Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.546
Filtrar
1.
Clin Epigenetics ; 16(1): 61, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715048

RESUMEN

BACKGROUND: Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS: To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS: One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS: Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.


Asunto(s)
Tejido Adiposo , Metilación de ADN , Diabetes Gestacional , Epigénesis Genética , Músculo Esquelético , Efectos Tardíos de la Exposición Prenatal , Humanos , Embarazo , Femenino , Diabetes Gestacional/genética , Epigénesis Genética/genética , Adulto , Metilación de ADN/genética , Músculo Esquelético/metabolismo , Adolescente , Tejido Adiposo/metabolismo , Masculino , Efectos Tardíos de la Exposición Prenatal/genética , Niño , Diabetes Mellitus Tipo 1/genética , ARN no Traducido/genética , ARN no Traducido/sangre , ARN Largo no Codificante/genética , Islas de CpG/genética
2.
Parasit Vectors ; 17(1): 205, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715092

RESUMEN

BACKGROUND: Angiostrongyliasis is a highly dangerous infectious disease. Angiostrongylus cantonensis larvae migrate to the mouse brain and cause symptoms, such as brain swelling and bleeding. Noncoding RNAs (ncRNAs) are novel targets for the control of parasitic infections. However, the role of these molecules in A. cantonensis infection has not been fully clarified. METHODS: In total, 32 BALB/c mice were randomly divided into four groups, and the infection groups were inoculated with 40 A. cantonensis larvae by gavage. Hematoxylin and eosin (H&E) staining and RNA library construction were performed on brain tissues from infected mice. Differential expression of long noncoding RNAs (lncRNAs) and mRNAs in brain tissues was identified by high-throughput sequencing. The pathways and functions of the differentially expressed lncRNAs were determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. The functions of the differentially expressed lncRNAs were further characterized by lncRNA‒microRNA (miRNA) target interactions. The potential host lncRNAs involved in larval infection of the brain were validated by quantitative real-time polymerase chain reaction (qRT‒PCR). RESULTS: The pathological results showed that the degree of brain tissue damage increased with the duration of infection. The transcriptome results showed that 859 lncRNAs and 1895 mRNAs were differentially expressed compared with those in the control group, and several lncRNAs were highly expressed in the middle-late stages of mouse infection. GO and KEGG pathway analyses revealed that the differentially expressed target genes were enriched mainly in immune system processes and inflammatory response, among others, and several potential regulatory networks were constructed. CONCLUSIONS: This study revealed the expression profiles of lncRNAs in the brains of mice after infection with A. cantonensis. The lncRNAs H19, F630028O10Rik, Lockd, AI662270, AU020206, and Mexis were shown to play important roles in the infection of mice with A. cantonensis infection.


Asunto(s)
Angiostrongylus cantonensis , Encéfalo , Ratones Endogámicos BALB C , ARN Largo no Codificante , Infecciones por Strongylida , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Angiostrongylus cantonensis/genética , Infecciones por Strongylida/parasitología , Infecciones por Strongylida/genética , Encéfalo/parasitología , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Larva/genética , MicroARNs/genética , MicroARNs/metabolismo , Perfilación de la Expresión Génica , Femenino , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Vet Res ; 55(1): 56, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715098

RESUMEN

The chemokine CXCL8, also known as the neutrophil chemotactic factor, plays a crucial role in mediating inflammatory responses and managing cellular immune reactions during viral infections. Porcine reproductive and respiratory syndrome virus (PRRSV) primarily infects pulmonary alveolar macrophages (PAMs), leading to acute pulmonary infections. In this study, we explored a novel long non-coding RNA (lncRNA), termed lnc-CAST, situated within the Cxcl8 gene locus. This lncRNA was found to be highly expressed in porcine macrophages. We observed that both lnc-CAST and CXCL8 were significantly upregulated in PAMs following PRRSV infection, and after treatments with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Furthermore, we noticed a concurrent upregulation of lnc-CAST and CXCL8 expression in lungs of PRRSV-infected pigs. We then determined that lnc-CAST positively influenced CXCL8 expression in PAMs. Overexpression of lnc-CAST led to an increase in CXCL8 production, which in turn enhanced the migration of epithelial cells and the recruitment of neutrophils. Conversely, inhibiting lnc-CAST expression resulted in reduced CXCL8 production in PAMs, leading to decreased migration levels of epithelial cells and neutrophils. From a mechanistic perspective, we found that lnc-CAST, localized in the nucleus, facilitated the enrichment of histone H3K27ac in CXCL8 promoter region, thereby stimulating CXCL8 transcription in a cis-regulatory manner. In conclusion, our study underscores the pivotal critical role of lnc-CAST in regulating CXCL8 production, offering valuable insights into chemokine regulation and lung damage during PRRSV infection.


Asunto(s)
Histonas , Interleucina-8 , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , ARN Largo no Codificante , Animales , Porcinos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Interleucina-8/metabolismo , Interleucina-8/genética , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Histonas/metabolismo , Histonas/genética , Macrófagos Alveolares/virología , Macrófagos Alveolares/metabolismo , Regulación de la Expresión Génica
4.
Arch Microbiol ; 206(6): 253, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727738

RESUMEN

Candida auris is an invasive fungal pathogen of high concern due to acquired drug tolerance against antifungals used in clinics. The prolonged persistence on biotic and abiotic surfaces can result in onset of hospital outbreaks causing serious health threat. An in depth understanding of pathology of C. auris is highly desirable for development of efficient therapeutics. Non-coding RNAs play crucial role in fungal pathology. However, the information about ncRNAs is scanty to be utilized. Herein our aim is to identify long noncoding RNAs with potent role in pathobiology of C. auris. Thereby, we analyzed the transcriptomics data of C. auris infection in blood for identification of potential lncRNAs with regulatory role in determining invasion, survival or drug tolerance under infection conditions. Interestingly, we found 275 lncRNAs, out of which 253 matched with lncRNAs reported in Candidamine, corroborating for our accurate data analysis pipeline. Nevertheless, we obtained 23 novel lncRNAs not reported earlier. Three lncRNAs were found to be under expressed throughout the course of infection, in the transcriptomics data. 16 of potent lncRNAs were found to be coexpressed with coding genes, emphasizing for their functional role. Noteworthy, these ncRNAs are expressed from intergenic regions of the genes associated with transporters, metabolism, cell wall biogenesis. This study recommends for possible association between lncRNA expression and C. auris pathogenesis.


Asunto(s)
Candida auris , Candidiasis , Interacciones Microbiota-Huesped , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/aislamiento & purificación , Perfilación de la Expresión Génica , Simulación por Computador , Estudio de Asociación del Genoma Completo , Candida auris/genética , Candida auris/patogenicidad , Candidiasis/sangre , Candidiasis/microbiología , Sepsis/microbiología , Interacciones Microbiota-Huesped/genética , Humanos
5.
Virol J ; 21(1): 109, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734674

RESUMEN

BACKGROUND: Syndrome coronavirus-2 (SARS-CoV-2) has developed various strategies to evade the antiviral impact of type I IFN. Non-structural proteins and auxiliary proteins have been extensively researched on their role in immune escape. Nevertheless, the detailed mechanisms of structural protein-induced immune evasion have not been well elucidated. METHODS: Human alveolar basal epithelial carcinoma cell line (A549) was stimulated with polyinosinic-polycytidylic acid (PIC) and independently transfected with four structural proteins expression plasmids, including nucleocapsid (N), spike (S), membrane (M) and envelope (E) proteins. By RT-qPCR and ELISA, the structural protein with the most pronounced inhibitory effects on IFN-ß induction was screened. RNA-sequencing (RNA-Seq) and two differential analysis strategies were used to obtain differentially expressed genes associated with N protein inhibition of IFN-ß induction. Based on DIANA-LncBase and StarBase databases, the interactive competitive endogenous RNA (ceRNA) network for N protein-associated genes was constructed. By combining single-cell sequencing data (GSE158055), lncRNA-miRNA-mRNA axis was further determined. Finally, RT-qPCR was utilized to illustrate the regulatory functions among components of the ceRNA axis. RESULTS: SARS-CoV-2 N protein inhibited IFN-ß induction in human alveolar epithelial cells most significantly compared with other structural proteins. RNA-Seq data analysis revealed genes related to N protein inhibiting IFNs induction. The obtained 858 differentially expressed genes formed the reliable ceRNA network. The function of LINC01002-miR-4324-FRMD8 axis in the IFN-dominated immune evasion was further demonstrated through integrating single-cell sequencing data. Moreover, we validated that N protein could reverse the effect of PIC on LINC01002, FRMD8 and miR-4324 expression, and subsequently on IFN-ß expression level. And LINC01002 could regulate the production of FRMD8 by inhibiting miR-4324. CONCLUSION: SARS-CoV-2 N protein suppressed the induction of IFN-ß by regulating LINC01002 which was as a ceRNA, sponging miR-4324 and participating in the regulation of FRMD8 mRNA. Our discovery provides new insights into early intervention therapy and drug development on SARS-CoV-2 infection.


Asunto(s)
COVID-19 , MicroARNs , ARN Largo no Codificante , SARS-CoV-2 , Humanos , MicroARNs/genética , MicroARNs/metabolismo , COVID-19/virología , COVID-19/inmunología , SARS-CoV-2/genética , Células A549 , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Interferón beta/genética , Interferón beta/metabolismo , Evasión Inmune , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , ARN Endógeno Competitivo , Fosfoproteínas
6.
Arch Endocrinol Metab ; 68: e230097, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38739522

RESUMEN

Objective: This study sought to investigate the regulation of long noncoding RNA (lncRNA) XIST on the microRNA (miR)-101-3p/vascular endothelial growth factor A (VEGFA) axis in neovascularization in diabetic retinopathy (DR). Materials and methods: Serum of patients with DR was extracted for the analysis of XIST, miR-101-3p, and VEGFA expression levels. High glucose (HG)-insulted HRMECs and DR model rats were treated with lentiviral vectors. MTT, transwell, and tube formation assays were performed to evaluate cell viability, migration, and angiogenesis, and ELISA was conducted to detect the levels of inflammatory cytokines. Dual-luciferase reporter, RIP, and RNA pull-down experiments were used to validate the relationships among XIST, miR-101-3p, and VEGFA. Results: XIST and VEGFA were upregulated and miR-101-3p was downregulated in serum from patients with DR. XIST knockdown inhibited proliferation, migration, vessel tube formation, and inflammatory responsein HG-treated HRMECs, whereas the above effects were nullified by miR-101-3p inhibition or VEGFA overexpression. miR-101-3p could bind to XIST and VEGFA. XIST promoted DR development in rats by regulating the miR-101-3p/VEGFA axis. Conclusion: LncRNA XIST promotes VEGFA expression by downregulating miR-101-3p, thereby stimulating angiogenesis and inflammatory response in DR.


Asunto(s)
Retinopatía Diabética , MicroARNs , Neovascularización Patológica , ARN Largo no Codificante , Factor A de Crecimiento Endotelial Vascular , ARN Largo no Codificante/genética , Retinopatía Diabética/genética , Retinopatía Diabética/sangre , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Ratas , Humanos , Masculino , Neovascularización Patológica/genética , Ratas Sprague-Dawley , Femenino , Movimiento Celular/genética , Proliferación Celular/genética , Persona de Mediana Edad , Diabetes Mellitus Experimental
7.
Sci Rep ; 14(1): 10595, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719908

RESUMEN

Delayed diagnosis in patients with pulmonary tuberculosis (PTB) often leads to serious public health problems. High throughput sequencing was used to determine the expression levels of lncRNAs, mRNAs, and miRNAs in the lesions and adjacent health lung tissues of patients with PTB. Their differential expression profiles between the two groups were compared, and 146 DElncRs, 447 DEmRs, and 29 DEmiRs were obtained between lesions and adjacent health tissues in patients with PTB. Enrichment analysis for mRNAs showed that they were mainly involved in Th1, Th2, and Th17 cell differentiation. The lncRNAs, mRNAs with target relationship with miRNAs were predicted respectively, and correlation analysis was performed. The ceRNA regulatory network was obtained by comparing with the differentially expressed transcripts (DElncRs, DEmRs, DEmiRs), then 2 lncRNAs mediated ceRNA networks were established. The expression of genes within the network was verified by quantitative real-time PCR (qRT-PCR). Flow cytometric analysis revealed that the proportion of Th1 cells and Th17 cells was lower in PTB than in controls, while the proportion of Th2 cells increased. Our results provide rich transcriptome data for a deeper investigation of PTB. The ceRNA regulatory network we obtained may be instructive for the diagnosis and treatment of PTB.


Asunto(s)
Redes Reguladoras de Genes , MicroARNs , ARN Largo no Codificante , ARN Mensajero , Tuberculosis Pulmonar , Humanos , Tuberculosis Pulmonar/genética , ARN Largo no Codificante/genética , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Células Th17/inmunología , Células Th17/metabolismo , Femenino , Masculino , Adulto , Persona de Mediana Edad , Regulación de la Expresión Génica , Pulmón/patología , Pulmón/metabolismo , ARN Endógeno Competitivo
8.
Clin Respir J ; 18(5): e13765, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721812

RESUMEN

LINC00857 is frequently dysregulated in varying cancers, which in turn exerts carcinogenic effects; however, its DNA methylation status in promoter region and molecular mechanisms underlying the progression of lung adenocarcinoma (LUAD) remain rarely understood. Through bioinformatics analysis, we examined the expression state and methylation site of LINC00857 in LUAD and further investigated the properties of LINC00857 as a competitive endogenous RNA in the cancer progression. The current study revealed that the overexpression of LINC00857 in LUAD tissue and cells was mainly caused by the hypomethylation of the promoter region. LINC00857 knockdown prominently reduced cell proliferation, impeded cell migration and invasion, and restrained lymph node metastasis, with enhancing radiosensitivity. The effects of LINC00857 on tumor growth were also investigated in nude mice models. Subsequently, the downstream factors, miR-486-5p and NEK2, were screened, and the putative regulatory axis was examined. Overall, the regulatory effect of methylation-mediated LINC00857 overexpression on miR-486-5p/NEK2 axis may be a new mechanism for LUAD progression.


Asunto(s)
Adenocarcinoma del Pulmón , Proliferación Celular , Metilación de ADN , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Regulación hacia Arriba , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Animales , Ratones , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proliferación Celular/genética , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Línea Celular Tumoral , Ratones Desnudos , Movimiento Celular/genética , Masculino
9.
J Cell Mol Med ; 28(9): e18361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722283

RESUMEN

Hypoxia and Ferroptosis are associated with the malignant behaviour of cervical cancer. Endothelial PAS domain-containing protein 1 (EPAS1) contributes to the progression of cervical cancer. EPAS1 plays important roles in hypoxia and ferroptosis. Using the GEO dataset, machine-learning algorithms were used to screen for hypoxia- and ferroptosis-related genes (HFRGs) in cervical cancer. EPAS1 was identified as the hub gene. qPCR and WB were used to investigate the expression of EPAS1 in normal and cervical cancer tissues. The proliferation, invasion and migration of EPAS1 cells in HeLa and SiHa cell lines were detected using CCK8, transwell and wound healing assays, respectively. Apoptosis was detected by flow cytometry. A dual-luciferase assay was used to analyse the MALAT1-miR-182-5P-EPAS1 mRNA axis and core promoter elements of the super-enhancer. EPAS1 was significantly overexpressed in cervical cancer tissues. EPAS1 could increase the proliferation, invasion, migration of HeLa and SiHa cells and reduce the apoptosis of HeLa and SiHa cell. According to the double-luciferase assay, EPAS1 expression was regulated by the MALAT1-Mir-182-5p-EPAS1 mRNA axis. EPAS1 is associated with super-enhancers. Double-luciferase assay showed that the core elements of the super-enhancer were E1 and E3. EPAS1, an HFRG, is significantly overexpressed in cervical cancer. EPAS1 promotes malignant behaviour of cervical cancer cells. EPAS1 expression is regulated by super-enhancers and the MALAT1-miR-182-5P- EPAS1 mRNA axis. EPAS1 may be a target for the diagnosis and treatment of cervical cancer.


Asunto(s)
Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Movimiento Celular , Proliferación Celular , Ferroptosis , Regulación Neoplásica de la Expresión Génica , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Femenino , Ferroptosis/genética , Proliferación Celular/genética , Movimiento Celular/genética , Apoptosis/genética , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Células HeLa , ARN Largo no Codificante/genética , ARN Endógeno Competitivo
10.
Int J Biol Sci ; 20(7): 2388-2402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725844

RESUMEN

Metastasis is the leading cause of death in colorectal cancer (CRC) patients. By mediating intercellular communication, exosomes exhibit considerable value in regulating tumor metastasis. Long non-coding RNAs (lncRNAs) are abundant in exosomes and participate in regulating tumor progression. However, it is poorly understood how the cancer-secreted exosomal lncRNAs affect CRC proliferation and metastasis. Here, by analyzing the public databases we identified a lncRNA SNHG3 and demonstrated that SNHG3 was delivered through CRC cells-derived exosomes to promote metastasis in CRC. Mechanistically, exosomal SNHG3 was internalized by CRC cells and afterward upregulated the expression of ß-catenin by facilitating the intranuclear transport of hnRNPC. Consequently, the RNA stability of ß-catenin was enhanced which led to the activation of EMT and metastasis of CRC cells. Our findings expand the oncogenic mechanisms of exosomal SNHG3 and identify it as a diagnostic marker for CRC.


Asunto(s)
Neoplasias Colorrectales , Exosomas , ARN Largo no Codificante , beta Catenina , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , beta Catenina/metabolismo , Exosomas/metabolismo , Línea Celular Tumoral , Estabilidad del ARN/genética , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Animales , Ratones , Proliferación Celular/genética , Ratones Desnudos
11.
Int J Biol Sci ; 20(7): 2698-2726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725864

RESUMEN

Pancreatic cancer is a malignancy with high mortality. In addition to the few symptoms until the disease reaches an advanced stage, the high fatality rate is attributed to its rapid development, drug resistance and lack of appropriate treatment. In the selection and research of therapeutic drugs, gemcitabine is the first-line drug for pancreatic cancer. Solving the problem of gemcitabine resistance in pancreatic cancer will contribute to the progress of pancreatic cancer treatment. Long non coding RNAs (lncRNAs), which are RNA transcripts longer than 200 nucleotides, play vital roles in cellular physiological metabolic activities. Currently, our group and others have found that some lncRNAs are aberrantly expressed in pancreatic cancer cells, which can regulate the process of cancer through autophagy and Wnt/ß-catenin pathways simultaneously and affect the sensitivity of cancer cells to therapeutic drugs. This review presents an overview of the recent evidence concerning the node of lncRNA for the cross-talk between autophagy and Wnt/ß-catenin signaling in pancreatic cancer, together with the practicability of lncRNAs and the core regulatory factors as targets in therapeutic resistance.


Asunto(s)
Autofagia , Resistencia a Antineoplásicos , Neoplasias Pancreáticas , ARN Largo no Codificante , Vía de Señalización Wnt , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Humanos , Autofagia/efectos de los fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Resistencia a Antineoplásicos/genética , Animales
12.
Scand Cardiovasc J ; 58(1): 2347290, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38733316

RESUMEN

Objectives. The aim of this study was to investigate the expression of long non-coding RNA (lncRNA) brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in patients with acute myocardial infarction (AMI) and its effect on ischemia/reperfusion (I/R)-induced oxidative stress and apoptosis of cardiomyocytes. Methods. Serum BRE-AS1 levels in patients with AMI was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic and prognostic values of BRE-AS1 were evaluated. H9c2 cells were treated with hypoxia/reoxygenation to establish an in vitro myocardial infarction cell model. The levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). Levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined by commercial kits. Cell counting kit-8 (CCK-8) and flow cytometry were used to evaluate the cell viability and cell apoptosis. Results. The expression of BRE-AS1 in serum of patients with AMI is upregulated, which shows the clinical diagnostic value for AMI. In the I/R injury cell model, the knockout of BRE-AS1 can significantly alleviate the increase in TNF-α, IL-1ß, and IL-6 levels, inhibit the production of LDH and MDA, increase the activities of SOD and GSH-Px, promote the cell viability and suppress cell apoptosis. Conclusions. Abnormally elevated BRE-AS1 has a high diagnostic value for AMI as well as a prognostic value for major adverse cardiovascular events (MACEs). The elevation of BRE-AS1 promoted oxidative stress injury and cell apoptosis in vitro.


Asunto(s)
Apoptosis , Mediadores de Inflamación , Infarto del Miocardio , Miocitos Cardíacos , Estrés Oxidativo , ARN Largo no Codificante , ARN Largo no Codificante/sangre , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/sangre , Infarto del Miocardio/genética , Infarto del Miocardio/diagnóstico , Masculino , Persona de Mediana Edad , Femenino , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/sangre , Línea Celular , Animales , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/sangre , Daño por Reperfusión Miocárdica/diagnóstico , Daño por Reperfusión Miocárdica/genética , Ratas , Citocinas/metabolismo , Citocinas/sangre , Transducción de Señal , Estudios de Casos y Controles , Anciano , Regulación hacia Arriba
13.
PLoS One ; 19(5): e0303314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739668

RESUMEN

BACKGROUND: Globally, hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death due to a lack of early predictive and/or diagnostic tools. Thus, research for a new biomarker is important. LncRNAs play a functional role in target gene regulation and their deregulation is associated with several pathological conditions including HCC. OBJECTIVE: This study aimed to explore the diagnostic potential of two LncRNAs MALAT1 and CASC2 in HCC compared to the routinely used diagnostic biomarker. MATERIALS AND METHODS: The current study is a case-control study carried out at Fayoum University Hospital and conducted on 89 individuals. The study included three groups of 36 HCC patients on top of HCV(HCC/HCV), 33 HCV patients, and 20 healthy volunteers as a control group. All study subjects were subjected to radiological examinations. The determination of CBC was performed by the automated counter and liver function tests by the enzymatic method were performed. In addition, HCV RNA quantification and the expression level of two LncRNAs (MALAT1 and CASC2) were performed by qRT-PCR. RESULTS: The results revealed a statistically significant difference between study groups regarding liver function tests with a higher mean in HCC/HCV group. Also, serum MALAT1 significantly up-regulated in HCV (11.2±2.8) and HCC/HCV (4.56±1.4) compared to the control group. Besides, serum CASC2 levels in the HCV group were significantly upregulated (14.9±3.6), while, downregulated in the HCC group (0.16± 0.03). Furthermore, The ROC analysis for diagnostic efficacy parameters indicated that CASC2 has higher accuracy (94.6%) and sensitivity (97.2%) for HCC diagnosis than AFP with an accuracy of (90.9%), sensitivity (69.4%), and MALAT1 showed an accuracy of (56.9%), sensitivity (72.2%). CONCLUSION: Our study results indicated that CASC2 is a promising biomarker and is considered better and could help in HCC diagnosis on top of HCV than MALAT1 and the routine biomarker AFP.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Proteínas Supresoras de Tumor , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/sangre , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/virología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Masculino , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Proteínas Supresoras de Tumor/genética , Hepatitis C/complicaciones , Hepatitis C/virología , Hepatitis C/diagnóstico , Hepatitis C/genética , Hepacivirus/genética , Anciano , Regulación Neoplásica de la Expresión Génica , Adulto , Curva ROC , Relevancia Clínica
14.
Nucleus ; 15(1): 2350182, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38738760

RESUMEN

Long noncoding RNAs (LncRNAs) are key regulators of gene expression and can mediate their effects in both the nucleus and cytoplasm. Some of the best-characterized lncRNAs are localized within the nucleus, where they modulate the nuclear architecture and influence gene expression. In this review, we discuss the role of lncRNAs in nuclear architecture in the context of their gene regulatory functions in innate immunity. Here, we discuss various approaches to functionally characterize nuclear-localized lncRNAs and the challenges faced in the field.


Asunto(s)
Núcleo Celular , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Animales , Inmunidad Innata , Regulación de la Expresión Génica
15.
Adv Immunol ; 161: 1-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763698

RESUMEN

Recent advances in human genomics technologies have helped uncover genetic risk alleles for many complex autoimmune diseases. Intriguingly, over 90% of genome-wide association study (GWAS) risk alleles reside within the non-coding regions of the genome. An emerging new frontier of functional and mechanistic studies have shed light on the functional relevance of risk alleles that lie within long noncoding RNAs (lncRNAs). Here, we review the mechanisms and functional implications of five evolutionarily conserved lncRNAs that display risk allele association with highly prevalent autoimmune diseases.


Asunto(s)
Alelos , Enfermedades Autoinmunes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Animales
16.
Cancer Control ; 31: 10732748241257142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38769028

RESUMEN

OBJECTIVES: To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND: MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS: The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS: ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS: This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , ARN Circular , Proteínas de Unión al ARN , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , ARN Circular/genética , Regulación Neoplásica de la Expresión Génica , Masculino , Proliferación Celular/genética , Línea Celular Tumoral , Femenino , Ratones , Animales , Movimiento Celular/genética , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
17.
Nat Commun ; 15(1): 4259, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769334

RESUMEN

Tools for predicting COVID-19 outcomes enable personalized healthcare, potentially easing the disease burden. This collaborative study by 15 institutions across Europe aimed to develop a machine learning model for predicting the risk of in-hospital mortality post-SARS-CoV-2 infection. Blood samples and clinical data from 1286 COVID-19 patients collected from 2020 to 2023 across four cohorts in Europe and Canada were analyzed, with 2906 long non-coding RNAs profiled using targeted sequencing. From a discovery cohort combining three European cohorts and 804 patients, age and the long non-coding RNA LEF1-AS1 were identified as predictive features, yielding an AUC of 0.83 (95% CI 0.82-0.84) and a balanced accuracy of 0.78 (95% CI 0.77-0.79) with a feedforward neural network classifier. Validation in an independent Canadian cohort of 482 patients showed consistent performance. Cox regression analysis indicated that higher levels of LEF1-AS1 correlated with reduced mortality risk (age-adjusted hazard ratio 0.54, 95% CI 0.40-0.74). Quantitative PCR validated LEF1-AS1's adaptability to be measured in hospital settings. Here, we demonstrate a promising predictive model for enhancing COVID-19 patient management.


Asunto(s)
COVID-19 , Mortalidad Hospitalaria , Aprendizaje Automático , ARN Largo no Codificante , SARS-CoV-2 , Humanos , COVID-19/mortalidad , COVID-19/virología , COVID-19/genética , Masculino , Femenino , Anciano , ARN Largo no Codificante/genética , Persona de Mediana Edad , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Europa (Continente)/epidemiología , Canadá/epidemiología , Estudios de Cohortes , Anciano de 80 o más Años , Adulto
18.
Cell Mol Biol Lett ; 29(1): 77, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769475

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) significantly influence the progression, metastasis, and recurrence of esophageal squamous cell carcinoma (ESCC). The aberrant expression of long noncoding RNAs (lncRNAs) in ESCC has been established, yet the role of lncRNAs in TAM reprogramming during ESCC progression remains largely unexplored. METHODS: ESCC TAM-related lncRNAs were identified by intersecting differentially expressed lncRNAs with immune-related lncRNAs and performing immune cell infiltration analysis. The expression profile and clinical relevance of LINC00330 were examined using the TCGA database and clinical samples. The LINC00330 overexpression and interference sequences were constructed to evaluate the effect of LINC00330 on ESCC progression. Single-cell sequencing data, CIBERSORTx, and GEPIA were utilized to analyze immune cell infiltration within the ESCC tumor microenvironment and to assess the correlation between LINC00330 and TAM infiltration. ESCC-macrophage coculture experiments were conducted to investigate the influence of LINC00330 on TAM reprogramming and its subsequent effect on ESCC progression. The interaction between LINC00330 and C-C motif ligand 2 (CCL2) was confirmed through transcriptomic sequencing, subcellular localization analysis, RNA pulldown, silver staining, RNA immunoprecipitation, and other experiments. RESULTS: LINC00330 is significantly downregulated in ESCC tissues and strongly associated with poor patient outcomes. Overexpression of LINC00330 inhibits ESCC progression, including proliferation, invasion, epithelial-mesenchymal transition, and tumorigenicity in vivo. LINC00330 promotes TAM reprogramming, and LINC00330-mediated TAM reprogramming inhibits ESCC progression. LINC00330 binds to the CCL2 protein and inhibits the expression of CCL2 and downstream signaling pathways. CCL2 is critical for LINC00330-mediated TAM reprogramming and ESCC progression. CONCLUSIONS: LINC00330 inhibited ESCC progression by disrupting the CCL2/CCR2 axis and its downstream signaling pathways in an autocrine fashion; and by impeding CCL2-mediated TAM reprogramming in a paracrine manner. The new mechanism of TAM reprogramming mediated by the LINC00330/CCL2 axis may provide potential strategies for targeted and immunocombination therapies for patients with ESCC.


Asunto(s)
Quimiocina CCL2 , Progresión de la Enfermedad , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante , Microambiente Tumoral , Macrófagos Asociados a Tumores , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Línea Celular Tumoral , Microambiente Tumoral/genética , Macrófagos Asociados a Tumores/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Animales , Ratones , Femenino , Proliferación Celular/genética
19.
Ann Hum Biol ; 51(1): 2342531, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38771661

RESUMEN

BACKGROUND: Cuproptosis, a type of cell death involving copper ion accumulation and oxidative stress, has been implicated in the development of Alzheimer's disease (AD). AIM: This study aimed to explore the potential mechanisms and roles of cuproptosis-related genes (CRGs), long non-coding RNAs (lncRNAs), and immune cells in the development of cuproptosis in AD. SUBJECTS AND METHODS: Gene expression profiles of AD were acquired from the Gene Expression Omnibus (GEO) database, and differential analysis was conducted to identify CRGs. Random Forest (RF) modelling was employed to select the most crucial CRGs, which were subsequently validated in the test set. A nomogram model was created to predict AD risk and categorise AD subtypes based on the identified CRGs. A lncRNA-related ceRNA network was built, and immune cell infiltration analysis was conducted. RESULTS: Twelve differentially expressed CRGs were identified in the AD dataset. The RF model pinpointed the five most critical CRGs, which were validated in the test set with an AUC of 0.90. A lncRNA-related ceRNA network was developed, and immune cell infiltration analysis revealed high levels of M1 macrophages and mast cells, along with low levels of memory B cells in AD samples. Correlation analysis unveiled associations between CRGs, lncRNAs, and differentially infiltrating immune cells. CONCLUSION: This research offers insights into the potential mechanisms and roles of CRGs, lncRNAs, and immune cells in the development of cuproptosis in AD. The identified CRGs and lncRNAs may serve as potential therapeutic targets for AD, and the nomogram model may assist in early AD diagnosis and subtyping.


Asunto(s)
Enfermedad de Alzheimer , ARN Largo no Codificante , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , ARN Largo no Codificante/genética , Humanos , Cobre
20.
PLoS One ; 19(5): e0304041, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771854

RESUMEN

Ventricular fibrillation (VF) in acute myocardial infarction (AMI) is the main cause of deaths occurring in the acute phase of an ischemic event. Although it is known that genetics may play an important role in this pathology, the possible role of long non-coding RNAs (lncRNA) has never been studied. Therefore, the aim of this work is to study the expression of 10 lncRNAs in patients with and without VF in AMI. For this purpose, the expression of CDKN2B-AS1, KCNQ1OT1, LIPCAR, MALAT1, MIAT, NEAT1, SLC16A1-AS1, lnc-TK2-4:2, TNFRSF14-AS1, and UCA1 were analyzed. After the analysis and Bonferroni correction, the lncRNA CDKN2B-AS showed a statistical significance lower expression (P values of 2.514 x 10-5). In silico analysis revealed that six proteins could be related to the possible effect of lncRNA CDKN2B-AS1: AGO3, PLD4, POU4F1, ZNF26, ZNF326 and ZNF431. These in silico proteins predicted to have a low cardiac expression, although there is no literature indicating a potential relationship with VF in AMI. Thus, the lncRNA CDKN2B-AS1 shows a significant lower expression in patients with VF in AMI vs patients without VF in AMI. Literature data suggest that the role of CDKN2B1-AS is related to the miR-181a/SIRT1 pathway.


Asunto(s)
Regulación hacia Abajo , Infarto del Miocardio , ARN Largo no Codificante , Fibrilación Ventricular , Humanos , ARN Largo no Codificante/genética , Infarto del Miocardio/genética , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Regulación hacia Abajo/genética , Masculino , Fibrilación Ventricular/genética , Femenino , Persona de Mediana Edad , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA