for the heterochromatin defects in spprp16F528S cells. These findings suggest that the diverse Prp16 functions within a genome are likely governed by its intronic features that influence splice site-snRNA interaction strength.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Intrones , ARN Helicasas/fisiología , Factores de Empalme de ARN/fisiología , Empalme del ARN , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Alelos , Secuencia de Aminoácidos , Ciclo Celular , Centrómero , Secuencia Conservada , Genoma Fúngico , Mutación , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
15.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 360-370, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30595162

RESUMEN

Ras-GTPase-activating protein (SH3 domain)-binding proteins (G3BPs, also known as Rasputin) are a family of RNA binding proteins that regulate gene expression in response to environmental stresses by controlling mRNA stability and translation. G3BPs appear to facilitate this activity through their role in stress granules for which they are considered a core component, however, it should be noted that not all stress granules contain G3BPs and this appears to be contextual depending on the environmental stress and the cell type. Although the role of G3BPs in stress granules appears to be one of its major roles, data also strongly suggests that they interact with mRNAs outside of stress granules to regulate gene expression. G3BPs have been implicated in several diseases including cancer progression, invasion, and metastasis as well as virus survival. There is now a body of evidence that suggests targeting of G3BPs could be explored as a form of cancer therapeutic. This review discusses the important discoveries and advancements made in the field of G3BPs biology over the last two decades including their roles in RNA stability, translational control of cellular transcripts, stress granule formation, cancer progression and its interactions with viruses during infection. An emerging theme for G3BPs is their ability to regulate gene expression in response to environmental stimuli, disease progression and virus infection making it an intriguing target for disease therapies.


Asunto(s)
ADN Helicasas/metabolismo , ADN Helicasas/fisiología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/fisiología , ARN Helicasas/metabolismo , ARN Helicasas/fisiología , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/fisiología , Estrés Fisiológico/fisiología , Animales , Proteínas Portadoras/metabolismo , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/genética , Humanos , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , Estabilidad del ARN/genética , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal
16.
Biochim Biophys Acta Proteins Proteom ; 1867(2): 89-97, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30391636

RESUMEN

The recent emergence of Zika virus (ZIKV) has caused global concern as a result of the association with neurological disorders, and brain development dysfunction in fetuses of mothers who become infected with ZIKV during pregnancy. The NS2B-NS3 protease is important for viral replication and offers an attractive drug target. In addition to processing the viral polypeptide, evidence has shown that the NS2B-NS3 protease also targets cellular proteins as part of the viral replication process. This study sought to determine new host cell protein targets of ZIKV NS2B-NS3 (zNS2B-NS3). Plasmids encoding the protease domains of zNS2B-NS3pro and an inactive zNS2B-NS3(S135A) were transfected into HEK293T/17 cells and differentially expressed proteins were detected by 2D gel electrophoresis. A total of 18 protein spots were observed as differentially expressed between zNS2B-NS3pro and zNS2B-NS3(S135A), of which 7 were selected for identification by mass spectrometry. Four proteins (protein disulfide-isomerase A3 (PDIA3), heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1), voltage-dependent anion-selective channel (VDAC) and aldolase A (ALDOA)) were selected for validation by independent transient expression and western blot analysis. Three proteins (PDIA3, hnRNP A2/B1 and ALDOA) were successfully validated, but only two proteins (PDIA3 and ALDOA) were shown to be regulated in ZIKV infection in agreement with the results of the transfection experiments. This study has identified two proteins, PDIA3 an ALDOA whose expression is modulated by the ZIKV NS2B-NS3 protease, and these proteins are involved in the ER stress response and glycolysis respectively, two critical cellular processes in ZIKV infection.


Asunto(s)
Infección por el Virus Zika/metabolismo , Virus Zika/genética , Femenino , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteoma/metabolismo , ARN Helicasas/metabolismo , ARN Helicasas/fisiología , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/fisiología , Estrés Fisiológico/fisiología , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/fisiología , Virus Zika/metabolismo , Infección por el Virus Zika/fisiopatología
17.
Med Chem ; 15(5): 443-458, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30569868

RESUMEN

Cells need high-sensitivity detection of non-self molecules in order to fight against pathogens. These cellular sensors are thus of significant importance to medicinal purposes, especially for treating novel emerging pathogens. RIG-I-like receptors (RLRs) are intracellular sensors for viral RNAs (vRNAs). Their active forms activate mitochondrial antiviral signaling protein (MAVS) and trigger downstream immune responses against viral infection. Functional and structural studies of the RLR-MAVS signaling pathway have revealed significant supramolecular variability in the past few years, which revealed different aspects of the functional signaling pathway. Here I will discuss the molecular events of RLR-MAVS pathway from the angle of detecting single copy or a very low copy number of vRNAs in the presence of non-specific competition from cytosolic RNAs, and review key structural variability in the RLR / vRNA complexes, the MAVS helical polymers, and the adapter-mediated interactions between the active RLR / vRNA complex and the inactive MAVS in triggering the initiation of the MAVS filaments. These structural variations may not be exclusive to each other, but instead may reflect the adaptation of the signaling pathways to different conditions or reach different levels of sensitivity in its response to exogenous vRNAs.


Asunto(s)
ARN Helicasas/fisiología , ARN Viral/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Humanos , Unión Proteica , Dominios Proteicos , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Transducción de Señal/fisiología
18.
Artículo en Inglés | MEDLINE | ID: mdl-30538955

RESUMEN

Yersinia pseudotuberculosis is a bacterium that not only survives, but also thrives, proliferates, and remains infective at cold-storage temperatures, making it an adept foodborne pathogen. We analyzed the differences in gene expression between Y. pseudotuberculosis IP32953 grown at 3 and 28°C to investigate which genes were significantly more expressed at low temperature at different phases of growth. We isolated and sequenced the RNA from six distinct corresponding growth points at both temperatures to also outline the expression patterns of the differentially expressed genes. Genes involved in motility, chemotaxis, phosphotransferase systems (PTS), and ATP-binding cassette (ABC) transporters of different nutrients such as fructose and mannose showed higher levels of transcripts at 3°C. At the beginning of growth, especially genes involved in securing nutrients, glycolysis, transcription, and translation were upregulated at 3°C. To thrive as well as it does at low temperature, Y. pseudotuberculosis seems to require certain cold shock proteins, especially those encoded by yptb3585, yptb3586, yptb2414, yptb2950, and yptb1423, and transcription factors, like Rho, IF-1, and RbfA, to maintain its protein synthesis. We also found that genes encoding RNA-helicases CsdA (yptb0468), RhlE (yptb1214), and DbpA (yptb1652), which unwind frozen secondary structures of nucleic acids with cold shock proteins, were significantly more expressed at 3°C, indicating that these RNA-helicases are important or even necessary during cold. Genes involved in excreting poisonous spermidine and acquiring compatible solute glycine betaine, by either uptake or biosynthesis, showed higher levels of transcripts at low temperatures. This is the first finding of a strong connection between the aforementioned genes and the cold adaptation of Y. pseudotuberculosis. Understanding the mechanisms behind the cold adaptation of Y. pseudotuberculosis is crucial for controlling its growth during cold storage of food, and will also shed light on microbial cold adaptation in general.


Asunto(s)
Transcriptoma , Yersinia pseudotuberculosis/crecimiento & desarrollo , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo , Adaptación Fisiológica/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Frío , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Genes Bacterianos/genética , ARN Helicasas/fisiología , ARN Bacteriano/aislamiento & purificación , Alineación de Secuencia , Análisis de Secuencia de ARN , Temperatura , Yersinia pseudotuberculosis/aislamiento & purificación
19.
Nat Commun ; 9(1): 4364, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341288

RESUMEN

Termination of RNA polymerase II (RNAPII) transcription is a fundamental step of gene expression that is critical for determining the borders between genes. In budding yeast, termination at protein-coding genes is initiated by the cleavage/polyadenylation machinery, whereas termination of most noncoding RNA (ncRNA) genes occurs via the Nrd1-Nab3-Sen1 (NNS) pathway. Here, we find that NNS-like transcription termination is not conserved in fission yeast. Rather, genome-wide analyses show global recruitment of mRNA 3' end processing factors at the end of ncRNA genes, including snoRNAs and snRNAs, and that this recruitment coincides with high levels of Ser2 and Tyr1 phosphorylation on the RNAPII C-terminal domain. We also find that termination of mRNA and ncRNA transcription requires the conserved Ysh1/CPSF-73 and Dhp1/XRN2 nucleases, supporting widespread cleavage-dependent transcription termination in fission yeast. Our findings thus reveal that a common mode of transcription termination can produce functionally and structurally distinct types of polyadenylated and non-polyadenylated RNAs.


Asunto(s)
ARN/genética , Schizosaccharomyces/genética , Terminación de la Transcripción Genética/fisiología , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/fisiología , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Helicasas/fisiología , ARN Polimerasa II/metabolismo , ARN Polimerasa II/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Especificidad de la Especie
20.
PLoS Genet ; 14(8): e1007496, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30133436

RESUMEN

During embryonic development, a number of genetic cues act to generate neuronal diversity. While intrinsic transcriptional cascades are well-known to control neuronal sub-type cell fate, the target cells can also provide critical input to specific neuronal cell fates. Such signals, denoted retrograde signals, are known to provide critical survival cues for neurons, but have also been found to trigger terminal differentiation of neurons. One salient example of such target-derived instructive signals pertains to the specification of the Drosophila FMRFamide neuropeptide neurons, the Tv4 neurons of the ventral nerve cord. Tv4 neurons receive a BMP signal from their target cells, which acts as the final trigger to activate the FMRFa gene. A recent FMRFa-eGFP genetic screen identified several genes involved in Tv4 specification, two of which encode components of the U5 subunit of the spliceosome: brr2 (l(3)72Ab) and Prp8. In this study, we focus on the role of RNA processing during target-derived signaling. We found that brr2 and Prp8 play crucial roles in controlling the expression of the FMRFa neuropeptide specifically in six neurons of the VNC (Tv4 neurons). Detailed analysis of brr2 revealed that this control is executed by two independent mechanisms, both of which are required for the activation of the BMP retrograde signaling pathway in Tv4 neurons: (1) Proper axonal pathfinding to the target tissue in order to receive the BMP ligand. (2) Proper RNA splicing of two genes in the BMP pathway: the thickveins (tkv) gene, encoding a BMP receptor subunit, and the Medea gene, encoding a co-Smad. These results reveal involvement of specific RNA processing in diversifying neuronal identity within the central nervous system.


Asunto(s)
Empalme Alternativo , Proteínas de Drosophila/fisiología , Drosophila/genética , FMRFamida/fisiología , Neuronas/fisiología , ARN Helicasas/fisiología , Factores de Empalme de ARN/fisiología , Animales , Diferenciación Celular , Sistema Nervioso Central/fisiología , Drosophila/fisiología , Proteínas de Drosophila/genética , FMRFamida/genética , Regulación del Desarrollo de la Expresión Génica , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , ARN Helicasas/genética , Factores de Empalme de ARN/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/fisiología , Análisis de Secuencia de ARN , Transducción de Señal , Empalmosomas , Factores de Transcripción/genética , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA