Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Commun ; 10(1): 2640, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201334

RESUMEN

One of the responses to stress by eukaryotic cells is the down-regulation of protein synthesis by phosphorylation of translation initiation factor eIF2. Phosphorylation results in low availability of the eIF2 ternary complex (eIF2-GTP-tRNAi) by affecting the interaction of eIF2 with its GTP-GDP exchange factor eIF2B. We have determined the cryo-EM structure of yeast eIF2B in complex with phosphorylated eIF2 at an overall resolution of 4.2 Å. Two eIF2 molecules bind opposite sides of an eIF2B hetero-decamer through eIF2α-D1, which contains the phosphorylated Ser51. eIF2α-D1 is mainly inserted between the N-terminal helix bundle domains of δ and α subunits of eIF2B. Phosphorylation of Ser51 enhances binding to eIF2B through direct interactions of phosphate groups with residues in eIF2Bα and indirectly by inducing contacts of eIF2α helix 58-63 with eIF2Bδ leading to a competition with Met-tRNAi.


Asunto(s)
Factor 2B Eucariótico de Iniciación/ultraestructura , Factor 2 Eucariótico de Iniciación/ultraestructura , Biosíntesis de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/ultraestructura , Microscopía por Crioelectrón , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/metabolismo , Guanosina Difosfato/metabolismo , Modelos Moleculares , Fosforilación/fisiología , Unión Proteica/fisiología , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
2.
Nat Commun ; 10(1): 2136, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086188

RESUMEN

Protein synthesis in eukaryotes is controlled by signals and stresses via a common pathway, called the integrated stress response (ISR). Phosphorylation of the translation initiation factor eIF2 alpha at a conserved serine residue mediates translational control at the ISR core. To provide insight into the mechanism of translational control we have determined the structures of eIF2 both in phosphorylated and unphosphorylated forms bound with its nucleotide exchange factor eIF2B by electron cryomicroscopy. The structures reveal that eIF2 undergoes large rearrangements to promote binding of eIF2α to the regulatory core of eIF2B comprised of the eIF2B alpha, beta and delta subunits. Only minor differences are observed between eIF2 and eIF2αP binding to eIF2B, suggesting that the higher affinity of eIF2αP for eIF2B drives translational control. We present a model for controlled nucleotide exchange and initiator tRNA binding to the eIF2/eIF2B complex.


Asunto(s)
Factor 2B Eucariótico de Iniciación/ultraestructura , Factor 2 Eucariótico de Iniciación/ultraestructura , ARN de Transferencia de Metionina/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Simulación por Computador , Microscopía por Crioelectrón , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/metabolismo , Modelos Moleculares , Nucleótidos/metabolismo , Fosforilación/fisiología , Unión Proteica/fisiología , Biosíntesis de Proteínas/fisiología , ARN de Transferencia de Metionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , eIF-2 Quinasa/metabolismo
3.
Nature ; 560(7717): 263-267, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089917

RESUMEN

Mitochondria maintain their own specialized protein synthesis machinery, which in mammals is used exclusively for the synthesis of the membrane proteins responsible for oxidative phosphorylation1,2. The initiation of protein synthesis in mitochondria differs substantially from bacterial or cytosolic translation systems. Mitochondrial translation initiation lacks initiation factor 1, which is essential in all other translation systems from bacteria to mammals3,4. Furthermore, only one type of methionyl transfer RNA (tRNAMet) is used for both initiation and elongation4,5, necessitating that the initiation factor specifically recognizes the formylated version of tRNAMet (fMet-tRNAMet). Lastly, most mitochondrial mRNAs do not possess 5' leader sequences to promote mRNA binding to the ribosome2. There is currently little mechanistic insight into mammalian mitochondrial translation initiation, and it is not clear how mRNA engagement, initiator-tRNA recruitment and start-codon selection occur. Here we determine the cryo-EM structure of the complete translation initiation complex from mammalian mitochondria at 3.2 Å. We describe the function of an additional domain insertion that is present in the mammalian mitochondrial initiation factor 2 (mtIF2). By closing the decoding centre, this insertion stabilizes the binding of leaderless mRNAs and induces conformational changes in the rRNA nucleotides involved in decoding. We identify unique features of mtIF2 that are required for specific recognition of fMet-tRNAMet and regulation of its GTPase activity. Finally, we observe that the ribosomal tunnel in the initiating ribosome is blocked by insertion of the N-terminal portion of mitochondrial protein mL45, which becomes exposed as the ribosome switches to elongation mode and may have an additional role in targeting of mitochondrial ribosomes to the protein-conducting pore in the inner mitochondrial membrane.


Asunto(s)
Microscopía por Crioelectrón , Mamíferos , Mitocondrias/ultraestructura , Iniciación de la Cadena Peptídica Traduccional , Animales , Codón Iniciador/genética , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/ultraestructura , Mitocondrias/química , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Modelos Moleculares , ARN Mitocondrial/química , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN Mitocondrial/ultraestructura , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/ultraestructura
4.
Nature ; 455(7211): 416-20, 2008 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-18758445

RESUMEN

Translation initiation, the rate-limiting step of the universal process of protein synthesis, proceeds through sequential, tightly regulated steps. In bacteria, the correct messenger RNA start site and the reading frame are selected when, with the help of initiation factors IF1, IF2 and IF3, the initiation codon is decoded in the peptidyl site of the 30S ribosomal subunit by the fMet-tRNA(fMet) anticodon. This yields a 30S initiation complex (30SIC) that is an intermediate in the formation of the 70S initiation complex (70SIC) that occurs on joining of the 50S ribosomal subunit to the 30SIC and release of the initiation factors. The localization of IF2 in the 30SIC has proved to be difficult so far using biochemical approaches, but could now be addressed using cryo-electron microscopy and advanced particle separation techniques on the basis of three-dimensional statistical analysis. Here we report the direct visualization of a 30SIC containing mRNA, fMet-tRNA(fMet) and initiation factors IF1 and GTP-bound IF2. We demonstrate that the fMet-tRNA(fMet) is held in a characteristic and precise position and conformation by two interactions that contribute to the formation of a stable complex: one involves the transfer RNA decoding stem which is buried in the 30S peptidyl site, and the other occurs between the carboxy-terminal domain of IF2 and the tRNA acceptor end. The structure provides insights into the mechanism of 70SIC assembly and rationalizes the rapid activation of GTP hydrolysis triggered on 30SIC-50S joining by showing that the GTP-binding domain of IF2 would directly face the GTPase-activated centre of the 50S subunit.


Asunto(s)
Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Ribosomas/ultraestructura , Thermus thermophilus/enzimología , Thermus thermophilus/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Factor 1 Procariótico de Iniciación/química , Factor 1 Procariótico de Iniciación/genética , Factor 1 Procariótico de Iniciación/metabolismo , Factor 1 Procariótico de Iniciación/ultraestructura , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/ultraestructura , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/ultraestructura , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/química , Thermus thermophilus/genética
5.
Biopolymers ; 68(2): 223-33, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12548625

RESUMEN

Cryoelectron microscopy has made a number of significant contributions to our understanding of the translation process. The method of single-particle reconstruction is particularly well suited for the study of the dynamics of ribosome-ligand interactions. This review follows the events of the functional cycle and discusses the findings in the context provided by the recently published x-ray structures.


Asunto(s)
ARN de Transferencia de Metionina/ultraestructura , Ribosomas/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , ARN Ribosómico 16S/ultraestructura , ARN de Transferencia/ultraestructura
6.
Structure ; 8(9): 937-48, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10986461

RESUMEN

BACKGROUND: This study addresses the general problem of dividing a density map of a nucleic-acid-protein complex obtained by cryo-electron microscopy (cryo-EM) or X-ray crystallography into its two components. When the resolution of the density map approaches approximately 3 A it is generally possible to interpret its shape (i. e., the envelope obtained for a standard choice of threshold) in terms of molecular structure, and assign protein and nucleic acid elements on the basis of their known sequences. The interpretation of low-resolution maps in terms of proteins and nucleic acid elements of known structure is of increasing importance in the study of large macromolecular complexes, but such analyses are difficult. RESULTS: Here we show that it is possible to separate proteins from nucleic acids in a cryo-EM density map, even at 11.5 A resolution. This is achieved by analysing the (continuous-valued) densities using the difference in scattering density between protein and nucleic acids, the contiguity constraints that the image of any nucleic acid molecule must obey, and the knowledge of the molecular volumes of all proteins. CONCLUSIONS: The new method, when applied to an 11.5 A cryo-EM map of the Escherichia coli 70S ribosome, reproduces boundary assignments between rRNA and proteins made from higher-resolution X-ray maps of the ribosomal subunits with a high degree of accuracy. Plausible predictions for the positions of as yet unassigned proteins and RNA components are also possible. One of the conclusions derived from this separation is that 23S rRNA is solely responsible for the catalysis of peptide bond formation. Application of the separation method to any nucleoprotein complex appears feasible.


Asunto(s)
Escherichia coli/ultraestructura , ARN Ribosómico/ultraestructura , Proteínas Ribosómicas/ultraestructura , Ribosomas/ultraestructura , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Conformación Proteica , Estructura Cuaternaria de Proteína , ARN Bacteriano/ultraestructura , ARN Ribosómico/química , ARN Ribosómico 16S/química , ARN Ribosómico 16S/ultraestructura , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/ultraestructura , Proteínas Ribosómicas/química
7.
Cell ; 100(5): 537-49, 2000 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-10721991

RESUMEN

Over 73,000 projections of the E. coli ribosome bound with formyl-methionyl initiator tRNAf(Met) were used to obtain an 11.5 A cryo-electron microscopy map of the complex. This map allows identification of RNA helices, peripheral proteins, and intersubunit bridges. Comparison of double-stranded RNA regions and positions of proteins identified in both cryo-EM and X-ray maps indicates good overall agreement but points to rearrangements of ribosomal components required for the subunit association. Fitting of known components of the 50S stalk base region into the map defines the architecture of the GTPase-associated center and reveals a major change in the orientation of the alpha-sarcin-ricin loop. Analysis of the bridging connections between the subunits provides insight into the dynamic signaling mechanism between the ribosomal subunits.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli/ultraestructura , Ribosomas/ultraestructura , Proteínas Bacterianas/ultraestructura , GTP Fosfohidrolasas/ultraestructura , Procesamiento de Imagen Asistido por Computador , Sustancias Macromoleculares , Factor G de Elongación Peptídica/ultraestructura , ARN Bacteriano/ultraestructura , ARN Ribosómico/ultraestructura , ARN de Transferencia de Metionina/ultraestructura , Proteínas Ribosómicas/ultraestructura , Soluciones
8.
Cell ; 100(3): 301-9, 2000 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-10676812

RESUMEN

Elongation factor (EF) G promotes tRNA translocation on the ribosome. We present three-dimensional reconstructions, obtained by cryo-electron microscopy, of EF-G-ribosome complexes before and after translocation. In the pretranslocation state, domain 1 of EF-G interacts with the L7/12 stalk on the 50S subunit, while domain 4 contacts the shoulder of the 30S subunit in the region where protein S4 is located. During translocation, EF-G experiences an extensive reorientation, such that, after translocation, domain 4 reaches into the decoding center. The factor assumes different conformations before and after translocation. The structure of the ribosome is changed substantially in the pretranslocation state, in particular at the head-to-body junction in the 30S subunit, suggesting a possible mechanism of translocation.


Asunto(s)
Movimiento , Extensión de la Cadena Peptídica de Translación , Factor G de Elongación Peptídica/ultraestructura , ARN de Transferencia/ultraestructura , Ribosomas/ultraestructura , Ácido Fusídico/farmacología , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Modelos Estructurales , Conformación Molecular , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , ARN de Transferencia de Metionina/ultraestructura , ARN de Transferencia de Fenilalanina/ultraestructura
9.
J Biol Chem ; 274(13): 8723-9, 1999 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-10085112

RESUMEN

The effect of buffer conditions on the binding position of tRNA on the Escherichia coli 70 S ribosome have been studied by means of three-dimensional (3D) cryoelectron microscopy. Either deacylated tRNAfMet or fMet-tRNAfMet were bound to the 70 S ribosomes, which were programmed with a 46-nucleotide mRNA having AUG codon in the middle, under two different buffer conditions (conventional buffer: containing Tris and higher Mg2+ concentration [10-15 mM]; and polyamine buffer: containing Hepes, lower Mg2+ concentration [6 mM], and polyamines). Difference maps, obtained by subtracting 3D maps of naked control ribosome in the corresponding buffer from the 3D maps of tRNA.ribosome complexes, reveal the distinct locations of tRNA on the ribosome. The position of deacylated tRNAfMet depends on the buffer condition used, whereas that of fMet-tRNAfMet remains the same in both buffer conditions. The acylated tRNA binds in the classical P site, whereas deacylated tRNA binds mostly in an intermediate P/E position under the conventional buffer condition and mostly in the position corresponding to the classical P site, i. e. in the P/P state, under the polyamine buffer conditions.


Asunto(s)
ARN de Transferencia/ultraestructura , Ribosomas/ultraestructura , Acilación , Tampones (Química) , Microscopía por Crioelectrón , Escherichia coli/genética , Modelos Moleculares , Poli U/genética , ARN Mensajero/genética , ARN de Transferencia de Metionina/ultraestructura , Difracción de Rayos X
10.
J Mol Biol ; 280(1): 103-16, 1998 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-9653034

RESUMEN

Cryo-electron microscopy of the ribosome in different binding states with mRNA and tRNA helps unravel the different steps of protein synthesis. Using over 29,000 projections of a ribosome complex in single-particle form, a three-dimensional map of the Escherichia coli 70 S ribosome was obtained in which a single site, the P site, is occupied by fMet-tRNAfMet as directed by an AUG codon containing mRNA. The superior resolution of this three-dimensional map, 14.9 A, has made it possible to fit the tRNA X-ray crystal structure directly and unambiguously into the electron density, thus determining the locations of anticodon-codon interaction and peptidyltransferase center of the ribosome. Furthermore, at this resolution, one of the distinctly visible domains corresponding to a ribosomal protein, L1, closely matches with its X-ray structure.


Asunto(s)
Proteínas Bacterianas/química , Conformación de Ácido Nucleico , Conformación Proteica , ARN de Transferencia de Metionina/ultraestructura , Proteínas Ribosómicas/química , Ribosomas/ultraestructura , Proteínas Bacterianas/metabolismo , Sitios de Unión , Crioultramicrotomía , Cristalografía por Rayos X , Escherichia coli/genética , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Modelos Moleculares , Péptidos , ARN de Transferencia/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Thermus thermophilus/metabolismo
11.
Proc Natl Acad Sci U S A ; 91(24): 11467-71, 1994 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-7972085

RESUMEN

An important step in initiation of protein synthesis in Escherichia coli is the specific formylation of the initiator methionyl-tRNA (Met-tRNA) by Met-tRNA transformylase. The determinants for formylation are clustered mostly in the acceptor stem of the initiator tRNA. Here we use NMR spectroscopy to characterize the conformation of two RNA microhelices, which correspond to the acceptor stem of mutants of E. coli initiator tRNA and which differ only at the position corresponding to the "discriminator base" in tRNAs. One of the mutant tRNAs is an extremely poor substrate for Met-tRNA transformylase, whereas the other one is a much better substrate. We show that one microhelix forms a structure in which its 3'-ACCA sequence extends the stacking of the acceptor stem. The other microhelix forms a structure in which its 3'-UCCA sequence folds back such that the 3'-terminal A22 is in close proximity to G1. These results highlight the importance of the discriminator base in determining tRNA conformation at the 3' end. They also suggest a correlation between tRNA structure at the 3' end and its recognition by Met-tRNA transformylase.


Asunto(s)
ARN de Transferencia de Metionina/ultraestructura , Secuencia de Bases , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Iniciación de la Cadena Peptídica Traduccional , Relación Estructura-Actividad
12.
FEBS Lett ; 269(1): 60-4, 1990 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-2117559

RESUMEN

A 75-unit long oligoribonucleotide corresponding to the sequence of the Saccharomyces cerevisiae initiator tRNA was synthesized chemically. The crude RNA was purified, and the sequence was verified by RNA sequencing techniques. A particularly useful purification step involved hydrophobic chromatography on BND-cellulose. The purified RNA could be aminoacylated to 28% of a bona fide initiator tRNA(Met) sample and threonylated to 76% of the level observed with native tRNA(fMet) from E. coli.


Asunto(s)
ARN de Transferencia Aminoácido-Específico/síntesis química , ARN de Transferencia de Metionina/síntesis química , Secuencia de Bases , Enlace de Hidrógeno , Metionina/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/ultraestructura , Saccharomyces cerevisiae/genética , Treonina/metabolismo
13.
Eur J Biochem ; 186(1-2): 87-93, 1989 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-2480897

RESUMEN

Stepwise, solid-phase chemical synthesis has provided long RNA and DNA polymers related to the sequence of Escherichia coli tRNA(fMet). The 34-ribonucleotide oligomer corresponding to the sequence of the 5'-half tRNA molecule has been synthesized and then characterized by gel purification, terminal nucleotide determinations and sequence analysis. This 34-nucleotide oligomer serves as an acceptor in the RNA-ligase-catalyzed reaction with a phosphorylated 43-ribonucleotide oligomer corresponding to the sequence of the 3'-half molecule of tRNA(fMet). The DNA molecule having the sequence of tRNA(fMet) is a 76-deoxyribonucleotide oligomer with a 3'-terminal riboadenosine residue and all U residues replaced by T. These polymers have been compared with an oligodeoxyribonucleotide lacking all 2'-hydroxyl groups except for the 3'-terminal 2'-OH, an oligoribonucleotide lacking modified nucleosides and E. coli tRNA(fMet). The all-RNA 77-nucleotide oligomer can be aminoacylated by E. coli methionyl-tRNA synthetase preparation from E. coli with methionine and threonylated in the A37 position using a yeast extract. In agreement with work by Khan and Roe using tDNA(Phe) and tDNA(Lys), the rA77-DNA(fMet) can be aminoacylated, and preliminary evidence suggests that it can be threonylated to a small extent. Kinetic data support the notion that aminoacylation of tRNA(fMet) does not depend on the presence of 2'-hydroxyl groups with the exception of that in the 3'-terminal nucleotide.


Asunto(s)
Secuencia de Bases , ADN Bacteriano/síntesis química , Escherichia coli/genética , ARN Bacteriano/síntesis química , ARN de Transferencia Aminoácido-Específico/ultraestructura , ARN de Transferencia de Metionina/ultraestructura , Homología de Secuencia de Ácido Nucleico , Moldes Genéticos , Acilación , ADN Bacteriano/fisiología , ADN Bacteriano/ultraestructura , ARN Bacteriano/fisiología , ARN Bacteriano/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA