Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.623
Filtrar
1.
Plant Signal Behav ; 19(1): 2361174, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825852

RESUMEN

Foeniculum vulgare Mill. commonly known as fennel, is a globally recognized aromatic medicinal plant and culinary herb with widespread popularity due to its antimicrobial, antioxidant, carminative, and diuretic properties, among others. Although the phenotypic effects of salinity stress have been previously explored in fennel, the molecular mechanisms underlying responses to elevated salinity in this plant remain elusive. MicroRNAs (miRNAs) are tiny, endogenous, and extensively conserved non-coding RNAs (ncRNAs) typically ranging from 20 to 24 nucleotides (nt) in length that play a major role in a myriad of biological functions. In fact, a number of miRNAs have been extensively associated with responses to abiotic stress in plants. Consequently, employing computational methodologies and rigorous filtering criteria, 40 putative miRNAs belonging to 25 different families were characterized from fennel in this study. Subsequently, employing the psRNATarget tool, a total of 67 different candidate target transcripts for the characterized fennel miRNAs were predicted. Additionally, the expression patterns of six selected fennel miRNAs (i.e. fvu-miR156a, fvu-miR162a-3p, fvu-miR166a-3p, fvu-miR167a-5p, fvu-miR171a-3p, and fvu-miR408-3p) were analyzed under salinity stress conditions via qPCR. This article holds notable significance as it identifies not only 40 putative miRNAs in fennel, a non-model plant, but also pioneers the analysis of their expression under salinity stress conditions.


Asunto(s)
Foeniculum , Regulación de la Expresión Génica de las Plantas , MicroARNs , Hojas de la Planta , Estrés Salino , Foeniculum/genética , MicroARNs/genética , MicroARNs/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Estrés Salino/genética , Perfilación de la Expresión Génica , ARN de Planta/genética , ARN de Planta/metabolismo
2.
BMC Plant Biol ; 24(1): 500, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840244

RESUMEN

As a highly salt-resistant mangrove, Avicennia marina can thrive in the hypersaline water. The leaves of Avicennia marina play a crucial role in salinity stress adaptability by secreting salt. Although the functions of long non-coding RNAs (lncRNAs) in leaves remain unknown, they have emerged as regulators in leaf development, aging and salt response. In this study, we employed transcriptomic data of both short-term and long-term salt treated leaves to identify salt-associated lncRNAs of leaf tissue. As a result, 687 short-term and 797 long-term salt-associated lncRNAs were identified. Notably, both short-term and long-term salt-associated lncRNAs exhibited slightly longer lengths and larger exons, but smaller introns compared with salt-non-associated lncRNAs. Furthermore, salt-associated lncRNAs also displayed higher tissue-specificity than salt-non-associated lncRNAs. Most of the salt-associated lncRNAs were common to short- and long-term salt treatments. And about one fifth of the downregulated salt-associated lncRNAs identified both in two terms were leaf tissue-specific lncRNAs. Besides, these leaf-specific lncRNAs were found to be involved in the oxidation-reduction and photosynthesis processes, as well as several metabolic processes, suggesting the noticeable functions of salt-associated lncRNAs in regulating salt responses of Avicennia marina leaves.


Asunto(s)
Avicennia , Hojas de la Planta , ARN Largo no Codificante , ARN de Planta , Avicennia/genética , Avicennia/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Hojas de la Planta/genética , ARN de Planta/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Perfilación de la Expresión Génica
3.
Nat Commun ; 15(1): 4881, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849358

RESUMEN

N6-methyladenosine (m6A) plays critical roles in regulating mRNA metabolism. However, comprehensive m6A methylomes in different plant tissues with single-base precision have yet to be reported. Here, we present transcriptome-wide m6A maps at single-base resolution in different tissues of rice and Arabidopsis using m6A-SAC-seq. Our analysis uncovers a total of 205,691 m6A sites distributed across 22,574 genes in rice, and 188,282 m6A sites across 19,984 genes in Arabidopsis. The evolutionarily conserved m6A sites in rice and Arabidopsis ortholog gene pairs are involved in controlling tissue development, photosynthesis and stress response. We observe an overall mRNA stabilization effect by 3' UTR m6A sites in certain plant tissues. Like in mammals, a positive correlation between the m6A level and the length of internal exons is also observed in plant mRNA, except for the last exon. Our data suggest an active m6A deposition process occurring near the stop codon in plant mRNA. In addition, the MTA-installed plant mRNA m6A sites correlate with both translation promotion and translation suppression, depicting a more complicated regulatory picture. Our results therefore provide in-depth resources for relating single-base resolution m6A sites with functions in plants and uncover a suppression-activation model controlling m6A biogenesis across species.


Asunto(s)
Adenosina , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Oryza , ARN Mensajero , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Adenosina/análogos & derivados , Adenosina/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Transcriptoma/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Regiones no Traducidas 3'/genética , Perfilación de la Expresión Génica/métodos , Estabilidad del ARN/genética , Exones/genética , Codón de Terminación/genética
4.
Nat Commun ; 15(1): 4460, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796517

RESUMEN

In plants, the plant-specific RNA polymerase V (Pol V) transcripts non-coding RNAs and provides a docking platform for the association of accessory proteins in the RNA-directed DNA methylation (RdDM) pathway. Various components have been uncovered that are involved in the process of DNA methylation, but it is still not clear how the transcription of Pol V is regulated. Here, we report that the conserved RNA polymerase II (Pol II) elongator, SPT6L, binds to thousands of intergenic regions in a Pol II-independent manner. The intergenic enrichment of SPT6L, interestingly, co-occupies with the largest subunit of Pol V (NRPE1) and mutation of SPT6L leads to the reduction of DNA methylation but not Pol V enrichment. Furthermore, the association of SPT6L at Pol V loci is dependent on the Pol V associated factor, SPT5L, rather than the presence of Pol V, and the interaction between SPT6L and NRPE1 is compromised in spt5l. Finally, Pol V RIP-seq reveals that SPT6L is required to maintain the amount and length of Pol V transcripts. Our findings thus uncover the critical role of a Pol II conserved elongator in Pol V mediated DNA methylation and transcription, and shed light on the mutual regulation between Pol V and II in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN , ARN Polimerasas Dirigidas por ADN , Regulación de la Expresión Génica de las Plantas , ARN Polimerasa II , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Mutación , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , ARN de Planta/metabolismo , ARN de Planta/genética , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética
5.
Sci Data ; 11(1): 477, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724643

RESUMEN

Gossypium purpurascens is a member of the Malvaceae family, holds immense economic significance as a fiber crop worldwide. Abiotic stresses harm cotton crops, reduce yields, and cause economic losses. Generating high-quality reference genomes and large-scale transcriptomic datasets across diverse conditions can offer valuable insights into identifying preferred agronomic traits for crop breeding. The present research used leaf tissues to conduct PacBio Iso-seq and RNA-seq analysis. We carried out an in-depth analysis of DEGs using both correlations with cluster analysis and principal component analysis. Additionally, the study also involved the identification of both lncRNAs and CDS. We have prepared RNA-seq libraries from 75 RNA samples to study the effects of drought, salinity, alkali, and saline-alkali stress, as well as control conditions. A total of 454.06 Gigabytes of transcriptome data were effectively validated through the identification of differentially expressed genes and KEGG and GO analysis. Overwhelmingly, gene expression profiles and full-length transcripts from cotton tissues will aid in understanding the genetic mechanism of abiotic stress tolerance in G. purpurascens.


Asunto(s)
Gossypium , RNA-Seq , Estrés Fisiológico , Transcriptoma , Gossypium/genética , Estrés Fisiológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Salinidad , ARN de Planta/genética , Hojas de la Planta/genética
6.
Plant Mol Biol ; 114(3): 61, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764076

RESUMEN

Transient expression and induction of RNA silencing by agroinfiltration is a fundamental method in plant RNA biology. Here, we introduce a new reporter assay using RUBY, which encodes three key enzymes of the betalain biosynthesis pathway, as a polycistronic mRNA. The red pigmentation conferred by betalains allows visual confirmation of gene expression or silencing levels without tissue disruption, and the silencing levels can be quantitatively measured by absorbance in as little as a few minutes. Infiltration of RUBY in combination with p19, a well-known RNA silencing suppressor, induced a fivefold higher accumulation of betalains at 7 days post infiltration compared to infiltration of RUBY alone. We demonstrated that co-infiltration of RUBY with two RNA silencing inducers, targeting either CYP76AD1 or glycosyltransferase within the RUBY construct, effectively reduces RUBY mRNA and betalain levels, indicating successful RNA silencing. Therefore, compared to conventional reporter assays for RNA silencing, the RUBY-based assay provides a simple and rapid method for quantitative analysis without the need for specialized equipment, making it useful for a wide range of RNA silencing studies.


Asunto(s)
Betalaínas , Nicotiana , Interferencia de ARN , Betalaínas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Plantas Modificadas Genéticamente , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
7.
BMC Genomics ; 25(1): 479, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750515

RESUMEN

BACKGROUND: In the context of early sowing of maize as a promising adaptation strategy that could significantly reduce the negative effects of climate change, an in-depth understanding of mechanisms underlying plant response to low-temperature stress is demanded. Although microRNAs (miRNAs) have been recognized as key regulators of plant stress response, research on their role in chilling tolerance of maize during early seedling stages is scarce. Therefore, it is of great significance to explore chilling-responsive miRNAs, reveal their expression patterns and associated target genes, as well as to examine the possible functions of the conserved and novel miRNAs. In this study, the role of miRNAs was examined in 5d-old maize seedlings of one tolerant and one sensitive inbred line exposed to chilling (10/8 °C) stress for 6 h and 24 h, by applying high throughput sequencing. RESULTS: A total of 145 annotated known miRNAs belonging to 30 families and 876 potentially novel miRNAs were identified. Differential expression (DE) analysis between control and stress conditions identified 98 common miRNAs for both genotypes at one time point and eight miRNAs at both time points. Target prediction and enrichment analysis showed that the DE zma-miR396, zma-miR156, zma-miR319, and zma-miR159 miRNAs modulate growth and development. Furthermore, it was found that several other DE miRNAs were involved in abiotic stress response: antioxidative mechanisms (zma-miR398), signal transduction (zma-miR156, zma-miR167, zma-miR169) and regulation of water content (zma-miR164, zma-miR394, zma-miR396). The results underline the zma-miRNAs involvement in the modulation of their target genes expression as an important aspect of the plant's survival strategy and acclimation to chilling stress conditions. CONCLUSIONS: To our understanding, this is the first study on miRNAs in 5-d old seedlings' response to chilling stress, providing data on the role of known and novel miRNAs post-transcriptional regulation of expressed genes and contributing a possible platform for further network and functional analysis.


Asunto(s)
Frío , Regulación de la Expresión Génica de las Plantas , MicroARNs , Plantones , Zea mays , Zea mays/genética , Zea mays/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Plantones/genética , Estrés Fisiológico/genética , Respuesta al Choque por Frío/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Perfilación de la Expresión Génica
8.
BMC Plant Biol ; 24(1): 437, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773387

RESUMEN

BACKGROUND: Unlike Transposable Elements (TEs) and gene/genome duplication, the role of the so-called nuclear plastid DNA sequences (NUPTs) in shaping the evolution of genome architecture and function remains poorly studied. We investigate here the functional and evolutionary fate of NUPTs in the orphan crop Moringa oleifera (moringa), featured by the highest fraction of plastid DNA found so far in any plant genome, focusing on (i) any potential biases in their distribution in relation to specific nuclear genomic features, (ii) their contribution to the emergence of new genes and gene regions, and (iii) their impact on the expression of target nuclear genes. RESULTS: In agreement with their potential mutagenic effect, NUPTs are underrepresented among structural genes, although their overall transcription levels and broadness were only lower when involved exonic regions; the occurrence of plastid DNA generally did not result in a broader expression, except among those affected in introns by older NUPTs. In contrast, we found a strong enrichment of NUPTs among specific superfamilies of retrotransposons and several classes of RNA genes, including those participating in the protein biosynthetic machinery (i.e., rRNA and tRNA genes) and a specific class of regulatory RNAs. A significant fraction of NUPT RNA genes was found to be functionally expressed, thus potentially contributing to the nuclear pool. CONCLUSIONS: Our results complete our view of the molecular factors driving the evolution of nuclear genome architecture and function, and support plastid DNA in moringa as a major source of (i) genome complexity and (ii) the nuclear pool of RNA genes.


Asunto(s)
Genoma de Planta , Moringa oleifera , Moringa oleifera/genética , Plastidios/genética , Núcleo Celular/genética , Productos Agrícolas/genética , Evolución Molecular , ARN de Planta/genética , ADN de Plantas/genética , Genes de Plantas
9.
Plant Physiol Biochem ; 211: 108718, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733939

RESUMEN

Plant secondary metabolites (PSMs) are a large class of structurally diverse molecules, mainly consisting of terpenoids, phenolic compounds, and nitrogen-containing compounds, which play active roles in plant development and stress responses. The biosynthetic processes of PSMs are governed by a sophisticated regulatory network at multiple levels. Noncoding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) may serve as post-transcriptional regulators for plant secondary metabolism through acting on genes encoding either transcription factors or participating enzymes in relevant metabolic pathways. High-throughput sequencing technologies have facilitated the large-scale identifications of ncRNAs potentially involved in plant secondary metabolism in model plant species as well as certain species with enriched production of specific types of PSMs. Moreover, a series of miRNA-target modules have been functionally characterized to be responsible for regulating PSM biosynthesis and accumulation in plants under abiotic or biotic stresses. In this review, we will provide an overview of current findings on the ncRNA-mediated regulation of plant secondary metabolism with special attention to its participation in plant stress responses, and discuss possible issues to be addressed in future fundamental research and breeding practice.


Asunto(s)
Plantas , ARN de Planta , ARN no Traducido , Metabolismo Secundario , ARN no Traducido/genética , ARN no Traducido/metabolismo , Metabolismo Secundario/genética , Plantas/metabolismo , Plantas/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , MicroARNs/genética , MicroARNs/metabolismo
10.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791194

RESUMEN

MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs in plants. They play critical functions in various biological processes during plant growth and development. Salvia miltiorrhiza is a well-known traditional Chinese medicinal plant with significant medicinal, economic, and academic values. In order to elucidate the role of miRNAs in S. miltiorrhiza, six small RNA libraries from mature roots, young roots, stems, mature leaves, young leaves and flowers of S. miltiorrhiza and one degradome library from mixed tissues were constructed. A total of 184 miRNA precursors, generating 137 known and 49 novel miRNAs, were genome-widely identified. The identified miRNAs were predicted to play diversified regulatory roles in plants through regulating 891 genes. qRT-PCR and 5' RLM-RACE assays validated the negative regulatory role of smi-miR159a in SmMYB62, SmMYB78, and SmMYB80. To elucidate the function of smi-miR159a in bioactive compound biosynthesis, smi-miR159a transgenic hairy roots were generated and analyzed. The results showed that overexpression of smi-miR159a caused a significant decrease in rosmarinic acid and salvianolic acid B contents. qRT-PCR analysis showed that the targets of smi-miR159a, including SmMYB62, SmMYB78, and SmMYB80, were significantly down-regulated, accompanied by the down-regulation of SmPAL1, SmC4H1, Sm4CL1, SmTAT1, SmTAT3, SmHPPR1, SmRAS, and SmCYP98A14 genes involved in phenolic acid biosynthesis. It suggests that smi-miR159a is a significant negative regulator of phenolic acid biosynthesis in S. miltiorrhiza.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hidroxibenzoatos , MicroARNs , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , MicroARNs/genética , Hidroxibenzoatos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , ARN de Planta/genética , Genoma de Planta
11.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791522

RESUMEN

The role of lncRNA and circRNA in wheat grain development is still unclear. The objectives of this study were to characterize the lncRNA and circRNA in the wheat grain development and to construct the interaction network among lncRNA, circRNA, and their target miRNA to propose a lncRNA-circRNA-miRNA module related to wheat grain development. Full transcriptome sequencing on two wheat varieties (Annong 0942 and Anke 2005) with significant differences in 1000-grain weight at 10 d (days after pollination), 20 d, and 30 d of grain development were conducted. We detected 650, 736, and 609 differentially expressed lncRNA genes, and 769, 1054, and 1062 differentially expressed circRNA genes in the grains of 10 days, 20 days and 30 days after pollination between Annong 0942 and Anke 2005, respectively. An analysis of the lncRNA-miRNA and circRNA-miRNA targeting networks reveals that circRNAs exhibit a more complex and extensive interaction network in the development of cereal grains and the formation of grain shape. Central to these interactions are tae-miR1177, tae-miR1128, and tae-miR1130b-3p. In contrast, lncRNA genes only form a singular network centered around tae-miR1133 and tae-miR5175-5p when comparing between varieties. Further analysis is conducted on the underlying genes of all target miRNAs, we identified TaNF-YB1 targeted by tae-miR1122a and TaTGW-7B targeted by miR1130a as two pivotal regulatory genes in the development of wheat grains. The quantitative real-time PCR (qRT-PCR) and dual-luciferase reporter assays confirmed the target regulatory relationships between miR1130a-TaTGW-7B and miR1122a-TaNF-YB1. We propose a network of circRNA and miRNA-mediated gene regulation in the development of wheat grains.


Asunto(s)
Grano Comestible , Regulación de la Expresión Génica de las Plantas , MicroARNs , ARN Circular , ARN Largo no Codificante , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , ARN Largo no Codificante/genética , ARN Circular/genética , ARN Circular/metabolismo , MicroARNs/genética , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Redes Reguladoras de Genes , ARN de Planta/genética , Perfilación de la Expresión Génica
12.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791540

RESUMEN

Mitochondrial genomes of land plants are large and exhibit a complex mode of gene organization and expression, particularly at the post-transcriptional level. The primary organellar transcripts in plants undergo extensive maturation steps, including endo- and/or exo-nucleolytic cleavage, RNA-base modifications (mostly C-to-U deaminations) and both 'cis'- and 'trans'-splicing events. These essential processing steps rely on the activities of a large set of nuclear-encoded factors. RNA helicases serve as key players in RNA metabolism, participating in the regulation of transcription, mRNA processing and translation. They unwind RNA secondary structures and facilitate the formation of ribonucleoprotein complexes crucial for various stages of gene expression. Furthermore, RNA helicases are involved in RNA metabolism by modulating pre-mRNA maturation, transport and degradation processes. These enzymes are, therefore, pivotal in RNA quality-control mechanisms, ensuring the fidelity and efficiency of RNA processing and turnover in plant mitochondria. This review summarizes the significant roles played by helicases in regulating the highly dynamic processes of mitochondrial transcription, RNA processing and translation in plants. We further discuss recent advancements in understanding how dysregulation of mitochondrial RNA helicases affects the splicing of organellar genes, leading to respiratory dysfunctions, and consequently, altered growth, development and physiology of land plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Mitocondrias , ARN Helicasas , Empalme del ARN , ARN Helicasas/metabolismo , ARN Helicasas/genética , Mitocondrias/metabolismo , Mitocondrias/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Plantas/genética , Plantas/metabolismo , Plantas/enzimología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
13.
BMC Plant Biol ; 24(1): 399, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745128

RESUMEN

BACKGROUND: Riccia fluitans, an amphibious liverwort, exhibits a fascinating adaptation mechanism to transition between terrestrial and aquatic environments. Utilizing nanopore direct RNA sequencing, we try to capture the complex epitranscriptomic changes undergone in response to land-water transition. RESULTS: A significant finding is the identification of 45 differentially expressed genes (DEGs), with a split of 33 downregulated in terrestrial forms and 12 upregulated in aquatic forms, indicating a robust transcriptional response to environmental changes. Analysis of N6-methyladenosine (m6A) modifications revealed 173 m6A sites in aquatic and only 27 sites in the terrestrial forms, indicating a significant increase in methylation in the former, which could facilitate rapid adaptation to changing environments. The aquatic form showed a global elongation bias in poly(A) tails, which is associated with increased mRNA stability and efficient translation, enhancing the plant's resilience to water stress. Significant differences in polyadenylation signals were observed between the two forms, with nine transcripts showing notable changes in tail length, suggesting an adaptive mechanism to modulate mRNA stability and translational efficiency in response to environmental conditions. This differential methylation and polyadenylation underline a sophisticated layer of post-transcriptional regulation, enabling Riccia fluitans to fine-tune gene expression in response to its living conditions. CONCLUSIONS: These insights into transcriptome dynamics offer a deeper understanding of plant adaptation strategies at the molecular level, contributing to the broader knowledge of plant biology and evolution. These findings underscore the sophisticated post-transcriptional regulatory strategies Riccia fluitans employs to navigate the challenges of aquatic versus terrestrial living, highlighting the plant's dynamic adaptation to environmental stresses and its utility as a model for studying adaptation mechanisms in amphibious plants.


Asunto(s)
Análisis de Secuencia de ARN , Transcriptoma , Secuenciación de Nanoporos , Marchantia/genética , Regulación de la Expresión Génica de las Plantas , ARN de Planta/genética , Adaptación Fisiológica/genética , Epigénesis Genética
14.
Plant Mol Biol ; 114(3): 56, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743198

RESUMEN

Most eukaryotic organisms employ a telomerase complex for the maintenance of chromosome ends. The core of this complex is composed of telomerase reverse transcriptase (TERT) and telomerase RNA (TR) subunits. The TERT reverse transcriptase (RT) domain synthesises telomeric DNA using the TR template sequence. The other TERT domains contribute to this process in different ways. In particular, the TERT RNA-binding domain (TRBD) interacts with specific TR motif(s). Using a yeast 3-hybrid system, we show the critical role of Arabidopsis thaliana (At) TRBD and embryophyta-conserved KRxR motif in the unstructured linker preceding the TRBD domain for binding to the recently identified AtTR subunit. We also show the essential role of the predicted P4 stem and pseudoknot AtTR structures and provide evidence for the binding of AtTRBD to pseudoknot and KRxR motif stabilising interaction with the P4 stem structure. Our results thus provide the first insight into the core part of the plant telomerase complex.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Telomerasa , Telomerasa/genética , Telomerasa/metabolismo , Telomerasa/química , Arabidopsis/genética , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , ARN/metabolismo , ARN/genética , Técnicas del Sistema de Dos Híbridos , ARN de Planta/genética , ARN de Planta/metabolismo , Conformación de Ácido Nucleico , Unión Proteica
16.
BMC Genomics ; 25(1): 531, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816689

RESUMEN

Non-coding RNAs (ncRNAs) are recognized as pivotal players in the regulation of essential physiological processes such as nutrient homeostasis, development, and stress responses in plants. Common methods for predicting ncRNAs are susceptible to significant effects of experimental conditions and computational methods, resulting in the need for significant investment of time and resources. Therefore, we constructed an ncRNA predictor(MFPINC), to predict potential ncRNA in plants which is based on the PINC tool proposed by our previous studies. Specifically, sequence features were carefully refined using variance thresholding and F-test methods, while deep features were extracted and feature fusion were performed by applying the GRU model. The comprehensive evaluation of multiple standard datasets shows that MFPINC not only achieves more comprehensive and accurate identification of gene sequences, but also significantly improves the expressive and generalization performance of the model, and MFPINC significantly outperforms the existing competing methods in ncRNA identification. In addition, it is worth mentioning that our tool can also be found on Github ( https://github.com/Zhenj-Nie/MFPINC ) the data and source code can also be downloaded for free.


Asunto(s)
Biología Computacional , ARN de Planta , ARN no Traducido , ARN no Traducido/genética , ARN de Planta/genética , Biología Computacional/métodos , Programas Informáticos , Plantas/genética , Algoritmos , Análisis de Secuencia de ARN/métodos
17.
BMC Plant Biol ; 24(1): 480, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816792

RESUMEN

Phosphorus, a crucial macronutrient essential for plant growth and development. Due to widespread phosphorus deficiency in soils, phosphorus deficiency stress has become one of the major abiotic stresses that plants encounter. Despite the evolution of adaptive mechanisms in plants to address phosphorus deficiency, the specific strategies employed by species such as Epimedium pubescens remain elusive. Therefore, this study observed the changes in the growth, physiological reponses, and active components accumulation in E. pubescensunder phosphorus deficiency treatment, and integrated transcriptome and miRNA analysis, so as to offer comprehensive insights into the adaptive mechanisms employed by E. pubescens in response to phosphorus deficiency across various stages of phosphorus treatment. Remarkably, our findings indicate that phosphorus deficiency induces root growth stimulation in E. pubescens, while concurrently inhibiting the growth of leaves, which are of medicinal value. Surprisingly, this stressful condition results in an augmented accumulation of active components in the leaves. During the early stages (30 days), leaves respond by upregulating genes associated with carbon metabolism, flavonoid biosynthesis, and hormone signaling. This adaptive response facilitates energy production, ROS scavenging, and morphological adjustments to cope with short-term phosphorus deficiency and sustain its growth. As time progresses (90 days), the expression of genes related to phosphorus cycling and recycling in leaves is upregulated, and transcriptional and post-transcriptional regulation (miRNA regulation and protein modification) is enhanced. Simultaneously, plant growth is further suppressed, and it gradually begins to discard and decompose leaves to resist the challenges of long-term phosphorus deficiency stress and sustain survival. In conclusion, our study deeply and comprehensively reveals adaptive strategies utilized by E. pubescens in response to phosphorus deficiency, demonstrating its resilience and thriving potential under stressful conditions. Furthermore, it provides valuable information on potential target genes for the cultivation of E. pubescens genotypes tolerant to low phosphorus.


Asunto(s)
Epimedium , MicroARNs , Fósforo , Transcriptoma , Fósforo/deficiencia , Fósforo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Epimedium/genética , Epimedium/metabolismo , Epimedium/fisiología , Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Estrés Fisiológico/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo
18.
Proc Natl Acad Sci U S A ; 121(21): e2402285121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739785

RESUMEN

Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediating PHAS precursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.


Asunto(s)
Meiosis , ARN de Planta , Zea mays , Zea mays/genética , Zea mays/metabolismo , Meiosis/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transcriptoma , Oryza/genética , Oryza/metabolismo
19.
PeerJ ; 12: e17396, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799058

RESUMEN

Deciphering the targets of microRNAs (miRNAs) in plants is crucial for comprehending their function and the variation in phenotype that they cause. As the highly cell-specific nature of miRNA regulation, recent computational approaches usually utilize expression data to identify the most physiologically relevant targets. Although these methods are effective, they typically require a large sample size and high-depth sequencing to detect potential miRNA-target pairs, thereby limiting their applicability in improving plant breeding. In this study, we propose a novel miRNA-target prediction framework named kmerPMTF (k-mer-based prediction framework for plant miRNA-target). Our framework effectively extracts the latent semantic embeddings of sequences by utilizing k-mer splitting and a deep self-supervised neural network. We construct multiple similarity networks based on k-mer embeddings and employ graph convolutional networks to derive deep representations of miRNAs and targets and calculate the probabilities of potential associations. We evaluated the performance of kmerPMTF on four typical plant datasets: Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, and Prunus persica. The results demonstrate its ability to achieve AUPRC values of 84.9%, 91.0%, 80.1%, and 82.1% in 5-fold cross-validation, respectively. Compared with several state-of-the-art existing methods, our framework achieves better performance on threshold-independent evaluation metrics. Overall, our study provides an efficient and simplified methodology for identifying plant miRNA-target associations, which will contribute to a deeper comprehension of miRNA regulatory mechanisms in plants.


Asunto(s)
MicroARNs , Redes Neurales de la Computación , MicroARNs/genética , MicroARNs/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas
20.
Methods Mol Biol ; 2787: 201-207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656491

RESUMEN

Ribonucleic Acid (RNA) isolation is a basic technique in the field of molecular biology. The purpose of RNA isolation is to acquire pure and complete RNA that can be used to evaluate gene expression. Many methods can be used to perform RNA isolation, all of them based on the chemical properties of nucleic acids. However, some of them do not achieve high RNA yields and purity levels when used in a number of marginally studied crops of agronomic importance, such as grain and vegetable amaranth plants. In the method described here, the use of guanidinium thiocyanate and two additional precipitation steps with different reagents designed to obtain high yields and RNA purity levels from diverse plant species employed for plant functional genomics studies is described.


Asunto(s)
Productos Agrícolas , ARN de Planta , Productos Agrícolas/genética , ARN de Planta/aislamiento & purificación , ARN de Planta/genética , Tiocianatos/química , Guanidinas/química , Amaranthus/genética , Amaranthus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA