Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.213
Filtrar
1.
Nat Commun ; 15(1): 4616, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816355

RESUMEN

Dynamic regulation of gene expression is fundamental for cellular adaptation to exogenous stressors. P-TEFb-mediated pause-release of RNA polymerase II (Pol II) is a conserved regulatory mechanism for synchronous transcriptional induction in response to heat shock, but this pro-survival role has not been examined in the applied context of cancer therapy. Using model systems of pediatric high-grade glioma, we show that rapid genome-wide reorganization of active chromatin facilitates P-TEFb-mediated nascent transcriptional induction within hours of exposure to therapeutic ionizing radiation. Concurrent inhibition of P-TEFb disrupts this chromatin reorganization and blunts transcriptional induction, abrogating key adaptive programs such as DNA damage repair and cell cycle regulation. This combination demonstrates a potent, synergistic therapeutic potential agnostic of glioma subtype, leading to a marked induction of tumor cell apoptosis and prolongation of xenograft survival. These studies reveal a central role for P-TEFb underpinning the early adaptive response to radiotherapy, opening avenues for combinatorial treatment in these lethal malignancies.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glioma , Factor B de Elongación Transcripcional Positiva , Humanos , Glioma/radioterapia , Glioma/genética , Glioma/metabolismo , Glioma/patología , Animales , Factor B de Elongación Transcripcional Positiva/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Ratones , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Transcripción Genética/efectos de la radiación , Apoptosis/efectos de la radiación , Apoptosis/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Reparación del ADN/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Proc Natl Acad Sci U S A ; 121(21): e2405827121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748572

RESUMEN

The RNA polymerase II (Pol II) elongation rate influences poly(A) site selection, with slow and fast Pol II derivatives causing upstream and downstream shifts, respectively, in poly(A) site utilization. In yeast, depletion of either of the histone chaperones FACT or Spt6 causes an upstream shift of poly(A) site use that strongly resembles the poly(A) profiles of slow Pol II mutant strains. Like slow Pol II mutant strains, FACT- and Spt6-depleted cells exhibit Pol II processivity defects, indicating that both Spt6 and FACT stimulate the Pol II elongation rate. Poly(A) profiles of some genes show atypical downstream shifts; this subset of genes overlaps well for FACT- or Spt6-depleted strains but is different from the atypical genes in Pol II speed mutant strains. In contrast, depletion of histone H3 or H4 causes a downstream shift of poly(A) sites for most genes, indicating that nucleosomes inhibit the Pol II elongation rate in vivo. Thus, chromatin-based control of the Pol II elongation rate is a potential mechanism, distinct from direct effects on the cleavage/polyadenylation machinery, to regulate alternative polyadenylation in response to genetic or environmental changes.


Asunto(s)
Cromatina , Histonas , Poliadenilación , ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Elongación Transcripcional , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Cromatina/metabolismo , Cromatina/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Histonas/metabolismo , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Nucleosomas/metabolismo , Nucleosomas/genética , Elongación de la Transcripción Genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Poli A/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(20): e2403871121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38717857

RESUMEN

DNA base damage is a major source of oncogenic mutations and disruption to gene expression. The stalling of RNA polymerase II (RNAP) at sites of DNA damage and the subsequent triggering of repair processes have major roles in shaping the genome-wide distribution of mutations, clearing barriers to transcription, and minimizing the production of miscoded gene products. Despite its importance for genetic integrity, key mechanistic features of this transcription-coupled repair (TCR) process are controversial or unknown. Here, we exploited a well-powered in vivo mammalian model system to explore the mechanistic properties and parameters of TCR for alkylation damage at fine spatial resolution and with discrimination of the damaged DNA strand. For rigorous interpretation, a generalizable mathematical model of DNA damage and TCR was developed. Fitting experimental data to the model and simulation revealed that RNA polymerases frequently bypass lesions without triggering repair, indicating that small alkylation adducts are unlikely to be an efficient barrier to gene expression. Following a burst of damage, the efficiency of transcription-coupled repair gradually decays through gene bodies with implications for the occurrence and accurate inference of driver mutations in cancer. The reinitation of transcription from the repair site is not a general feature of transcription-coupled repair, and the observed data is consistent with reinitiation never taking place. Collectively, these results reveal how the directional but stochastic activity of TCR shapes the distribution of mutations following DNA damage.


Asunto(s)
Daño del ADN , Reparación del ADN , ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Animales , Procesos Estocásticos , Ratones , ADN/metabolismo , ADN/genética , Humanos , Alquilación , Mutación , Reparación por Escisión
4.
Nat Commun ; 15(1): 4460, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796517

RESUMEN

In plants, the plant-specific RNA polymerase V (Pol V) transcripts non-coding RNAs and provides a docking platform for the association of accessory proteins in the RNA-directed DNA methylation (RdDM) pathway. Various components have been uncovered that are involved in the process of DNA methylation, but it is still not clear how the transcription of Pol V is regulated. Here, we report that the conserved RNA polymerase II (Pol II) elongator, SPT6L, binds to thousands of intergenic regions in a Pol II-independent manner. The intergenic enrichment of SPT6L, interestingly, co-occupies with the largest subunit of Pol V (NRPE1) and mutation of SPT6L leads to the reduction of DNA methylation but not Pol V enrichment. Furthermore, the association of SPT6L at Pol V loci is dependent on the Pol V associated factor, SPT5L, rather than the presence of Pol V, and the interaction between SPT6L and NRPE1 is compromised in spt5l. Finally, Pol V RIP-seq reveals that SPT6L is required to maintain the amount and length of Pol V transcripts. Our findings thus uncover the critical role of a Pol II conserved elongator in Pol V mediated DNA methylation and transcription, and shed light on the mutual regulation between Pol V and II in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN , ARN Polimerasas Dirigidas por ADN , Regulación de la Expresión Génica de las Plantas , ARN Polimerasa II , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Mutación , ARN de Planta/metabolismo , ARN de Planta/genética
5.
Sci Adv ; 10(21): eadm8196, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787953

RESUMEN

DNA topoisomerase I can contribute to cancer genome instability. During catalytic activity, topoisomerase I forms a transient intermediate, topoisomerase I-DNA cleavage complex (Top1cc) to allow strand rotation and duplex relaxation, which can lead to elevated levels of DNA-RNA hybrids and micronuclei. To comprehend the underlying mechanisms, we have integrated genomic data of Top1cc-triggered hybrids and DNA double-strand breaks (DSBs) shortly after Top1cc induction, revealing that Top1ccs increase hybrid levels with different mechanisms. DSBs are at highly transcribed genes in early replicating initiation zones and overlap with hybrids downstream of accumulated RNA polymerase II (RNAPII) at gene 5'-ends. A transcription factor IIS mutant impairing transcription elongation further increased RNAPII accumulation likely due to backtracking. Moreover, Top1ccs can trigger micronuclei when occurring during late G1 or early/mid S, but not during late S. As micronuclei and transcription-replication conflicts are attenuated by transcription factor IIS, our results support a role of RNAPII arrest in Top1cc-induced transcription-replication conflicts leading to DSBs and micronuclei.


Asunto(s)
Roturas del ADN de Doble Cadena , Replicación del ADN , ADN-Topoisomerasas de Tipo I , Inestabilidad Genómica , Estructuras R-Loop , ARN Polimerasa II , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo I/genética , Humanos , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Transcripción Genética
6.
PLoS Genet ; 20(5): e1011136, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38758955

RESUMEN

Ribosomal DNA (rDNA), which encodes ribosomal RNA, is an essential but unstable genomic element due to its tandemly repeated nature. rDNA's repetitive nature causes spontaneous intrachromatid recombination, leading to copy number (CN) reduction, which must be counteracted by a mechanism that recovers CN to sustain cells' viability. Akin to telomere maintenance, rDNA maintenance is particularly important in cell types that proliferate for an extended time period, most notably in the germline that passes the genome through generations. In Drosophila, the process of rDNA CN recovery, known as 'rDNA magnification', has been studied extensively. rDNA magnification is mediated by unequal sister chromatid exchange (USCE), which generates a sister chromatid that gains the rDNA CN by stealing copies from its sister. However, much remains elusive regarding how germ cells sense rDNA CN to decide when to initiate magnification, and how germ cells balance between the need to generate DNA double-strand breaks (DSBs) to trigger USCE vs. avoiding harmful DSBs. Recently, we identified an rDNA-binding Zinc-finger protein Indra as a factor required for rDNA magnification, however, the underlying mechanism of action remains unknown. Here we show that Indra is a negative regulator of rDNA magnification, balancing the need of rDNA magnification and repression of dangerous DSBs. Mechanistically, we show that Indra is a repressor of RNA polymerase II (Pol II)-dependent transcription of rDNA: Under low rDNA CN conditions, Indra protein amount is downregulated, leading to Pol II-mediated transcription of rDNA. This results in the expression of rDNA-specific retrotransposon, R2, which we have shown to facilitate rDNA magnification via generation of DBSs at rDNA. We propose that differential use of Pol I and Pol II plays a critical role in regulating rDNA CN expansion only when it is necessary.


Asunto(s)
ADN Ribosómico , ARN Polimerasa II , Transcripción Genética , Animales , ADN Ribosómico/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Roturas del ADN de Doble Cadena , Drosophila melanogaster/genética , Intercambio de Cromátides Hermanas/genética , Células Germinativas/metabolismo , Variaciones en el Número de Copia de ADN
7.
Mol Genet Genomics ; 299(1): 59, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38796829

RESUMEN

RECQL5 is a member of the conserved RecQ family of DNA helicases involved in the maintenance of genome stability that is specifically found in higher eukaryotes and associates with the elongating RNA polymerase II. To expand our understanding of its function we expressed human RECQL5 in the yeast Saccharomyces cerevisiae, which does not have a RECQL5 ortholog. We found that RECQL5 expression leads to cell growth inhibition, increased genotoxic sensitivity and transcription-associated hyperrecombination. Chromatin immunoprecipitation and transcriptomic analysis of yeast cells expressing human RECQL5 shows that this is recruited to transcribed genes and although it causes only a weak impact on gene expression, in particular at G + C-rich genes, it leads to a transcription termination defect detected as readthrough transcription. The data indicate that the interaction between RNAPII and RECQL5 is conserved from yeast to humans. Unexpectedly, however, the RECQL5-ID mutant, previously shown to have reduced the association with RNAPII in vitro, associates with the transcribing polymerase in cells. As a result, expression of RECQL5-ID leads to similar although weaker phenotypes than wild-type RECQL5 that could be transcription-mediated. Altogether, the data suggests that RECQL5 has the intrinsic ability to function in transcription-dependent and independent genome dynamics in S. cerevisiae.


Asunto(s)
Inestabilidad Genómica , RecQ Helicasas , Saccharomyces cerevisiae , Transcripción Genética , Saccharomyces cerevisiae/genética , Inestabilidad Genómica/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Humanos , Transcripción Genética/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
8.
Front Immunol ; 15: 1366235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601157

RESUMEN

Introduction: The human orthopneumovirus, Respiratory Syncytial Virus (RSV), is the causative agent of severe lower respiratory tract infections (LRTI) and exacerbations of chronic lung diseases. In immune competent hosts, RSV productively infects highly differentiated epithelial cells, where it elicits robust anti-viral, cytokine and remodeling programs. By contrast, basal cells are relatively resistant to RSV infection, in part, because of constitutive expression of an intrinsic innate immune response (IIR) consisting of a subgroup of interferon (IFN) responsive genes. The mechanisms controlling the intrinsic IIR are not known. Methods: Here, we use human small airway epithelial cell hSAECs as a multipotent airway stem cell model to examine regulatory control of an intrinsic IIR pathway. Results: We find hSAECs express patterns of intrinsic IIRs, highly conserved with pluri- and multi-potent stem cells. We demonstrate a core intrinsic IIR network consisting of Bone Marrow Stromal Cell Antigen 2 (Bst2), Interferon Induced Transmembrane Protein 1 (IFITM1) and Toll-like receptor (TLR3) expression are directly under IRF1 control. Moreover, expression of this intrinsic core is rate-limited by ambient IRF1• phospho-Ser 2 CTD RNA Polymerase II (pSer2 Pol II) complexes binding to their proximal promoters. In response to RSV infection, the abundance of IRF1 and pSer2 Pol II binding is dramatically increased, with IRF1 complexing to the BRD4 chromatin remodeling complex (CRC). Using chromatin immunoprecipitation in IRF1 KD cells, we find that the binding of BRD4 is IRF1 independent. Using a small molecule inhibitor of the BRD4 acetyl lysine binding bromodomain (BRD4i), we further find that BRD4 bromodomain interactions are required for stable BRD4 promoter binding to the intrinsic IIR core promoters, as well as for RSV-inducible pSer2 Pol II recruitment. Surprisingly, BRD4i does not disrupt IRF1-BRD4 interactions, but disrupts both RSV-induced BRD4 and IRF1 interactions with pSer2 Pol II. Conclusions: We conclude that the IRF1 functions in two modes- in absence of infection, ambient IRF1 mediates constitutive expression of the intrinsic IIR, whereas in response to RSV infection, the BRD4 CRC independently activates pSer2 Pol II to mediates robust expression of the intrinsic IIR. These data provide insight into molecular control of anti-viral defenses of airway basal cells.


Asunto(s)
Inmunidad Innata , ARN Polimerasa II , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Antivirales , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular , Proteínas Nucleares/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción
9.
Nat Commun ; 15(1): 3253, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627396

RESUMEN

Plants, as sessile organisms, deploy transcriptional dynamics for adapting to extreme growth conditions such as cold stress. Emerging evidence suggests that chromatin architecture contributes to transcriptional regulation. However, the relationship between chromatin architectural dynamics and transcriptional reprogramming in response to cold stress remains unclear. Here, we apply a chemical-crosslinking assisted proximity capture (CAP-C) method to elucidate the fine-scale chromatin landscape, revealing chromatin interactions within gene bodies closely associated with RNA polymerase II (Pol II) densities across initiation, pausing, and termination sites. We observe dynamic changes in chromatin interactions alongside Pol II activity alterations during cold stress, suggesting local chromatin dynamics may regulate Pol II activity. Notably, cold stress does not affect large-scale chromatin conformations. We further identify a comprehensive promoter-promoter interaction (PPI) network across the genome, potentially facilitating co-regulation of gene expression in response to cold stress. Our study deepens the understanding of chromatin conformation-associated gene regulation in plant response to cold.


Asunto(s)
Arabidopsis , Cromatina , Cromatina/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Regiones Promotoras Genéticas/genética , Transcripción Genética
10.
Proc Natl Acad Sci U S A ; 121(15): e2321502121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564636

RESUMEN

The release of paused RNA polymerase II (RNAPII) from promoter-proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation factor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C-terminal domain by its cyclin-dependent kinase component, CDK9. However, the signal and stress-specific roles of the various RNAPII-associated macromolecular complexes containing PTEF-b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) are dispensable for the release of paused RNAPII at hypoxia-activated genes and that BET inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, we demonstrate that the C-terminal region of BRD4 is required for Polymerase-Associated Factor-1 Complex (PAF1C) recruitment to establish an elongation-competent RNAPII complex at hypoxia-responsive genes. PAF1C disruption using a small-molecule inhibitor (iPAF1C) impairs hypoxia-induced, BRD4-mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia-responsive transcriptional elongation.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulación de la Expresión Génica , Quinasas Ciclina-Dependientes/metabolismo , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Fosforilación , Hipoxia , Transcripción Genética , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
11.
Nat Cell Biol ; 26(4): 604-612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589534

RESUMEN

The localization of transcriptional activity in specialized transcription bodies is a hallmark of gene expression in eukaryotic cells. It remains unclear, however, if and how transcription bodies affect gene expression. Here we disrupted the formation of two prominent endogenous transcription bodies that mark the onset of zygotic transcription in zebrafish embryos and analysed the effect on gene expression using enriched SLAM-seq and live-cell imaging. We find that the disruption of transcription bodies results in the misregulation of hundreds of genes. Here we focus on genes that are upregulated. These genes have accessible chromatin and are poised to be transcribed in the presence of the two transcription bodies, but they do not go into elongation. Live-cell imaging shows that disruption of the two large transcription bodies enables these poised genes to be transcribed in ectopic transcription bodies, suggesting that the large transcription bodies sequester a pause release factor. Supporting this hypothesis, we find that CDK9-the kinase that releases paused polymerase II-is highly enriched in the two large transcription bodies. Overexpression of CDK9 in wild-type embryos results in the formation of ectopic transcription bodies and thus phenocopies the removal of the two large transcription bodies. Taken together, our results show that transcription bodies regulate transcription by sequestering machinery, thereby preventing genes elsewhere in the nucleus from being transcribed.


Asunto(s)
Factor B de Elongación Transcripcional Positiva , ARN Polimerasa II , Animales , Cromatina/genética , Expresión Génica , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/genética , Transcripción Genética , Pez Cebra/genética , Pez Cebra/metabolismo
12.
Mol Cell ; 84(7): 1180-1182, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579674

RESUMEN

Using cryo-EM and biochemical methods, Su and Vos1 discover an alternative NELF structural state that enables transcription and switches NELF-RNA polymerase II (RNAPII) compatibility with other RNAPII-associated factors that regulate pausing, elongation, termination, and transcription-coupled DNA repair.


Asunto(s)
ARN Polimerasa II , Factores de Transcripción , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
13.
Org Lett ; 26(15): 3263-3266, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38598422

RESUMEN

The ability of α-amanitin to potently inhibit RNA polymerase II (RNAP II) has elicited further research into its use as a novel payload for antibody-drug conjugates. Despite this promise, the de novo synthesis of α-amanitin is still a major challenge as it possesses an unusual bicyclic octapeptide structure that contains several oxidized amino acids, most notably 4,5-dihydroxy-l-isoleucine. Here, we report a concise chemoenzymatic synthesis of this key amino acid residue, which features two regioselective and diastereoselective enzymatic C-H oxidations on l-isoleucine.


Asunto(s)
Alfa-Amanitina , Amanitinas , Alfa-Amanitina/química , Amanitinas/farmacología , Isoleucina , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
14.
Mol Cell ; 84(9): 1637-1650.e10, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38604171

RESUMEN

Long interspersed element-1 (LINE-1 or L1) comprises 17% of the human genome, continuously generates genetic variations, and causes disease in certain cases. However, the regulation and function of L1 remain poorly understood. Here, we uncover that L1 can enrich RNA polymerase IIs (RNA Pol IIs), express L1 chimeric transcripts, and create contact domain boundaries in human cells. This impact of L1 is restricted by a nuclear matrix protein scaffold attachment factor B (SAFB) that recognizes transcriptionally active L1s by binding L1 transcripts to inhibit RNA Pol II enrichment. Acute inhibition of RNA Pol II transcription abolishes the domain boundaries associated with L1 chimeric transcripts, indicating a transcription-dependent mechanism. Deleting L1 impairs domain boundary formation, and L1 insertions during evolution have introduced species-specific domain boundaries. Our data show that L1 can create RNA Pol II-enriched regions that alter genome organization and that SAFB regulates L1 and RNA Pol II activity to preserve gene regulation.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Proteínas de Unión a la Región de Fijación a la Matriz , ARN Polimerasa II , Receptores de Estrógenos , Transcripción Genética , Humanos , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Elementos de Nucleótido Esparcido Largo/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas Asociadas a Matriz Nuclear/genética , Regulación de la Expresión Génica , Unión Proteica , Células HEK293 , Genoma Humano
15.
Gene ; 918: 148473, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38615982

RESUMEN

How gene activation works in heterochromatin, and how the mechanism might differ from the one used in euchromatin, has been largely unexplored. Previous work has shown that in SIR-regulated heterochromatin of Saccharomyces cerevisiae, gene activation occurs in the absence of covalent histone modifications and other alterations of chromatin commonly associated with transcription.Here we demonstrate that such activation occurs in a substantial fraction of cells, consistent with frequent transcriptional bursting, and this raises the possibility that an alternative activation pathway might be used. We address one such possibility, Pol II CTD phosphorylation, and explore this idea using a natural telomere-linked gene, YFR057w, as a model. Unlike covalent histone modifications, we find that Ser2, Ser5 and Ser7 CTD phosphorylated Pol II is prevalent at the drug-induced heterochromatic gene. Particularly enriched relative to the euchromatic state is Ser2 phosphorylation. Consistent with a functional role for Ser2P, YFR057w is negligibly activated in cells deficient in the Ser2 CTD kinases Ctk1 and Bur1 even though the gene is strongly stimulated when it is placed in a euchromatic context. Collectively, our results are consistent with a critical role for Ser2 CTD phosphorylation in driving Pol II recruitment and transcription of a natural heterochromatic gene - an activity that may supplant the need for histone epigenetic modifications.


Asunto(s)
Heterocromatina , ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fosforilación , Heterocromatina/metabolismo , Heterocromatina/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Activación Transcripcional , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Serina/metabolismo
16.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569554

RESUMEN

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , ARN Helicasas DEAD-box , Exorribonucleasas , Inestabilidad Genómica , Metiltransferasas , Estructuras R-Loop , ARN Polimerasa II , Terminación de la Transcripción Genética , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Adenosina/metabolismo , Adenosina/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Células HEK293 , Cromatina/metabolismo , Cromatina/genética , Daño del ADN , Células HeLa , ARN/metabolismo , ARN/genética , Transcripción Genética , Metilación de ARN
17.
Mol Cell ; 84(9): 1699-1710.e6, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38604172

RESUMEN

The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how interactions between RNA polymerase II (RNA Pol II) and initiation factors are broken to enable promoter escape. Here, we reconstitute RNA Pol II promoter escape in vitro and determine high-resolution structures of initially transcribing complexes containing 8-, 10-, and 12-nt ordered RNAs and two elongation complexes containing 14-nt RNAs. We suggest that promoter escape occurs in three major steps. First, the growing RNA displaces the B-reader element of the initiation factor TFIIB without evicting TFIIB. Second, the rewinding of the transcription bubble coincides with the eviction of TFIIA, TFIIB, and TBP. Third, the binding of DSIF and NELF facilitates TFIIE and TFIIH dissociation, establishing the paused elongation complex. This three-step model for promoter escape fills a gap in our understanding of the initiation-elongation transition of RNA Pol II transcription.


Asunto(s)
Fosfoproteínas , Regiones Promotoras Genéticas , ARN Polimerasa II , Proteína de Unión a TATA-Box , Factor de Transcripción TFIIB , Factores de Transcripción , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Humanos , Factor de Transcripción TFIIB/metabolismo , Factor de Transcripción TFIIB/genética , Proteína de Unión a TATA-Box/metabolismo , Proteína de Unión a TATA-Box/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Iniciación de la Transcripción Genética , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIIA/genética , Transcripción Genética , Elongación de la Transcripción Genética , ARN/metabolismo , ARN/genética , Factores de Transcripción TFII/metabolismo , Factores de Transcripción TFII/genética
18.
EMBO J ; 43(9): 1799-1821, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565951

RESUMEN

A great deal of work has revealed, in structural detail, the components of the preinitiation complex (PIC) machinery required for initiation of mRNA gene transcription by RNA polymerase II (Pol II). However, less-well understood are the in vivo PIC assembly pathways and their kinetics, an understanding of which is vital for determining how rates of in vivo RNA synthesis are established. We used competition ChIP in budding yeast to obtain genome-scale estimates of the residence times for five general transcription factors (GTFs): TBP, TFIIA, TFIIB, TFIIE and TFIIF. While many GTF-chromatin interactions were short-lived ( < 1 min), there were numerous interactions with residence times in the range of several minutes. Sets of genes with a shared function also shared similar patterns of GTF kinetic behavior. TFIIE, a GTF that enters the PIC late in the assembly process, had residence times correlated with RNA synthesis rates. The datasets and results reported here provide kinetic information for most of the Pol II-driven genes in this organism, offering a rich resource for exploring the mechanistic relationships between PIC assembly, gene regulation, and transcription.


Asunto(s)
Cromatina , ARN Polimerasa II , Saccharomyces cerevisiae , Transcripción Genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Cromatina/metabolismo , Cromatina/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Cinética , Unión Proteica , Regulación Fúngica de la Expresión Génica
19.
PLoS Pathog ; 20(4): e1012138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38640110

RESUMEN

Proper transcription orchestrated by RNA polymerase II (RNPII) is crucial for cellular development, which is rely on the phosphorylation state of RNPII's carboxyl-terminal domain (CTD). Sporangia, developed from mycelia, are essential for the destructive oomycetes Phytophthora, remarkable transcriptional changes are observed during the morphological transition. However, how these changes are rapidly triggered and their relationship with the versatile RNPII-CTD phosphorylation remain enigmatic. Herein, we found that Phytophthora capsici undergone an elevation of Ser5-phosphorylation in its uncanonical heptapeptide repeats of RNPII-CTD during sporangia development, which subsequently changed the chromosomal occupation of RNPII and primarily activated transcription of certain genes. A cyclin-dependent kinase, PcCDK7, was highly induced and phosphorylated RNPII-CTD during this morphological transition. Mechanistically, a novel DCL1-dependent microRNA, pcamiR1, was found to be a feedback modulator for the precise phosphorylation of RNPII-CTD by complexing with PcAGO1 and regulating the accumulation of PcCDK7. Moreover, this study revealed that the pcamiR1-CDK7-RNPII regulatory module is evolutionarily conserved and the impairment of the balance between pcamiR1 and PcCDK7 could efficiently reduce growth and virulence of P. capsici. Collectively, this study uncovers a novel and evolutionary conserved mechanism of transcription regulation which could facilitate correct development and identifies pcamiR1 as a promising target for disease control.


Asunto(s)
MicroARNs , Phytophthora , ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Fosforilación , MicroARNs/metabolismo , MicroARNs/genética , Phytophthora/patogenicidad , Phytophthora/genética , Phytophthora/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética
20.
J Mol Biol ; 436(10): 168570, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604529

RESUMEN

Cellular mRNA levels, particularly under stress conditions, can be finely regulated by the coordinated action of transcription and degradation processes. Elements of the 5'-3' mRNA degradation pathway, functionally associated with the exonuclease Xrn1, can bind to nuclear chromatin and modulate gene transcription. Within this group are the so-called decapping activators, including Pat1, Dhh1, and Lsm1. In this work, we have investigated the role of Pat1 in the yeast adaptive transcriptional response to cell wall stress. Thus, we demonstrated that in the absence of Pat1, the transcriptional induction of genes regulated by the Cell Wall Integrity MAPK pathway was significantly affected, with no effect on the stability of these transcripts. Furthermore, under cell wall stress conditions, Pat1 is recruited to Cell Wall Integrity-responsive genes in parallel with the RNA Pol II complex, participating both in pre-initiation complex assembly and transcriptional elongation. Indeed, strains lacking Pat1 showed lower recruitment of the transcription factor Rlm1, less histone H3 displacement at Cell Wall Integrity gene promoters, and impaired recruitment and progression of RNA Pol II. Moreover, Pat1 and the MAPK Slt2 occupied the coding regions interdependently. Our results support the idea that Pat1 and presumably other decay factors behave as transcriptional regulators of Cell Wall Integrity-responsive genes under cell wall stress conditions.


Asunto(s)
Pared Celular , Endorribonucleasas , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Estabilidad del ARN , Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Pared Celular/enzimología , Pared Celular/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Proteínas de Dominio MADS/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA