Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63.418
Filtrar
1.
Nat Commun ; 15(1): 3972, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730241

RESUMEN

The advancement of Long-Read Sequencing (LRS) techniques has significantly increased the length of sequencing to several kilobases, thereby facilitating the identification of alternative splicing events and isoform expressions. Recently, numerous computational tools for isoform detection using long-read sequencing data have been developed. Nevertheless, there remains a deficiency in comparative studies that systemically evaluate the performance of these tools, which are implemented with different algorithms, under various simulations that encompass potential influencing factors. In this study, we conducted a benchmark analysis of thirteen methods implemented in nine tools capable of identifying isoform structures from long-read RNA-seq data. We evaluated their performances using simulated data, which represented diverse sequencing platforms generated by an in-house simulator, RNA sequins (sequencing spike-ins) data, as well as experimental data. Our findings demonstrate IsoQuant as a highly effective tool for isoform detection with LRS, with Bambu and StringTie2 also exhibiting strong performance. These results offer valuable guidance for future research on alternative splicing analysis and the ongoing improvement of tools for isoform detection using LRS data.


Asunto(s)
Algoritmos , Empalme Alternativo , ARN Mensajero , Análisis de Secuencia de ARN , Humanos , ARN Mensajero/genética , ARN Mensajero/análisis , Análisis de Secuencia de ARN/métodos , Isoformas de ARN/genética , Programas Informáticos , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Isoformas de Proteínas/genética
2.
Forensic Sci Int ; 359: 112032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688209

RESUMEN

Criminal investigations, particularly sexual assaults, frequently require the identification of body fluid type in addition to body fluid donor to provide context. In most cases this can be achieved by conventional methods, however, in certain scenarios, alternative molecular methods are required. An example of this is the detection of menstrual fluid and vaginal material, which are not able to be identified using conventional techniques. Endpoint reverse-transcription PCR (RT-PCR) is currently used for this purpose to amplify body fluid specific messenger RNA (mRNA) transcripts in forensic casework. Real-time quantitative reverse-transcription PCR (RT-qPCR) is a similar method but utilises fluorescent markers to generate quantitative results in the form of threshold cycle (Cq) values. Despite the uncertainty surrounding body fluid identification, most interpretation guidelines utilise categorical statements. Probabilistic modelling is more realistic as it reflects biological variation as well as the known performance of the method. This research describes the application of various machine learning models to single-source mRNA profiles obtained by RT-qPCR and assesses their performance. Multinomial logistic regression (MLR), Naïve Bayes (NB), and linear discriminant analysis (LDA) were used to discriminate between the following body fluid categories: saliva, circulatory blood, menstrual fluid, vaginal material, and semen. We identified that the performance of MLR was somewhat improved when the quantitative dataset of the original Cq values was used (overall accuracy of approximately 0.95) rather than presence/absence coded data (overall accuracy of approximately 0.94). This indicates that the quantitative information obtained by RT-qPCR amplification is useful in assigning body fluid class. Of the three classification methods, MLR performed the best. When we utilised receiver operating characteristic curves to observe performance by body fluid class, it was clear that all methods found difficulty in classifying menstrual blood samples. Future work will involve the modelling of body fluid mixtures, which are common in samples analysed as part of sexual assault investigations.


Asunto(s)
Teorema de Bayes , Moco del Cuello Uterino , Aprendizaje Automático , Menstruación , ARN Mensajero , Reacción en Cadena en Tiempo Real de la Polimerasa , Saliva , Semen , Humanos , Femenino , Saliva/química , Moco del Cuello Uterino/química , Semen/química , ARN Mensajero/análisis , Modelos Logísticos , Análisis Discriminante , Masculino , Líquidos Corporales/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Modelos Estadísticos , Análisis Químico de la Sangre
3.
Anal Bioanal Chem ; 416(12): 2941-2949, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38594392

RESUMEN

Messenger RNA (mRNA) vaccines represent a landmark in vaccinology, especially with their success in COVID-19 vaccines, which have shown great promise for future vaccine development and disease prevention. As a platform technology, synthetic mRNA can be produced with high fidelity using in vitro transcription (IVT). Magnesium plays a vital role in the IVT process, facilitating the phosphodiester bond formation between adjacent nucleotides and ensuring accurate transcription to produce high-quality mRNA. The development of the IVT process has prompted key inquiries about in-process characterization of magnesium ion (Mg++) consumption, relating to the RNA polymerase (RNAP) activation, fed-batch mode production yield, and mRNA quality. Hence, it becomes crucial to monitor the free Mg++ concentration throughout the IVT process. However, no free Mg++ analysis method has been reported for complex IVT reactions. Here we report a robust capillary zone electrophoresis (CZE) method with indirect UV detection. The assay allows accurate quantitation of free Mg++ for the complex IVT reaction where it is essential to preserve IVT samples in their native-like state during analysis to avoid dissociation of bound Mg complexes. By applying this CZE method, the relationships between free Mg++ concentration, the mRNA yield, and dsRNA impurity level were investigated. Such mechanistic understanding facilitates informed decisions regarding the quantity and timing of feeding starting materials to increase the yield. Furthermore, this approach can serve as a platform method for analyzing the free Mg++ in complex sample matrices where preserving the native-like state of Mg++ binding is key for accurate quantitation.


Asunto(s)
Electroforesis Capilar , Magnesio , ARN Mensajero , Transcripción Genética , Electroforesis Capilar/métodos , Magnesio/análisis , ARN Mensajero/genética , ARN Mensajero/análisis , SARS-CoV-2/genética , Humanos
4.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 394-402, 2024 Apr 15.
Artículo en Chino | MEDLINE | ID: mdl-38660904

RESUMEN

OBJECTIVES: To compare the repair effects of different doses of human umbilical cord mesenchymal stem cells (hUC-MSCs) on white matter injury (WMI) in neonatal rats. METHODS: Two-day-old Sprague-Dawley neonatal rats were randomly divided into five groups: sham operation group, WMI group, and hUC-MSCs groups (low dose, medium dose, and high dose), with 24 rats in each group. Twenty-four hours after successful establishment of the neonatal rat white matter injury model, the WMI group was injected with sterile PBS via the lateral ventricle, while the hUC-MSCs groups received injections of hUC-MSCs at different doses. At 14 and 21 days post-modeling, hematoxylin and eosin staining was used to observe pathological changes in the tissues around the lateral ventricles. Real-time quantitative polymerase chain reaction was used to detect the quantitative expression of myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) mRNA in the brain tissue. Immunohistochemistry was employed to observe the expression levels of GFAP and neuron-specific nuclear protein (NeuN) in the tissues around the lateral ventricles. TUNEL staining was used to observe cell apoptosis in the tissues around the lateral ventricles. At 21 days post-modeling, the Morris water maze test was used to observe the spatial learning and memory capabilities of the neonatal rats. RESULTS: At 14 and 21 days post-modeling, numerous cells with nuclear shrinkage and rupture, as well as disordered arrangement of nerve fibers, were observed in the tissues around the lateral ventricles of the WMI group and the low dose group. Compared with the WMI group, the medium and high dose groups showed alleviated pathological changes; the arrangement of nerve fibers in the medium dose group was relatively more orderly compared with the high dose group. Compared with the WMI group, there was no significant difference in the expression levels of MBP and GFAP mRNA in the low dose group (P>0.05), while the expression levels of MBP mRNA increased and GFAP mRNA decreased in the medium and high dose groups. The expression level of MBP mRNA in the medium dose group was higher than that in the high dose group, and the expression level of GFAP mRNA in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the protein expression of GFAP and NeuN in the low dose group (P>0.05), while the expression of NeuN protein increased and GFAP protein decreased in the medium and high dose groups. The expression of NeuN protein in the medium dose group was higher than that in the high dose group, and the expression of GFAP protein in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the number of apoptotic cells in the low dose group (P>0.05), while the number of apoptotic cells in the medium and high dose groups was less than that in the WMI group, and the number of apoptotic cells in the medium dose group was less than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the escape latency time in the low dose group (P>0.05); starting from the third day of the latency period, the escape latency time in the medium dose group was less than that in the WMI group (P<0.05). The medium and high dose groups crossed the platform more times than the WMI group (P<0.05). CONCLUSIONS: Low dose hUC-MSCs may yield unsatisfactory repair effects on WMI in neonatal rats, while medium and high doses of hUC-MSCs have significant repair effects, with the medium dose demonstrating superior efficacy.


Asunto(s)
Animales Recién Nacidos , Trasplante de Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Cordón Umbilical , Sustancia Blanca , Animales , Ratas , Humanos , Cordón Umbilical/citología , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/análisis , Células Madre Mesenquimatosas , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/análisis , Proteína Básica de Mielina/metabolismo , Masculino , Apoptosis , Femenino , ARN Mensajero/análisis , ARN Mensajero/metabolismo
5.
Pathol Res Pract ; 256: 155232, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452586

RESUMEN

AIM: Methylation status of genome varies between pre-acute-on-chronic hepatitis B liver failure (pre-ACHBLF), acute-on-chronic hepatitis B liver failure (ACHBLF), and chronic hepatitis B patients. This study aimed to find better prognostic indicators for acute-on-chronic liver failure. METHODS: The level of global genome methylation in peripheral blood mononuclear cells (PBMCs) was detected. The overall genome methylation rate was determined using MethylFlash™ Methylated DNA Quantification Kit(Colorimetric). DNMT activity were measured using DNA Methyltransferase Activity/Inhibition Assay Kit. Gene expression of DNA methyltransferases (DNMT),methyl-CpG-binding domain (MBD) were detected by qRT-PCR. RESULTS: The global genome methylation level in ACHBLF group was significantly higher than that in chronic hepatitis B group (P<0.001). There was also obvious difference of the global genome methylation level between pre-ACHBLF group and CHB group (P<0.001). Meanwhile, the activity of DNMT in ACHBLF group was significantly higher than that in chronic hepatitis B group (P<0.001). The mRNA expression level of DNMT1 was higher than that in pre-ACHBLF group (P<0.01) and CHB group (PP<0.001). The mRNA expression level of MBD1 in ACHBLF group was also higher than that in CHB group (P<0.001) and healthy controls (HCs) (P<0.01). And the mRNA expression level of MBD3 and MBD4 in ACHBLF, pre-ACHBLF and CHB group were lower than that in HCs (P<0.001). Meanwhile we observed an opposite change in the mRNA expression level of MECP2. The ROC curve suggested that global genome methylation level was a better prognostic predictor than MELD score in ACHBLF (AUC 0.950, SE 0.0237, 95%CI 0.874-0.986 VS AUC 0.863, SE 0.0439, 95%CI 0.765-0.931, P=0.0429). CONCLUSIONS: Genome methylation level can be a good biomarker in predicting the severity and prognosis of ACHBLF.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Hepatitis B Crónica , Humanos , Pronóstico , Insuficiencia Hepática Crónica Agudizada/genética , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/genética , Leucocitos Mononucleares , Metilación de ADN/genética , ARN Mensajero/análisis , ADN
6.
Sci Justice ; 64(2): 151-158, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38431372

RESUMEN

Good laboratory practice minimizes the biological hazard posed by potentially infectious casework samples. In certain scenarios, when the casework sample is contaminated with highly contagious pathogens, additional safety procedures such as disinfection might be advised. It was previously proven that ozone gas treatment does not hamper STR analysis, but there is no data on how the disinfection affects other steps of the forensic analysis. In this study, we aimed to assess the interference of ozone disinfection with forensic tests used to identify biological stains. A dilution series of blood, saliva, and semen samples were pipetted onto cotton fabric and let completely dry. Half of the samples were subjected to ozone treatment, while the rest served as controls. All the samples were tested with specific lateral flow immunochromatographic assays and for specific RNA markers with quantitative real-time PCR. Additionally, luminol test was carried out on blood spots, Phadebas® Amylase Test on saliva stains, and semen stains were examined with STK Lab kit and light microscope following Christmas Tree or Hematoxylin-Eosin staining. Ozone treatment had no detrimental effect on the microscopic identification of sperm cells. Undiluted blood samples were detected with luminol and immunoassay, but at higher dilution, the sensitivity of the test decreased after disinfection. The same decrease in sensitivity was observed in the detection of semen stains using STK Lab kit from STK® Sperm Tracker, and in the case of the immunoassay specific for prostate-specific antigen (PSA). Ozone treatment almost completely inhibited the enzymatic activity of amylase. The sensitivity of antibody-based detection of amylase was also greatly reduced. RNA markers showed degradation but remained detectable in blood and semen samples after incubation in the presence of ozone. In saliva, the higher Ct values of the mRNA markers were close to the detection limit, even before ozone treatment.


Asunto(s)
Manchas de Sangre , Saliva , Humanos , Masculino , Saliva/química , Semen , Colorantes/análisis , Luminol/análisis , Desinfección , Amilasas/análisis , ARN Mensajero/análisis , Coloración y Etiquetado , Medicina Legal/métodos
7.
Microsc Microanal ; 30(2): 306-317, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38498601

RESUMEN

The quantitative description of biological structures is a valuable yet difficult task in the life sciences. This is commonly accomplished by imaging samples using fluorescence microscopy and analyzing resulting images using Pearson's correlation or Manders' co-occurrence intensity-based colocalization paradigms. Though conceptually and computationally simple, these approaches are critically flawed due to their reliance on signal overlap, sensitivity to cursory signal qualities, and inability to differentiate true and incidental colocalization. Point pattern analysis provides a framework for quantitative characterization of spatial relationships between spatial patterns using the distances between observations rather than their overlap, thus overcoming these issues. Here we introduce an image analysis tool called Spatial Pattern Analysis using Closest Events (SPACE) that leverages nearest neighbor-based point pattern analysis to characterize the spatial relationship of fluorescence microscopy signals from image data. The utility of SPACE is demonstrated by assessing the spatial association between mRNA and cell nuclei from confocal images of cardiac myocytes. Additionally, we use synthetic and empirical images to characterize the sensitivity of SPACE to image segmentation parameters and cursory image qualities such as signal abundance and image resolution. Ultimately, SPACE delivers performance superior to traditional colocalization methods and offers a valuable addition to the microscopist's toolbox.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Miocitos Cardíacos , Animales , Núcleo Celular , Análisis Espacial , ARN Mensajero/genética , ARN Mensajero/análisis , Microscopía Confocal/métodos
8.
Methods Mol Biol ; 2784: 45-58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502477

RESUMEN

The inherent stochastic processes governing gene expression give rise to heterogeneity across individual cells, highlighting the importance of single-cell studies. The emergence of single-molecule fluorescent in situ hybridization (smFISH) enabled gene expression analysis at the single-cell level while including the spatial dimension through the visualization and quantification of mRNAs in intact fixed cells. By combining smFISH with immunofluorescence (IF), a comprehensive approach takes shape facilitating the study of mRNAs and proteins to correlate gene expression profiles to different cellular states. This chapter serves as a comprehensive guide to a smFISH-IF protocol optimized for gene expression analysis in the budding yeast S. cerevisiae. We utilize smFISH to visualize the mRNA localization pattern of the CLB2 cyclin over the course of the cell cycle inferred by alpha-tubulin IF.


Asunto(s)
ARN , Saccharomycetales , Saccharomyces cerevisiae/genética , Hibridación Fluorescente in Situ/métodos , Saccharomycetales/genética , ARN Mensajero/genética , ARN Mensajero/análisis , Técnica del Anticuerpo Fluorescente
9.
Nature ; 627(8003): 424-430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418874

RESUMEN

Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that causes tuberculosis (TB), an infectious disease that is responsible for major health and economic costs worldwide1. Mtb encounters diverse environments during its life cycle and responds to these changes largely by reprogramming its transcriptional output2. However, the mechanisms of Mtb transcription and how they are regulated remain poorly understood. Here we use a sequencing method that simultaneously determines both termini of individual RNA molecules in bacterial cells3 to profile the Mtb transcriptome at high resolution. Unexpectedly, we find that most Mtb transcripts are incomplete, with their 5' ends aligned at transcription start sites and 3' ends located 200-500 nucleotides downstream. We show that these short RNAs are mainly associated with paused RNA polymerases (RNAPs) rather than being products of premature termination. We further show that the high propensity of Mtb RNAP to pause early in transcription relies on the binding of the σ-factor. Finally, we show that a translating ribosome promotes transcription elongation, revealing a potential role for transcription-translation coupling in controlling Mtb gene expression. In sum, our findings depict a mycobacterial transcriptome that prominently features incomplete transcripts resulting from RNAP pausing. We propose that the pausing phase constitutes an important transcriptional checkpoint in Mtb that allows the bacterium to adapt to environmental changes and could be exploited for TB therapeutics.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis , ARN Bacteriano , Transcriptoma , ARN Polimerasas Dirigidas por ADN/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , ARN Bacteriano/análisis , ARN Bacteriano/biosíntesis , ARN Bacteriano/genética , Transcriptoma/genética , Tuberculosis/microbiología , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Sitio de Iniciación de la Transcripción , Factor sigma/metabolismo , Ribosomas/metabolismo , Biosíntesis de Proteínas
10.
J Periodontal Res ; 59(2): 395-407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38311599

RESUMEN

OBJECTIVE: The study aimed to investigate the change of amyloid precursor protein (APP) processing and amyloid ß (Aß) metabolites in linking periodontitis to Alzheimer's disease (AD). BACKGROUND: Aß is one of the main pathological features of AD, and few studies have discussed changes in its expression in peripheral tissues or analyzed the relationship between the peripheral imbalance of Aß production and clearance. METHODS: A murine model of periodontitis was established by oral infection with Porphyromonas gingivalis (P. gingivalis). Micro-computed tomography (Micro-CT) was used to observe the destruction of the alveolar bone. Nested quantitative polymerase chain reaction (qPCR) was used to measure small quantities of P.gingivalis DNA in different tissues. Behavioral experiments were performed to measure cognitive function in the mice. The mRNA levels of TNF-α, IL-6, IL-8, RANKL, OPG, APP695, APP751, APP770, and BACE1 in the gingival tissues or cortex were detected by RT-PCR. The levels of Aß1-40 and Aß1-42 in gingival crevicular fluid (GCF) and plasma were tested by ELISA. RESULTS: P. gingivalis oral infection was found to cause alveolar bone resorption and impaired learning and memory. P.gingivalis DNA was detected in the gingiva, blood and cortex of the P.gingivalis group by nested qPCR (p < .05). The mRNA expression of TNF-α, IL-6, IL-8, RANKL/OPG, and BACE1 in the gingival tissue was significantly higher than that in the control group (p < .05). Similarly, upregulated mRNA levels of APP695 and APP770 were observed in the gingival tissuses and cortex of the P. gingivalis group (p < .05). The levels of Aß1-40 and Aß1-42 in the GCF and plasma of the P. gingivalis group were significantly higher than those in the control group (p < .05). CONCLUSION: P. gingivalis can directly invade the brain via hematogenous infection. The invasion of P. gingivalis could trigger an immune response and lead to an imbalance between Aß production and clearance in peripheral tissues, which may trigger an abnormal Aß metabolite in the brain, resulting in the occurrence and development of AD.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Ratones , Animales , Precursor de Proteína beta-Amiloide/genética , Porphyromonas gingivalis/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides/metabolismo , Factor de Necrosis Tumoral alfa , Modelos Animales de Enfermedad , Microtomografía por Rayos X , Interleucina-6 , Interleucina-8 , Ácido Aspártico Endopeptidasas , Periodontitis/metabolismo , ARN Mensajero/análisis , ADN
11.
Placenta ; 146: 71-78, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38190772

RESUMEN

The human placenta releases diverse extracellular vesicles (EVs), including microvesicles (100-1000 nm) and exosomes (30-150 nm), into the maternal blood for feto-maternal communication. Exosomes and microvesicles contribute to normal pregnancy physiology and major pregnancy pathologies. Differences in miRNA expressions and protein content in placental exosomes have been reported in complicated pregnancies. During human pregnancy, Corticotropin-Releasing Hormone (CRH) is produced and released by the placenta into the maternal blood. CRH is involved in regulating gestational length and the initiation of labour. CRH mRNA levels in the maternal plasma rise with gestation. High levels of CRH mRNA are reported to be associated with preeclamptic and preterm pregnancies. However, the underlying mechanism of placental CRH mRNA secretion remains to be elucidated. We hypothesise that the placenta releases CRH mRNA packaged within extracellular vesicles (EVs) into the maternal blood. In this study, placental EVs (microvesicles and exosomes) were isolated from human term healthy placentas via villus washes and from explant culture media by differential centrifugation and purified by density gradient ultracentrifugation using a continuous sucrose gradient (0.25-2.5 M). Western blotting using placenta- and exosome-specific markers and electron microscopy confirmed exosomes and microvesicles in the placental wash and explant media samples. Real-time quantitative RT-PCR data detected CRH mRNA in placenta-derived EVs from placental washes and explants. We also sorted placenta-secreted EVs in maternal plasma samples (≥37 weeks) by high-resolution flow cytometry using a fluorescent-labelled PLAP antibody. CRH mRNA was demonstrated in placental EVs obtained from maternal blood plasma. We therefore show that human placental EVs carry CRH mRNA into the maternal blood. Our study implies that measuring CRH mRNA in placental EVs in the maternal plasma could beused for monitoring pregnancy.


Asunto(s)
Hormona Liberadora de Corticotropina , Vesículas Extracelulares , Recién Nacido , Embarazo , Humanos , Femenino , ARN Mensajero/análisis , Placenta/química , Vesículas Extracelulares/metabolismo , Hormona Adrenocorticotrópica
12.
Biophys Chem ; 305: 107144, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38061282

RESUMEN

Nucleobase-specific noncovalent interactions play a crucial role in translation. Herein, we provide a comprehensive analysis of the stacks between different RNA components in the crystal structures of the bacterial ribosome caught at different translation stages. Analysis of tRNA||rRNA stacks reveals distinct behaviour; both the A-and E-site tRNAs exhibit unique stacking patterns with 23S rRNA bases, while P-site tRNAs stack with 16S rRNA bases. Furthermore, E-site stacks exhibit diverse face orientations and ring topologies-rare for inter-chain RNA interactions-with higher average interaction energies than A or P-site stacks. This suggests that stacking may be essential for stabilizing tRNA progression through the E-site. Additionally, mRNA||rRNA stacks reveal other geometries, which depend on the tRNA binding site, whereas 16S rRNA||23S rRNA stacks highlight the importance of specific bases in maintaining the integrity of the translational complex by linking the two rRNAs. Furthermore, tRNA||mRNA stacks exhibit distinct geometries and energetics at the E-site, indicating their significance during tRNA translocation and elimination. Overall, both A and E-sites display a more diverse distribution of inter-RNA stacks compared to the P-site. Stacking interactions in the active ribosome are not simply accidental byproducts of biochemistry but are likely invoked to compensate and support the integrity and dynamics of translation.


Asunto(s)
ARN Ribosómico 23S , Ribosomas , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 23S/química , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , Ribosomas/química , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN Mensajero/genética , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Conformación de Ácido Nucleico
13.
Cancer Med ; 12(24): 22185-22195, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38014487

RESUMEN

BACKGROUND: Some conventional prognostic biomarkers for esophageal squamous cell carcinoma (ESCC) have the disadvantage that they have only been investigated at the level of either mRNA or protein levels or only in individual cohorts. Associations between Syntaxin 3 (STX3) expression and malignancy have been reported in several tumor types but not in ESCC. Here, we investigated the levels of both STX3 mRNA and protein, and its prognostic potential in two independent cohorts of patients with ESCC. METHODS: STX3 mRNA levels were examined in surgical specimens by quantitative PCR in a cohort that included 176 ESCC patients. STX3 protein levels were investigated in surgically resected ESCC tissues by immunohistochemistry using tissue microarrays in a different cohort of 177 ESCC patients. Correlations were analyzed between the expression of STX3 mRNA and protein with clinicopathological factors and long-term prognosis. RESULTS: Quantitative PCR indicated a significant association between high level of STX3 mRNA expression and lymph node involvement, pathological stage, and poor overall survival. The multivariate analysis demonstrated that high STX3 mRNA expression was independently associated with poor overall survival outcomes. Immunohistochemistry revealed that STX3 protein expression in ESCC tissues and high STX3 protein expression were also significantly correlated with unfavorable overall survival. CONCLUSIONS: Overexpression of STX3 mRNA and protein may serve as potential prognostic biomarkers for ESCC patients.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteínas Qa-SNARE , Humanos , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/cirugía , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/cirugía , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Estadificación de Neoplasias , Pronóstico , Proteínas Qa-SNARE/genética , ARN Mensajero/genética , ARN Mensajero/análisis
14.
Nat Struct Mol Biol ; 30(11): 1653-1662, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37667030

RESUMEN

In the arms race between bacteria and bacteriophages (phages), some large-genome jumbo phages have evolved a protein shell that encloses their replicating genome to protect it against host immune factors. By segregating the genome from the host cytoplasm, however, the 'phage nucleus' introduces the need to specifically translocate messenger RNA and proteins through the nuclear shell and to dock capsids on the shell for genome packaging. Here, we use proximity labeling and localization mapping to systematically identify proteins associated with the major nuclear shell protein chimallin (ChmA) and other distinctive structures assembled by these phages. We identify six uncharacterized nuclear-shell-associated proteins, one of which directly interacts with self-assembled ChmA. The structure and protein-protein interaction network of this protein, which we term ChmB, suggest that it forms pores in the ChmA lattice that serve as docking sites for capsid genome packaging and may also participate in messenger RNA and/or protein translocation.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Mapas de Interacción de Proteínas , Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/química , ARN Mensajero/análisis
15.
Gene ; 887: 147729, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37619650

RESUMEN

Rad51 is a recA-like recombinase that plays a crucial role in repairing DNA double-strand breaks through homologous recombination during mitosis and meiosis in mammals and other organisms. However, its role in reptiles remains largely unclear. In this study, we aimed to investigate the physiological role of the rad51 gene in reptiles, particularly in Pelodiscus sinensis. Firstly, the cDNA of rad51 gene was cloned and analyzed in P. sinensis. The cloned cDNA contained an open reading frame (ORF) of 1020 bp and encodeed a peptide of 339 amino acids. The multiple alignments and phylogenetic tree analysis of Rad51 showed that P. sinensis shares the high identity with Chelonia mydas (97.95%) and Mus musculus (95.89%). Secondly, reverse transcription-polymerase chain reaction (RT-PCR) and real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that rad51 mRNA was highly expressed in both ovary and testis, while being weak in the somatic tissues examined in this study. Furthermore, chemical in situ hybridization (CISH) was performed to examine the expression profile of rad51 mRNA in germ cells at different stages. In the testis, rad51 mRNA expression was found to be stronger in the germ cells at early stages, specifically in spermatogonia and spermatocytes, but it was undetectable in spermatids. In the ovary, rad51 mRNA exhibited a uniform distribution in the cytoplasm of oocytes at early stages. The signal intensity of rad51 mRNA was highest in primary oocytes and gradually declined during oogenesis as the oocytes developed. These results suggest that rad51 plays a vital role in the development of germ cells, particularly during the early stages of gametogenesis in P. sinensis. The dynamic expression pattern of rad51 mRNA provides insights into the mechanisms underlying germ cell development and differentiation into gametes in turtles, even in reptiles.


Asunto(s)
Tortugas , Animales , Femenino , Masculino , Clonación Molecular , ADN Complementario/metabolismo , Gametogénesis , Filogenia , ARN Mensajero/análisis , Espermatogonias/metabolismo , Testículo/metabolismo , Tortugas/genética
16.
Poult Sci ; 102(10): 103001, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37604020

RESUMEN

In the study, 336 broiler chickens were selected to explore dietary effects of different ß-hydroxy-ß-methylbutyrate (HMB) levels (0 (control), 0.05, 0.10, and 0.15%) on the compositions of fatty acids and free amino acids, and lipid metabolism in the different muscles of broilers. In the breast muscle, dietary HMB supplementation hardly affected the free amino acid composition (P > 0.05). Compared to the control group, dietary 0.10 and 0.15% HMB supplementation decreased the content of C18:1n9c and thus the monounsaturated fatty acid (MUFA), and dietary 0.15% HMB supplementation increased the sum of saturated fatty acids (SFA) (P < 0.05). Moreover, compared to the control group, dietary 0.05 and 0.10% HMB increased the mRNA expression of proliferator activated receptor-γ and the activity of fatty acid synthase (FAS), and dietary 0.10% HMB increased the acetyl-CoA carboxylase activity (P < 0.05). In the leg muscle, dietary 0.10 and 0.15% HMB increased the MUFA content and decreased the polyunsaturated fatty acid (PUFA) content, the PUFA to SFA ratio, the mRNA expression of sterol regulatory element binding proteins-1c, and the activities of acyl-CoA oxidase 1 and acetyl-CoA synthetase (P < 0.05). Moreover, dietary 0.10% HMB decreased the activities of hydroxy-3-methylglutaryl-CoA synthase 1 and FAS in comparison to the control group (P < 0.05). Dietary 0.05% HMB decreased the contents of essential amino acids and nonessential amino acids (NEAA), and dietary 0.15% HMB decreased the NEAA content (P < 0.05). In summary, dietary 0.10% HMB supplementation had superior efficiency on lipogenesis in the breast muscle of broilers. However, dietary HMB supplementation, especially at the level of 0.05 and 0.15%, decreased meat nutritional values and the lipogenesis in leg muscles.


Asunto(s)
Pollos , Ácidos Grasos , Animales , Ácidos Grasos/análisis , Pollos/fisiología , Suplementos Dietéticos , Aminoácidos/análisis , Músculo Esquelético/química , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Monoinsaturados/análisis , ARN Mensajero/genética , ARN Mensajero/análisis
17.
Pituitary ; 26(5): 597-610, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37642928

RESUMEN

PURPOSE: Cushing's disease (CD) results from autonomous adrenocorticotropic hormone (ACTH) secretion by corticotroph adenomas, leading to excessive cortisol production, ultimately affecting morbidity and mortality. Pasireotide is the only FDA approved tumor directed treatment for CD, but it is effective in only about 25% of patients, and is associated with a high rate of hyperglycemia. Neuromedin B (NMB), a member of the bombesin-like peptide family, regulates endocrine secretion and cell proliferation. Here, we assessed NMB and NMB receptor (NMBR) expression in human corticotroph adenomas and the effects of NMBR antagonist PD168368 on murine and human corticotroph tumors. METHODS: To investigate NMB and NMBR expression, real-time qPCR and immunostaining on human pathological specimens of corticotroph, non-functional and somatotroph adenomas were performed. The effects of PD168368 on hormone secretion and cell proliferation were studied in vitro, in vivo and in seven patient-derived corticotroph adenoma cells. NMB and NMBR were expressed in higher extent in human corticotroph adenomas compared with non-functional or somatotroph adenomas. RESULTS: In murine AtT-20 cells, PD168368 reduced proopiomelanocortin (Pomc) mRNA/protein expression and ACTH secretion as well as cell proliferation. In mice with tumor xenografts, tumor growth, ACTH and corticosterone were downregulated by PD168368. In patient-derived adenoma cells, PD168368 reduced POMC mRNA expression in four out of seven cases and ACTH secretion in two out of five cases. A PD168368-mediated cyclin E suppression was also identified in AtT-20 and patient-derived cells. CONCLUSION: NMBR antagonist represents a potential treatment for CD and its effect may be mediated by cyclin E suppression.


Asunto(s)
Adenoma Hipofisario Secretor de ACTH , Adenoma , Adenoma Hipofisario Secretor de Hormona del Crecimiento , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Animales , Humanos , Ratones , Adenoma Hipofisario Secretor de ACTH/tratamiento farmacológico , Adenoma Hipofisario Secretor de ACTH/metabolismo , Adenoma/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Ciclina E , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/tratamiento farmacológico , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/genética , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Receptores de Bombesina/metabolismo , Receptores Acoplados a Proteínas G , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Anal Chem ; 95(28): 10625-10633, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37424077

RESUMEN

A growing number of studies have shown that tumor cells secrete extracellular vesicles (EVs) containing programmed death-ligand 1 (PD-L1) protein. These vesicles can travel to lymph nodes and remotely inactivate T cells, thereby evading immune system attack. Therefore, the simultaneous detection of PD-L1 protein expression in cells and EVs is of great significance in guiding immunotherapy. Herein, we developed a method based on qPCR for the simultaneous detection of PD-L1 protein and mRNA in EVs and their parental cells (PREC-qPCR assay). Lipid probes immobilized on magnetic beads were used to capture EVs directly from samples. For RNA assay, EVs were directly broken by heating and quantified with qPCR. As to protein assay, EVs were recognized and bound with specific probes (such as aptamers), which were used as templates in subsequent qPCR analysis. This method was used to analyze EVs of patient-derived tumor clusters (PTCs) and plasma samples from patients and healthy volunteers. The results revealed that the expression of exosomal PD-L1 in PTCs was correlated with tumor types and significantly higher in plasma-derived EVs from tumor patients than that of healthy individuals. When extended to cells and PD-L1 mRNAs, the results showed that the expression of PD-L1 protein was consistent with mRNA in cancer cell lines, while PTCs demonstrated significant heterogeneity. This comprehensive detection of PD-L1 at four levels (cell, EVs, protein, and mRNA) is believed to enhance our understanding of the relationship among PD-L1, tumors, and the immune system and to provide a promising tool for predicting the benefits of immunotherapy.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa , Humanos , Neoplasias/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ARN Mensajero/análisis , ARN Mensajero/genética , Vesículas Extracelulares/genética , Línea Celular Tumoral
19.
Anal Chem ; 95(32): 12161-12168, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37523480

RESUMEN

Visualizing spatial patterns of gene expression by optical microscopy at single-molecule resolution represents a long-standing challenge for imaging and molecular engineering technologies. In this study, we developed a method for visualizing mRNA with duplex capability by optical microscopy using rolling circle amplification with streptavidin-modified alkaline phosphatase (SA-ALP) to provide highly selective and sensitive RNA detection. ALP-based RNA detection provides comparable sensitivity and specificity to fluorescence-based in situ assays and similar performance to the current RNAscope technique for single-molecule RNA detection, but with improved ease of operation. This versatile and relatively user-friendly method of single-molecule RNA visualization can also overcome common problems of background interference. Our findings show that the red spots generated by the Fast Red staining in situ are readily quantified by image analysis, even in samples with heavy melanin deposition, supporting the clinical translation of this assay to improve diagnostic assays for recalcitrant tissues. This system was adaptable for duplex assays with multiple probes and multiple stains, which is ALP with horseradish peroxidase to produce red and brown signals to simultaneously visualize two different RNA targets. The duplex assay can be successfully applied to quantify mRNA expression from two genes in situ within single cells and multiple cell types. With the advantages of high sensitivity and low hardware requirements, this versatile and user-friendly method of RNA visualization may enable low-resource institutions to conduct previously inaccessible diagnostic or research questions about the in situ expression and distribution of RNAs at single-molecule resolution.


Asunto(s)
Fosfatasa Alcalina , ARN , ARN Mensajero/genética , ARN Mensajero/análisis , Microscopía , Colorantes
20.
Inflammation ; 46(5): 1859-1870, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37318620

RESUMEN

Myeloperoxidase (MPO) has been reported in prostate tissue, and considering its pro-oxidant properties, this location might be linked to prostate pathology. The possibility that the glandular prostatic tissue might be the source of MPO and its potential inflammatory effects must be tested. Human prostate material was obtained from prostate biopsies and radical prostatectomies. Immunohistochemistry was performed using MPO-specific human antibody. In situ hybridization using MPO-specific probes and laser-assisted microdissection for quantitative real-time RT-PCR were performed to observe whether MPO is being produced in prostate tissue. Mass spectrometry on prostate biopsies was used to detect products of MPO activity in nucleic acids (DNA/RNA). MPO contribution to intracellular accumulation of ROS and interleukin-8 in prostatic epithelial cells was monitored in vitro. Immunohistochemistry confirmed cellular localization of MPO in epithelial cells of the prostate. The staining varied from light to high intensity. In situ hybridization did not address the presence of mRNA coding for MPO. No MPO-specific modifications on nucleic acids were detected. Mox-LDL was a major factor inducing ROS and cytokines production in prostatic epithelial cells. We did not demonstrate that MPO was synthetized by prostatic epithelial cells. However, in vitro experiments showed the ability of MPO to potentiate the ROS production and inflammation on prostate epithelial cells. Results do not allow us to demonstrate a role of MPO in prostate to date but further studies are mandatory to focus on the potential impact of MPO in the development of prostatic diseases.


Asunto(s)
Peroxidasa , Próstata , Masculino , Humanos , Próstata/patología , Especies Reactivas de Oxígeno , Peroxidasa/análisis , Células Epiteliales/patología , ARN Mensajero/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA