Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Biomol Struct Dyn ; 40(18): 8538-8559, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33896406

RESUMEN

Aminoacylation reaction is the first step of protein biosynthesis. Transfer RNA (tRNA) is charged with an amino acid in this reaction and the reaction is catalyzed by aminoacyl tRNA synthetase enzyme (aaRS). In the present work, we use classical molecular dynamics simulation to show that the tRNA bound Mg2+ ions significantly influence the charging step of class I TtGluRS: Glu-AMP: tRNAGlu and class II dimeric TtSerRS: Ser-AMP: tRNASer. The CCA end of the acceptor terminal is disordered in the absence of coordinated Mg2+ ions and the CCA end can freely explore beyond the specific conformational space of the tRNA in its precharging state. A balance between the conformational disorder of the tRNA and the restriction imposed on the CCA terminal via coordination with the Mg2+ ions is needed for the placement of the CCA terminal in a precharging state organization. This result provides a molecular-level explanation of the experimental observation that the presence of Mg2+ ions is a necessary condition for a successful aminoacylation reaction.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Aminoacil-ARNt Sintetasas , Serina-ARNt Ligasa , Adenosina Monofosfato/metabolismo , Aminoácidos/química , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacilación , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Iones , Ligasas/metabolismo , Magnesio , ARN de Transferencia/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Serina/metabolismo , Serina-ARNt Ligasa/química
2.
FASEB J ; 33(12): 13228-13240, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31560576

RESUMEN

tRNA-derived fragments (tRFs) have been defined as a novel class of small noncoding RNAs. tRFs have been reported to be deregulated in cancer, but their biologic function remains to be fully understood. We have identified a new tRF (named tRF3E), derived from mature tRNAGlu, that is specifically expressed in healthy mammary glands but not in breast cancer (BC). Consistently, tRF3E levels significantly decrease in the blood of patients with epidermal growth factor receptor 2 (HER2)-positive BC reflecting tumor status (control > early cancer > metastatic cancer). tRF3E down-regulation was recapitulated in Δ16HER2 transgenic mice, representing a BC preclinical model. Pulldown assays, used to search for proteins capable to selectively bind tRF3E, have shown that this tRF specifically interacts with nucleolin (NCL), an RNA-binding protein overexpressed in BC and able to repress the translation of p53 mRNA. The binding properties of NCL-tRF3E complex, predicted in silico and analyzed by EMSA assays, are congruent with a competitive displacement of p53 mRNA by tRF3E, leading to an increased p53 expression and consequently to a modulation of cancer cell growth. Here, we provide evidence that tRF3E plays an important role in the pathogenesis of BC displaying tumor-suppressor functions through a NCL-mediated mechanism.-Falconi, M., Giangrossi, M., Elexpuru Zabaleta, M., Wang, J., Gambini, V., Tilio, M., Bencardino, D., Occhipinti, S., Belletti, B., Laudadio, E., Galeazzi, R., Marchini, C., Amici, A. A novel 3'-tRNAGlu-derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin.


Asunto(s)
Neoplasias de la Mama/metabolismo , Fosfoproteínas/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Western Blotting , Neoplasias de la Mama/genética , Ensayo de Cambio de Movilidad Electroforética , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Ratones , Ratones Transgénicos , Fosfoproteínas/genética , ARN de Transferencia de Ácido Glutámico/genética , Proteínas de Unión al ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nucleolina
3.
RNA Biol ; 15(9): 1167-1173, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30249152

RESUMEN

The MnmE-MnmG complex of Escherichia coli uses either ammonium or glycine as a substrate to incorporate the 5-aminomethyl or 5-carboxymethylaminomethyl group into the wobble uridine of certain tRNAs. Both modifications can be converted into a 5-methylaminomethyl group by the independent oxidoreductase and methyltransferase activities of MnmC, which respectively reside in the MnmC(o) and MnmC(m) domains of this bifunctional enzyme. MnmE and MnmG, but not MnmC, are evolutionarily conserved. Bacillus subtilis lacks genes encoding MnmC(o) and/or MnmC(m) homologs. The glycine pathway has been considered predominant in this typical gram-positive species because only the 5-carboxymethylaminomethyl group has been detected in tRNALysUUU and bulk tRNA to date. Here, we show that the 5-methylaminomethyl modification is prevalent in B. subtilis tRNAGlnUUG and tRNAGluUUC. Our data indicate that B. subtilis has evolved MnmC(o)- and MnmC(m)-like activities that reside in non MnmC homologous protein(s), which suggests that both activities provide some sort of biological advantage.


Asunto(s)
ARN de Transferencia de Glutamina/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , Uridina/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Complejos Multienzimáticos/metabolismo , Mutación , Transferasas del Grupo 1-Carbono/genética , Transferasas del Grupo 1-Carbono/metabolismo , Procesamiento Postranscripcional del ARN
4.
Nucleic Acids Res ; 46(17): 9081-9093, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-29893896

RESUMEN

We have previously shown that 5' halves from tRNAGlyGCC and tRNAGluCUC are the most enriched small RNAs in the extracellular space of human cell lines, and especially in the non-vesicular fraction. Extracellular RNAs are believed to require protection by either encapsulation in vesicles or ribonucleoprotein complex formation. However, deproteinization of non-vesicular tRNA halves does not affect their retention in size-exclusion chromatography. Thus, we considered alternative explanations for their extracellular stability. In-silico analysis of the sequence of these tRNA-derived fragments showed that tRNAGly 5' halves can form homodimers or heterodimers with tRNAGlu 5' halves. This capacity is virtually unique to glycine tRNAs. By analyzing synthetic oligonucleotides by size exclusion chromatography, we provide evidence that dimerization is possible in vitro. tRNA halves with single point substitutions preventing dimerization are degraded faster both in controlled nuclease digestion assays and after transfection in cells, showing that dimerization can stabilize tRNA halves against the action of cellular nucleases. Finally, we give evidence supporting dimerization of endogenous tRNAGlyGCC 5' halves inside cells. Considering recent reports have shown that 5' tRNA halves from Ala and Cys can form tetramers, our results highlight RNA intermolecular structures as a new layer of complexity in the biology of tRNA-derived fragments.


Asunto(s)
Dimerización , Estabilidad del ARN , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Glicerina/metabolismo , Ribonucleasas/metabolismo , Región de Flanqueo 5' , Secuencia de Bases , Ácido Glutámico/metabolismo , Glicina/metabolismo , Humanos , Células MCF-7 , Conformación de Ácido Nucleico , ARN de Transferencia de Ácido Glutámico/química , ARN de Transferencia de Glicerina/química
5.
Photosynth Res ; 137(3): 443-452, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29785497

RESUMEN

In higher plants, the tetrapyrrole biosynthesis pathway starts from the reaction catalyzed by the rate-limiting enzyme, glutamyl-tRNAGlu reductase (GTR). In Arabidopsis thaliana, GTR is controlled by post-transcriptional regulators such as GTR binding protein (GBP), which stimulates AtGTR activity. The NADPH-binding domain of AtGTR undergoes a substantial movement upon GBP binding. Here, we report the crystal structure of AtGTR-NADPH-GBP ternary complex. NADPH binding causes slight structural changes compared with the AtGTR-GBP binary complex, and possibly take a part of the space needed by the substrate glutamyl-tRNAGlu. The highly reactive sulfhydryl group of the active-site residue Cys144 shows an obvious rotation, which may facilitate the hydride transfer from NADPH to the thioester intermediate to form glutamate-1-semialdehyde. Furthermore, Lys271, Lys274, Ser275, Asn278, and Gln282 of GBP participate in the interaction between AtGTR and GBP, and the stimulating effect of GBP decreased when all of these residues were mutated to Ala. When the Cys144 of AtGTR was mutated to Ser, AtGTR activity could not be detected even in the presence of GBP.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Proteínas Portadoras/química , Modelos Estructurales , Complejos Multienzimáticos/metabolismo , Oxidorreductasas/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Catálisis , Dominio Catalítico , Cristalización , Glutamatos/metabolismo , Cinética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Mutagénesis Sitio-Dirigida , Mutación , NADP , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , Tetrapirroles/metabolismo
6.
Nucleic Acids Res ; 45(22): 12601-12610, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29155943

RESUMEN

A bacterial translation factor EF-P alleviates ribosomal stalling caused by polyproline sequence by accelerating Pro-Pro formation. EF-P recognizes a specific D-arm motif found in tRNAPro isoacceptors, 9-nt D-loop closed by a stable D-stem sequence, for Pro-selective peptidyl-transfer acceleration. It is also known that the T-stem sequence on aminoacyl-tRNAs modulates strength of the interaction with EF-Tu, giving enhanced incorporation of non-proteinogenic amino acids such as some N-methyl amino acids. Based on the above knowledge, we logically engineered tRNA's D-arm and T-stem sequences to investigate a series of tRNAs for the improvement of consecutive incorporation of d-amino acids and an α, α-disubstituted amino acid. We have devised a chimera of tRNAPro1 and tRNAGluE2, referred to as tRNAPro1E2, in which T-stem of tRNAGluE2 was engineered into tRNAPro1. The combination of EF-P with tRNAPro1E2NNN pre-charged with d-Phe, d-Ser, d-Ala, and/or d-Cys has drastically enhanced expression level of not only linear peptides but also a thioether-macrocyclic peptide consisting of the four consecutive d-amino acids over the previous method using orthogonal tRNAs.


Asunto(s)
Aminoácidos/genética , ADN Recombinante/genética , Aminoacil-ARN de Transferencia/genética , ARN de Transferencia/genética , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Secuencia de Bases , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Ácido Glutámico/química , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Prolina/metabolismo
7.
J Biol Chem ; 291(40): 21029-21041, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27519417

RESUMEN

Several mitochondrial tRNA mutations have been associated with maternally inherited diabetes and deafness. However, the pathophysiology of these tRNA mutations remains poorly understood. In this report, we identified the novel homoplasmic 14692A→G mutation in the mitochondrial tRNAGlu gene among three Han Chinese families with maternally inherited diabetes and deafness. The m.14692A→G mutation affected a highly conserved uridine at position 55 of the TΨC loop of tRNAGlu The uridine is modified to pseudouridine (Ψ55), which plays an important role in the structure and function of this tRNA. Using lymphoblastoid cell lines derived from a Chinese family, we demonstrated that the m.14692A→G mutation caused loss of Ψ55 modification and increased angiogenin-mediated endonucleolytic cleavage in mutant tRNAGlu The destabilization of base-pairing (18A-Ψ55) caused by the m.14692A→G mutation perturbed the conformation and stability of tRNAGlu An approximately 65% decrease in the steady-state level of tRNAGlu was observed in mutant cells compared with control cells. A failure in tRNAGlu metabolism impaired mitochondrial translation, especially for polypeptides with a high proportion of glutamic acid codons such as ND1, ND6, and CO2 in mutant cells. An impairment of mitochondrial translation caused defective respiratory capacity, especially reducing the activities of complexes I and IV. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increasing production of reactive oxygen species in the mutant cells. Our findings may provide new insights into the pathophysiology of maternally inherited diabetes and deafness, which is primarily manifested by the deficient nucleotide modification of mitochondrial tRNAGlu.


Asunto(s)
Sordera , Diabetes Mellitus , Mutación Puntual , Seudouridina , ARN de Transferencia de Ácido Glutámico , ARN , Pueblo Asiatico , Emparejamiento Base , Línea Celular , China , Sordera/genética , Sordera/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Femenino , Humanos , Masculino , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas/genética , Seudouridina/genética , Seudouridina/metabolismo , ARN/genética , ARN/metabolismo , ARN Mitocondrial , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo
8.
PLoS One ; 10(4): e0121043, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25860020

RESUMEN

For tRNA-dependent protein biosynthesis, amino acids are first activated by aminoacyl-tRNA synthetases (aaRSs) yielding the reaction intermediates aminoacyl-AMP (aa-AMP). Stable analogues of aa-AMP, such as aminoacyl-sulfamoyl-adenosines, inhibit their cognate aaRSs. Glutamyl-sulfamoyl-adenosine (Glu-AMS) is the best known inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS). Thermodynamic parameters of the interactions between Glu-AMS and E. coli GluRS were measured in the presence and in the absence of tRNA by isothermal titration microcalorimetry. A significant entropic contribution for the interactions between Glu-AMS and GluRS in the absence of tRNA or in the presence of the cognate tRNAGlu or of the non-cognate tRNAPhe is indicated by the negative values of -TΔSb, and by the negative value of ΔCp. On the other hand, the large negative enthalpy is the dominant contribution to ΔGb in the absence of tRNA. The affinity of GluRS for Glu-AMS is not altered in the presence of the non-cognate tRNAPhe, but the dissociation constant Kd is decreased 50-fold in the presence of tRNAGlu; this result is consistent with molecular dynamics results indicating the presence of an H-bond between Glu-AMS and the 3'-OH oxygen of the 3'-terminal ribose of tRNAGlu in the Glu-AMS•GluRS•tRNAGlu complex. Glu-AMS being a very close structural analogue of Glu-AMP, its weak binding to free GluRS suggests that the unstable Glu-AMP reaction intermediate binds weakly to GluRS; these results could explain why all the known GluRSs evolved to activate glutamate only in the presence of tRNAGlu, the coupling of glutamate activation to its transfer to tRNA preventing unproductive cleavage of ATP.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina/análogos & derivados , Adenosina/química , Glutamato-ARNt Ligasa/metabolismo , Glutamatos/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , Adenosina/metabolismo , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Aminoacilación , Sitios de Unión , Calorimetría , Escherichia coli/enzimología , Glutamato-ARNt Ligasa/antagonistas & inhibidores , Glutamatos/química , Enlace de Hidrógeno , Cinética , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Temperatura , Termodinámica
9.
Nature ; 517(7535): 509-12, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25363770

RESUMEN

Lantibiotics are a class of peptide antibiotics that contain one or more thioether bonds. The lantibiotic nisin is an antimicrobial peptide that is widely used as a food preservative to combat food-borne pathogens. Nisin contains dehydroalanine and dehydrobutyrine residues that are formed by the dehydration of Ser/Thr by the lantibiotic dehydratase NisB (ref. 2). Recent biochemical studies revealed that NisB glutamylates Ser/Thr side chains as part of the dehydration process. However, the molecular mechanism by which NisB uses glutamate to catalyse dehydration remains unresolved. Here we show that this process involves glutamyl-tRNA(Glu) to activate Ser/Thr residues. In addition, the 2.9-Å crystal structure of NisB in complex with its substrate peptide NisA reveals the presence of two separate domains that catalyse the Ser/Thr glutamylation and glutamate elimination steps. The co-crystal structure also provides insights into substrate recognition by lantibiotic dehydratases. Our findings demonstrate an unexpected role for aminoacyl-tRNA in the formation of dehydroamino acids in lantibiotics, and serve as a basis for the functional characterization of the many lantibiotic-like dehydratases involved in the biosynthesis of other classes of natural products.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacteriocinas/metabolismo , Hidroliasas/química , Hidroliasas/metabolismo , Lactococcus lactis/enzimología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , Proteínas Bacterianas/clasificación , Bacteriocinas/biosíntesis , Cristalografía por Rayos X , Escherichia coli/genética , Ácido Glutámico/metabolismo , Hidroliasas/clasificación , Lactococcus lactis/genética , Proteínas de la Membrana/clasificación , Modelos Moleculares , Nisina/biosíntesis , Nisina/metabolismo , Filogenia , Estructura Terciaria de Proteína , ARN de Transferencia de Ácido Glutámico/genética , Serina/metabolismo , Treonina/metabolismo
10.
Mol Biol Cell ; 26(2): 270-82, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25392298

RESUMEN

Although tRNA modifications have been well catalogued, the precise functions of many modifications and their roles in mediating gene expression are still being elucidated. Whereas tRNA modifications were long assumed to be constitutive, it is now apparent that the modification status of tRNAs changes in response to different environmental conditions. The URM1 pathway is required for thiolation of the cytoplasmic tRNAs tGlu(UUC), tGln(UUG), and tLys(UUU) in Saccharomyces cerevisiae. We demonstrate that URM1 pathway mutants have impaired translation, which results in increased basal activation of the Hsf1-mediated heat shock response; we also find that tRNA thiolation levels in wild-type cells decrease when cells are grown at elevated temperature. We show that defects in tRNA thiolation can be conditionally advantageous, conferring resistance to endoplasmic reticulum stress. URM1 pathway proteins are unstable and hence are more sensitive to changes in the translational capacity of cells, which is decreased in cells experiencing stresses. We propose a model in which a stress-induced decrease in translation results in decreased levels of URM1 pathway components, which results in decreased tRNA thiolation levels, which further serves to decrease translation. This mechanism ensures that tRNA thiolation and translation are tightly coupled and coregulated according to need.


Asunto(s)
Respuesta al Choque Térmico/genética , Biosíntesis de Proteínas/genética , ARN de Hongos/genética , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Northern Blotting , Western Blotting , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Calor , Modelos Genéticos , Mutación , ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Glutamina/metabolismo , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Compuestos de Sulfhidrilo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Tunicamicina/farmacología
11.
Int J Mol Sci ; 15(12): 23011-23, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25514408

RESUMEN

Glutamyl-tRNA (Glu-tRNA(Glu)) is the common substrate for both protein translation and heme biosynthesis via the C5 pathway. Under normal conditions, an adequate supply of this aminoacyl-tRNA is available to both pathways. However, under certain circumstances, Glu-tRNA(Glu) can become scarce, resulting in competition between the two pathways for this aminoacyl-tRNA. In Acidithiobacillus ferrooxidans, glutamyl-tRNA synthetase 1 (GluRS1) is the main enzyme that synthesizes Glu-tRNA(Glu). Previous studies have shown that GluRS1 is inactivated in vitro by hydrogen peroxide (H2O2). This raises the question as to whether H2O2 negatively affects in vivo GluRS1 activity in A. ferrooxidans and whether Glu-tRNA(Glu) distribution between the heme and protein biosynthesis processes may be affected by these conditions. To address this issue, we measured GluRS1 activity. We determined that GluRS1 is inactivated when cells are exposed to H2O2, with a concomitant reduction in intracellular heme level. The effects of H2O2 on the activity of purified glutamyl-tRNA reductase (GluTR), the key enzyme for heme biosynthesis, and on the elongation factor Tu (EF-Tu) were also measured. While exposing purified GluTR, the first enzyme of heme biosynthesis, to H2O2 resulted in its inactivation, the binding of glutamyl-tRNA to EF-Tu was not affected. Taken together, these data suggest that in A. ferrooxidans, the flow of glutamyl-tRNA is diverted from heme biosynthesis towards protein synthesis under oxidative stress conditions.


Asunto(s)
Hemo/biosíntesis , Peróxido de Hidrógeno/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Acidithiobacillus/efectos de los fármacos , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Activación Enzimática/efectos de los fármacos , Glutamato-ARNt Ligasa/antagonistas & inhibidores , Factor Tu de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas/genética , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo , Aminoacilación de ARN de Transferencia/efectos de los fármacos
12.
Nucleic Acids Res ; 42(10): 6487-96, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24711368

RESUMEN

Dnmt2 enzymes are conserved in eukaryotes, where they methylate C38 of tRNA-Asp with high activity. Here, the activity of one of the very few prokaryotic Dnmt2 homologs from Geobacter species (GsDnmt2) was investigated. GsDnmt2 was observed to methylate tRNA-Asp from flies and mice. Unexpectedly, it had only a weak activity toward its matching Geobacter tRNA-Asp, but methylated Geobacter tRNA-Glu with good activity. In agreement with this result, we show that tRNA-Glu is methylated in Geobacter while the methylation is absent in tRNA-Asp. The activities of Dnmt2 enzymes from Homo sapiens, Drosophila melanogaster, Schizosaccharomyces pombe and Dictyostelium discoideum for methylation of the Geobacter tRNA-Asp and tRNA-Glu were determined showing that all these Dnmt2s preferentially methylate tRNA-Asp. Hence, the GsDnmt2 enzyme has a swapped transfer ribonucleic acid (tRNA) specificity. By comparing the different tRNAs, a characteristic sequence pattern was identified in the variable loop of all preferred tRNA substrates. An exchange of two nucleotides in the variable loop of murine tRNA-Asp converted it to the corresponding variable loop of tRNA-Glu and led to a strong reduction of GsDnmt2 activity. Interestingly, the same loss of activity was observed with human DNMT2, indicating that the variable loop functions as a specificity determinant in tRNA recognition of Dnmt2 enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Geobacter/enzimología , ARN de Transferencia de Ácido Glutámico/metabolismo , ARNt Metiltransferasas/metabolismo , Animales , Humanos , Metilación , Ratones , Conformación de Ácido Nucleico , ARN de Transferencia de Aspártico/química , ARN de Transferencia de Aspártico/metabolismo , ARN de Transferencia de Ácido Glutámico/química , Especificidad por Sustrato
13.
RNA ; 20(1): 9-15, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24249223

RESUMEN

Protein synthesis must rapidly and repeatedly discriminate between a single correct and many incorrect aminoacyl-tRNAs. We have attempted to measure the frequencies of all possible missense errors by tRNA , tRNA and tRNA . The most frequent errors involve three types of mismatched nucleotide pairs, U•U, U•C, or U•G, all of which can form a noncanonical base pair with geometry similar to that of the canonical U•A or C•G Watson-Crick pairs. Our system is sensitive enough to measure errors at other potential mismatches that occur at frequencies as low as 1 in 500,000 codons. The ribosome appears to discriminate this efficiently against any pair with non-Watson-Crick geometry. This extreme accuracy may be necessary to allow discrimination against the errors involving near Watson-Crick pairing.


Asunto(s)
Disparidad de Par Base/fisiología , Mutación Missense , Biosíntesis de Proteínas/fisiología , Ribosomas/fisiología , Sustitución de Aminoácidos , Emparejamiento Base/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagénesis/fisiología , Mutación Missense/fisiología , Conformación de Ácido Nucleico , Organismos Modificados Genéticamente , ARN de Transferencia de Aspártico/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Tirosina/metabolismo , beta-Galactosidasa/química , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
14.
Nucleic Acids Res ; 42(1): 328-39, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24062157

RESUMEN

Double-stranded DNA breaks (DSB) cause bacteria to augment expression of DNA repair and various stress response proteins. A puzzling exception educes the anticodon nuclease (ACNase) RloC, which resembles the DSB responder Rad50 and the antiviral, translation-disabling ACNase PrrC. While PrrC's ACNase is regulated by a DNA restriction-modification (R-M) protein and a phage anti-DNA restriction peptide, RloC has an internal ACNase switch comprising a putative DSB sensor and coupled ATPase. Further exploration of RloC's controls revealed, first, that its ACNase is stabilized by the activating DNA and hydrolysed nucleotide. Second, DSB inducers activated RloC's ACNase in heterologous contexts as well as in a natural host, even when R-M deficient. Third, the DSB-induced activation of the indigenous RloC led to partial and temporary disruption of tRNA(Glu) and tRNA(Gln). Lastly, accumulation of CRISPR-derived RNA that occurred in parallel raises the possibility that the adaptive immunity and RloC provide the genotoxicated host with complementary protection from impending infections.


Asunto(s)
Acinetobacter/enzimología , Roturas del ADN de Doble Cadena , Ribonucleasas/metabolismo , Acinetobacter/inmunología , Inmunidad Adaptativa , Adenosina Difosfato/metabolismo , Activación Enzimática , Estabilidad de Enzimas , Geobacillus/enzimología , División del ARN , ARN de Transferencia de Glutamina/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo
15.
Mol Cell ; 52(2): 248-54, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24095282

RESUMEN

HipA of Escherichia coli is a eukaryote-like serine-threonine kinase that inhibits cell growth and induces persistence (multidrug tolerance). Previously, it was proposed that HipA inhibits cell growth by the phosphorylation of the essential translation factor EF-Tu. Here, we provide evidence that EF-Tu is not a target of HipA. Instead, a genetic screen reveals that the overexpression of glutamyl-tRNA synthetase (GltX) suppresses the toxicity of HipA. We show that HipA phosphorylates conserved Ser(239) near the active center of GltX and inhibits aminoacylation, a unique example of an aminoacyl-tRNA synthetase being inhibited by a toxin encoded by a toxin-antitoxin locus. HipA only phosphorylates tRNA(Glu)-bound GltX, which is consistent with the earlier finding that the regulatory motif containing Ser(239) changes configuration upon tRNA binding. These results indicate that HipA mediates persistence by the generation of "hungry" codons at the ribosomal A site that trigger the synthesis of (p)ppGpp, a hypothesis that we verify experimentally.


Asunto(s)
Tolerancia a Medicamentos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Aminoacilación , Antibacterianos/farmacología , Sitios de Unión/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Guanosina Pentafosfato/metabolismo , Modelos Genéticos , Modelos Moleculares , Mutación , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Fosforilación , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Serina/química , Serina/genética , Serina/metabolismo
16.
J Biol Chem ; 288(45): 32539-32552, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24072705

RESUMEN

The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNA(Gln) biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNA(Glu) and tRNA(Gln), determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNA(Gln) biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids.


Asunto(s)
Apicoplastos/enzimología , Glutamato-ARNt Ligasa/metabolismo , Plasmodium berghei/enzimología , Plasmodium falciparum/enzimología , Biosíntesis de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Aminoacilación de ARN de Transferencia/fisiología , Apicoplastos/genética , Glutamato-ARNt Ligasa/genética , Humanos , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Glutamina/metabolismo , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(31): 12756-61, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23858450

RESUMEN

T-box riboswitches control transcription of downstream genes through the tRNA-binding formation of terminator or antiterminator structures. Previously reported T-boxes were described as single-specificity riboswitches that can bind specific tRNA anticodons through codon-anticodon interactions with the nucleotide triplet of their specifier loop (SL). However, the possibility that T-boxes might exhibit specificity beyond a single tRNA had been overlooked. In Clostridium acetobutylicum, the T-box that regulates the operon for the essential tRNA-dependent transamidation pathway harbors a SL with two potential overlapping codon positions for tRNA(Asn) and tRNA(Glu). To test its specificity, we performed extensive mutagenic, biochemical, and chemical probing analyses. Surprisingly, both tRNAs can efficiently bind the SL in vitro and in vivo. The dual specificity of the T-box is allowed by a single base shift on the SL from one overlapping codon to the next. This feature allows the riboswitch to sense two tRNAs and balance the biosynthesis of two amino acids. Detailed genomic comparisons support our observations and suggest that "flexible" T-box riboswitches are widespread among bacteria, and, moreover, their specificity is dictated by the metabolic interconnection of the pathways under control. Taken together, our results support the notion of a genome-dependent codon ambiguity of the SLs. Furthermore, the existence of two overlapping codons imposes a unique example of tRNA-dependent regulation at the transcriptional level.


Asunto(s)
Anticodón/metabolismo , Clostridium acetobutylicum/metabolismo , ARN Bacteriano/metabolismo , ARN de Transferencia de Asparagina/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , Riboswitch/fisiología , Anticodón/química , Anticodón/genética , Asparagina/biosíntesis , Asparagina/genética , Clostridium acetobutylicum/química , Clostridium acetobutylicum/genética , Ácido Glutámico/biosíntesis , Ácido Glutámico/genética , ARN Bacteriano/química , ARN Bacteriano/genética , ARN de Transferencia de Asparagina/química , ARN de Transferencia de Asparagina/genética , ARN de Transferencia de Ácido Glutámico/química , ARN de Transferencia de Ácido Glutámico/genética
18.
Nucleic Acids Res ; 41(18): 8615-27, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23877245

RESUMEN

Although the DNA methyltransferase 2 family is highly conserved during evolution and recent reports suggested a dual specificity with stronger activity on transfer RNA (tRNA) than DNA substrates, the biological function is still obscure. We show that the Dictyostelium discoideum Dnmt2-homologue DnmA is an active tRNA methyltransferase that modifies C38 in tRNA(Asp(GUC)) in vitro and in vivo. By an ultraviolet-crosslinking and immunoprecipitation approach, we identified further DnmA targets. This revealed specific tRNA fragments bound by the enzyme and identified tRNA(Glu(CUC/UUC)) and tRNA(Gly(GCC)) as new but weaker substrates for both human Dnmt2 and DnmA in vitro but apparently not in vivo. Dnmt2 enzymes form transient covalent complexes with their substrates. The dynamics of complex formation and complex resolution reflect methylation efficiency in vitro. Quantitative PCR analyses revealed alterations in dnmA expression during development, cell cycle and in response to temperature stress. However, dnmA expression only partially correlated with tRNA methylation in vivo. Strikingly, dnmA expression in the laboratory strain AX2 was significantly lower than in the NC4 parent strain. As expression levels and binding of DnmA to a target in vivo are apparently not necessarily accompanied by methylation, we propose an additional biological function of DnmA apart from methylation.


Asunto(s)
Dictyostelium/enzimología , Proteínas Protozoarias/metabolismo , ARNt Metiltransferasas/metabolismo , Ciclo Celular , Respuesta al Choque por Frío , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Dictyostelium/genética , Dictyostelium/crecimiento & desarrollo , Regulación de la Expresión Génica , Humanos , Metilación , Proteínas Protozoarias/genética , ARN de Transferencia de Aspártico/química , ARN de Transferencia de Aspártico/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Glicerina/metabolismo , Transcripción Genética , ARNt Metiltransferasas/genética
19.
Nucleic Acids Res ; 41(1): 667-76, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23161686

RESUMEN

In the yeast Saccharomyces cerevisiae, the aminoacyl-tRNA synthetases (aaRS) GluRS and MetRS form a complex with the auxiliary protein cofactor Arc1p. The latter binds the N-terminal domains of both synthetases increasing their affinity for the transfer-RNA (tRNA) substrates tRNA(Met) and tRNA(Glu). Until now, structural information was available only on the enzymatic domains of the individual aaRSs but not on their complexes with associated cofactors. We have analysed the yeast Arc1p-complexes in solution by small-angle X-ray scattering (SAXS). The ternary complex of MetRS and GluRS with Arc1p, displays a peculiar extended star-like shape, implying possible flexibility of the complex. We reconstituted in vitro a pentameric complex and demonstrated by electrophoretic mobility shift assay that the complex is active and contains tRNA(Met) and tRNA(Glu), in addition to the three protein partners. SAXS reveals that binding of the tRNAs leads to a dramatic compaction of the pentameric complex compared to the ternary one. A hybrid low-resolution model of the pentameric complex is constructed rationalizing the compaction effect by the interactions of negatively charged tRNA backbones with the positively charged tRNA-binding domains of the synthetases.


Asunto(s)
Glutamato-ARNt Ligasa/química , Metionina-ARNt Ligasa/química , ARN de Transferencia de Ácido Glutámico/química , ARN de Transferencia de Metionina/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Ensayo de Cambio de Movilidad Electroforética , Glutamato-ARNt Ligasa/metabolismo , Metionina-ARNt Ligasa/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Metionina/metabolismo , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
20.
Nucleic Acids Res ; 40(22): 11648-58, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23074192

RESUMEN

The fission yeast Schizosaccharomyces pombe carries a cytosine 5-methyltransferase homolog of the Dnmt2 family (termed pombe methyltransferase 1, Pmt1), but contains no detectable DNA methylation. Here, we found that Pmt1, like other Dnmt2 homologs, has in vitro methylation activity on cytosine 38 of tRNA(Asp) and, to a lesser extent, of tRNA(Glu), despite the fact that it contains a non-consensus residue in catalytic motif IV as compared with its homologs. In vivo tRNA methylation also required Pmt1. Unexpectedly, however, its in vivo activity showed a strong dependence on the nutritional status of the cell because Pmt1-dependent tRNA methylation was induced in cells grown in the presence of peptone or with glutamate as a nitrogen source. Furthermore, this induction required the serine/threonine kinase Sck2, but not the kinases Sck1, Pka1 or Tor1 and was independent of glucose signaling. Taken together, this work reveals a novel connection between nutrient signaling and tRNA methylation that thus may link tRNA methylation to processes downstream of nutrient signaling like ribosome biogenesis and translation initiation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , ARNt Metiltransferasas/metabolismo , Citosina/metabolismo , Metilación , Nitrógeno/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , ARN de Transferencia de Aspártico/química , ARN de Transferencia de Aspártico/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA