Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
J Biotechnol ; 393: 91-99, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39067577

RESUMEN

Genetic code expansion technology allows the incorporation of unnatural amino acids (UAAs) into proteins, which is useful in protein engineering, synthetic biology, and gene therapy. Despite its potential applications in various species, filamentous fungi remain unexplored. This study aims to address this gap by developing these techniques in Aspergillus nidulans. We introduced an amber stop codon into a specific sequence within the reporter gene expressed in A. nidulans and replaced the anticodon of the fungal tRNATyr with CUA. This resulted in the synthesis of the target protein, confirming the occurrence of amber suppression in the fungus. When exogenous E. coli tRNATyrCUA (Ec. tRNATyrCUA) and E. coli tyrosyl-tRNA (Ec.TyrRS) were introduced into A. nidulans, they successfully synthesized the target protein via amber suppression and were shown to be orthogonal to the fungal translation system. By replacing the wild-type Ec.TyrRS with a mutant with a higher affinity for the UAA O-methyl-L-tyrosine, the fungal system was able to initiate the synthesis of the UAA-labeled protein (UAA-protein). We further increased the expression level of the UAA-protein through several rational modifications. The successful development of a genetic code expansion technique for A. nidulans has introduced a potentially valuable approach to the study of fungal protein structure and function.


Asunto(s)
Aminoácidos , Aspergillus nidulans , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Código Genético , Ingeniería de Proteínas/métodos , Codón de Terminación/genética , Codón/genética , Escherichia coli/genética , Escherichia coli/metabolismo , ARN de Transferencia de Tirosina/genética , ARN de Transferencia de Tirosina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
Nucleic Acids Res ; 49(22): 12986-12999, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34883512

RESUMEN

Every type of nucleic acid in cells undergoes programmed chemical post-transcriptional modification. Generally, modification enzymes use substrates derived from intracellular metabolism, one exception is queuine (q)/queuosine (Q), which eukaryotes obtain from their environment; made by bacteria and ultimately taken into eukaryotic cells via currently unknown transport systems. Here, we use a combination of molecular, cell biology and biophysical approaches to show that in Trypanosoma brucei tRNA Q levels change dynamically in response to concentration variations of a sub-set of amino acids in the growth media. Most significant were variations in tyrosine, which at low levels lead to increased Q content for all the natural tRNAs substrates of tRNA-guanine transglycosylase (TGT). Such increase results from longer nuclear dwell time aided by retrograde transport following cytoplasmic splicing. In turn high tyrosine levels lead to rapid decrease in Q content. Importantly, the dynamic changes in Q content of tRNAs have negligible effects on global translation or growth rate but, at least, in the case of tRNATyr it affected codon choice. These observations have implications for the occurrence of other tunable modifications important for 'normal' growth, while connecting the intracellular localization of modification enzymes, metabolites and tRNAs to codon selection and implicitly translational output.


Asunto(s)
Codón/metabolismo , Nucleósido Q/metabolismo , Nutrientes/metabolismo , ARN de Transferencia/metabolismo , Trypanosoma brucei brucei/metabolismo , Aminoácidos/metabolismo , Cromatografía Liquida/métodos , Codón/genética , Guanina/análogos & derivados , Guanina/metabolismo , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Empalme del ARN , ARN de Transferencia/genética , ARN de Transferencia de Tirosina/genética , ARN de Transferencia de Tirosina/metabolismo , Espectrometría de Masas en Tándem/métodos , Trypanosoma brucei brucei/genética , Tirosina/metabolismo
3.
Biochem Biophys Res Commun ; 575: 90-95, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34461441

RESUMEN

tRNATyr of Nanoarchaeum equitans has a remarkable feature with an extra guanosine residue at the 5'-terminus. However, the N. equitans tRNATyr mutant without extra guanosine at the 5'-end was tyrosylated by tyrosyl-tRNA synthase (TyrRS). We solved the crystal structure of N. equitans TyrRS at 2.80 Å resolution. By comparing the present solved structure with the complex structures TyrRS with tRNATyr of Thermus thermophilus and Methanocaldococcus jannaschii, an arginine substitution mutant of N. equitans TyrRS at Ile200 (I200R), which is the putative closest candidate to the 5'-phosphate of C1 of N. equitans tRNATyr, was prepared. The I200R mutant tyrosylated not only wild-type tRNATyr but also the tRNA without the G-1 residue. Further tyrosylation analysis revealed that the second base of the anticodon (U35), discriminator base (A73), and C1:G72 base pair are strong recognition sites.


Asunto(s)
Proteínas Arqueales/química , Cristalografía por Rayos X/métodos , Guanosina/química , Nanoarchaeota/enzimología , ARN de Transferencia de Tirosina/química , Tirosina-ARNt Ligasa/química , Aminoacilación , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Modelos Moleculares , Elementos Estructurales de las Proteínas , ARN de Transferencia de Tirosina/genética , ARN de Transferencia de Tirosina/metabolismo , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo
4.
Nucleic Acids Res ; 49(9): 5202-5215, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34009360

RESUMEN

Regulation of translation via stop codon readthrough (SC-RT) expands not only tissue-specific but also viral proteomes in humans and, therefore, represents an important subject of study. Understanding this mechanism and all involved players is critical also from a point of view of prospective medical therapies of hereditary diseases caused by a premature termination codon. tRNAs were considered for a long time to be just passive players delivering amino acid residues according to the genetic code to ribosomes without any active regulatory roles. In contrast, our recent yeast work identified several endogenous tRNAs implicated in the regulation of SC-RT. Swiftly emerging studies of human tRNA-ome also advocate that tRNAs have unprecedented regulatory potential. Here, we developed a universal U6 promotor-based system expressing various human endogenous tRNA iso-decoders to study consequences of their increased dosage on SC-RT employing various reporter systems in vivo. This system combined with siRNA-mediated downregulations of selected aminoacyl-tRNA synthetases demonstrated that changing levels of human tryptophan and tyrosine tRNAs do modulate efficiency of SC-RT. Overall, our results suggest that tissue-to-tissue specific levels of selected near-cognate tRNAs may have a vital potential to fine-tune the final landscape of the human proteome, as well as that of its viral pathogens.


Asunto(s)
Codón de Terminación , Biosíntesis de Proteínas , ARN de Transferencia de Triptófano/metabolismo , ARN de Transferencia de Tirosina/metabolismo , Línea Celular , Genes Reporteros , Humanos , Mutación , Plásmidos/genética , Regiones Promotoras Genéticas , Proteínas/genética , ARN Nuclear Pequeño/genética , ARN de Transferencia de Triptófano/genética , ARN de Transferencia de Tirosina/genética , Triptófano-ARNt Ligasa/genética , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética , Tirosina-ARNt Ligasa/genética , Proteínas Virales/genética
5.
Nat Chem Biol ; 16(9): 964-972, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32514182

RESUMEN

Chemical modifications of the nucleosides that comprise transfer RNAs are diverse. However, the structure, location and extent of modifications have been systematically charted in very few organisms. Here, we describe an approach in which rapid prediction of modified sites through reverse transcription-derived signatures in high-throughput transfer RNA-sequencing (tRNA-seq) data is coupled with identification of tRNA modifications through RNA mass spectrometry. Comparative tRNA-seq enabled prediction of several Vibrio cholerae modifications that are absent from Escherichia coli and also revealed the effects of various environmental conditions on V. cholerae tRNA modification. Through RNA mass spectrometric analyses, we showed that two of the V. cholerae-specific reverse transcription signatures reflected the presence of a new modification (acetylated acp3U (acacp3U)), while the other results from C-to-Ψ RNA editing, a process not described before. These findings demonstrate the utility of this approach for rapid surveillance of tRNA modification profiles and environmental control of tRNA modification.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Vibrio cholerae/genética , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Cólera/microbiología , Citidina/genética , Escherichia coli/genética , Espectrometría de Masas/métodos , Edición de ARN , ARN de Transferencia/química , ARN de Transferencia de Tirosina/genética , ARN de Transferencia de Tirosina/metabolismo , Conejos , Vibrio cholerae/patogenicidad
6.
ACS Chem Biol ; 15(2): 562-574, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31994864

RESUMEN

Post-translational modifications (PTMs) of protein tyrosine (Tyr) residues can serve as a molecular fingerprint of exposure to distinct oxidative pathways and are observed in abnormally high abundance in the majority of human inflammatory pathologies. Reactive oxidants generated during inflammation include hypohalous acids and nitric oxide-derived oxidants, which oxidatively modify protein Tyr residues via halogenation and nitration, respectively, forming 3-chloroTyr, 3-bromoTyr, and 3-nitroTyr. Traditional methods for generating oxidized or halogenated proteins involve nonspecific chemical reactions that result in complex protein mixtures, making it difficult to ascribe observed functional changes to a site-specific PTM or to generate antibodies sensitive to site-specific oxidative PTMs. To overcome these challenges, we generated a system to efficiently and site-specifically incorporate chloroTyr, bromoTyr, and iodoTyr, and to a lesser extent nitroTyr, into proteins in both bacterial and eukaryotic expression systems, relying on a novel amber stop codon-suppressing mutant synthetase (haloTyrRS)/tRNA pair derived from the Methanosarcina barkeri pyrrolysine synthetase system. We used this system to study the effects of oxidation on HDL-associated protein paraoxonase 1 (PON1), an enzyme with important antiatherosclerosis and antioxidant functions. PON1 forms a ternary complex with HDL and myeloperoxidase (MPO) in vivo. MPO oxidizes PON1 at tyrosine 71 (Tyr71), resulting in a loss of PON1 enzymatic function, but the extent to which chlorination or nitration of Tyr71 contributes to this loss of activity is unclear. To better understand this biological process and to demonstrate the utility of our GCE system, we generated PON1 site-specifically modified at Tyr71 with chloroTyr and nitroTyr in Escherichia coli and mammalian cells. We demonstrate that either chlorination or nitration of Tyr71 significantly reduces PON1 enzymatic activity. This tool for site-specific incorporation of halotyrosine will be critical to understanding how exposure of proteins to hypohalous acids at sites of inflammation alters protein function and cellular physiology. In addition, it will serve as a powerful tool for generating antibodies that can recognize site-specific oxidative PTMs.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , ARN de Transferencia de Tirosina/genética , Tirosina-ARNt Ligasa/genética , Tirosina/análogos & derivados , Proteínas Arqueales/genética , Arildialquilfosfatasa/química , Arildialquilfosfatasa/genética , Catálisis , Escherichia coli/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Methanosarcina barkeri/enzimología , Oxidación-Reducción , Ingeniería de Proteínas , Procesamiento Proteico-Postraduccional , Tirosina/genética
7.
Genomics ; 111(6): 1183-1191, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30223010

RESUMEN

Sarcoptes scabiei (Acari: Sarcoptidae) causes a common contagious skin disease that affects many mammals. Here, the complete mitochondrial genome of a mite, S. scabiei var. nyctereutis, from Japanese wild raccoon dogs was analyzed. The 13,837bp circular genome contained 13 protein-coding genes, two rRNA genes, and 22 tRNA genes. For the first time, two tRNAs (alanine and tyrosine), that were thought to be absent in scabies mites from other animals, were predicted to have short, non-cloverleaf structures by in silico annotation and detected by RT-PCR, sequencing, and northern analysis. The mitochondrial genome structure of S. scabiei is similar to that of Psoroptes cuniculi and Dermatophagoides farinae. While small and unusual tRNA genes seem to be common among acariform mites, further experimental evidence for their presence is needed. Furthermore, through an analysis of the cox1 gene, we have provided new evidence to confirm the transmission of this mite between different animal hosts.


Asunto(s)
Genoma Mitocondrial , ARN de Transferencia de Alanina/genética , ARN de Transferencia de Tirosina/genética , Sarcoptes scabiei/genética , Animales , Filogenia , ARN de Transferencia de Alanina/química , ARN de Transferencia de Tirosina/química , Perros Mapache/parasitología , Sarcoptes scabiei/clasificación
8.
PLoS One ; 13(12): e0209805, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30592748

RESUMEN

The life cycle of Plasmodium falciparum, the agent responsible for malaria, depends on both cytosolic and apicoplast translation fidelity. Apicoplast aminoacyl-tRNA synthetases (aaRS) are bacterial-like enzymes devoted to organellar tRNA aminoacylation. They are all encoded by the nuclear genome and are translocated into the apicoplast only after cytosolic biosynthesis. Apicoplast aaRSs contain numerous idiosyncratic sequence insertions: An understanding of the roles of these insertions has remained elusive and they hinder efforts to heterologously overexpress these proteins. Moreover, the A/T rich content of the Plasmodium genome leads to A/U rich apicoplast tRNA substrates that display structural plasticity. Here, we focus on the P. falciparum apicoplast tyrosyl-tRNA synthetase (Pf-apiTyrRS) and its cognate tRNATyr substrate (Pf-apitRNATyr). Cloning and expression strategies used to obtain an active and functional recombinant Pf-apiTyrRS are reported. Functional analyses established that only three weak identity elements in the apitRNATyr promote specific recognition by the cognate Pf-apiTyrRS and that positive identity elements usually found in the tRNATyr acceptor stem are excluded from this set. This finding brings to light an unusual behavior for a tRNATyr aminoacylation system and suggests that Pf-apiTyrRS uses primarily negative recognition elements to direct tyrosylation specificity.


Asunto(s)
Apicoplastos/enzimología , Apicoplastos/metabolismo , Plasmodium falciparum/metabolismo , ARN de Transferencia de Tirosina/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Humanos , Malaria Falciparum/fisiopatología , Plasmodium falciparum/enzimología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN de Transferencia de Tirosina/genética , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo
9.
Nucleic Acids Res ; 46(15): 7831-7843, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30007351

RESUMEN

To develop a system for conditional amino acid misincorporation, we engineered tRNAs in the yeast Saccharomyces cerevisiae to be substrates of the rapid tRNA decay (RTD) pathway, such that they accumulate when RTD is turned off. We used this system to test the effects on growth of a library of tRNASer variants with all possible anticodons, and show that many are lethal when RTD is inhibited and the tRNA accumulates. Using mass spectrometry, we measured serine misincorporation in yeast containing each of six tRNA variants, and for five of them identified hundreds of peptides with serine substitutions at the targeted amino acid sites. Unexpectedly, we found that there is not a simple correlation between toxicity and the level of serine misincorporation; in particular, high levels of serine misincorporation can occur at cysteine residues without obvious growth defects. We also showed that toxic tRNAs can be used as a tool to identify sequence variants that reduce tRNA function. Finally, we generalized this method to another tRNA species, and generated conditionally toxic tRNATyr variants in a similar manner. This method should facilitate the study of tRNA biology and provide a tool to probe the effects of amino acid misincorporation on cellular physiology.


Asunto(s)
Sustitución de Aminoácidos/genética , Biosíntesis de Proteínas/genética , ARN de Transferencia de Serina/genética , ARN de Transferencia de Tirosina/genética , Saccharomyces cerevisiae/metabolismo , Anticodón/genética , Estabilidad del ARN/genética , Saccharomyces cerevisiae/genética , Serina/metabolismo , Tirosina/metabolismo
11.
RNA Biol ; 15(4-5): 528-536, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28901827

RESUMEN

Retrograde transport of tRNAs from the cytoplasm to the nucleus was first described in Saccharomyces cerevisiae and most recently in mammalian systems. Although the function of retrograde transport is not completely clear, it plays a role in the cellular response to changes in nutrient availability. Under low nutrient conditions tRNAs are sent from the cytoplasm to nucleus and presumably remain in storage there until nutrient levels improve. However, in S. cerevisiae tRNA retrograde transport is constitutive and occurs even when nutrient levels are adequate. Constitutive transport is important, at least, for the proper maturation of tRNAPhe, which undergoes cytoplasmic splicing, but requires the action of a nuclear modification enzyme that only acts on a spliced tRNA. A lingering question in retrograde tRNA transport is whether it is relegated to S. cerevisiae and multicellular eukaryotes or alternatively, is a pathway with deeper evolutionary roots. In the early branching eukaryote Trypanosoma brucei, tRNA splicing, like in yeast, occurs in the cytoplasm. In the present report, we have used a combination of cell fractionation and molecular approaches that show the presence of significant amounts of spliced tRNATyr in the nucleus of T. brucei. Notably, the modification enzyme tRNA-guanine transglycosylase (TGT) localizes to the nucleus and, as shown here, is not able to add queuosine (Q) to an intron-containing tRNA. We suggest that retrograde transport is partly the result of the differential intracellular localization of the splicing machinery (cytoplasmic) and a modification enzyme, TGT (nuclear). These findings expand the evolutionary distribution of retrograde transport mechanisms to include early diverging eukaryotes, while highlighting its importance for queuosine biosynthesis.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Pentosiltransferasa/genética , ARN de Transferencia de Tirosina/genética , Trypanosoma brucei brucei/genética , Transporte Activo de Núcleo Celular , Núcleo Celular/genética , Citoplasma/genética , Cinética , Conformación de Ácido Nucleico , Nucleósido Q/metabolismo , Pentosiltransferasa/metabolismo , Empalme del ARN , Transporte de ARN , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Tirosina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trypanosoma brucei brucei/metabolismo
12.
Methods ; 113: 127-131, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27639881

RESUMEN

Amino acid misincorporation during protein synthesis occurs due to misacylation of tRNAs or defects in decoding at the ribosome. While misincorporation of amino acids has been observed in a variety of contexts, less work has been done to directly assess the extent to which specific tRNAs are misacylated in vivo, and the identity of the misacylated amino acid moiety. Here we describe tRNA isoacceptor specific aminoacylation profiling (ISAP), a method to identify and quantify the amino acids attached to a tRNA species in vivo. ISAP allows compilation of aminoacylation profiles for specific isoacceptors tRNAs. To demonstrate the efficacy and broad applicability of ISAP, tRNAPhe and tRNATyr species were isolated from total aminoacyl-tRNA extracted from both yeast and Escherichia coli. Isolated aminoacyl-tRNAs were washed until free of detectable unbound amino acid and subsequently deacylated. Free amino acids from the deacylated fraction were then identified and quantified by mass spectrometry. Using ISAP allowed quantification of the effects of quality control on the accumulation of misacylated tRNA species under different growth conditions.


Asunto(s)
Hibridación de Ácido Nucleico/métodos , Fenilalanina-ARNt Ligasa/metabolismo , Fenilalanina/metabolismo , Aminoacilación de ARN de Transferencia , Tirosina-ARNt Ligasa/metabolismo , Tirosina/metabolismo , Biotina/química , Sondas de ADN/química , Escherichia coli/enzimología , Escherichia coli/genética , Hidrólisis , Espectrometría de Masas , Fenilalanina/aislamiento & purificación , Fenilalanina-ARNt Ligasa/genética , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Tirosina/genética , ARN de Transferencia de Tirosina/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Estreptavidina/química , Tirosina/aislamiento & purificación , Tirosina-ARNt Ligasa/genética
13.
Methods ; 113: 3-12, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27780756

RESUMEN

Aminoacyl-tRNA synthetases play a central role in protein synthesis, catalyzing the attachment of amino acids to their cognate tRNAs. Here, we describe a spectrophotometric assay for tyrosyl-tRNA synthetase in which the Tyr-tRNA product is cleaved, regenerating the tRNA substrate. As tRNA is the limiting substrate in the assay, recycling it substantially increases the sensitivity of the assay while simultaneously reducing its cost. The tRNA aminoacylation reaction is monitored spectrophotometrically by coupling the production of AMP to the conversion of NAD+ to NADH. We have adapted the tyrosyl-tRNA synthetase assay to monitor: (1) aminoacylation of tRNA by l- or d-tyrosine, (2) cyclodipeptide formation by cyclodipeptide synthases, (3) hydrolysis of d-aminoacyl-tRNAs by d-tyrosyl-tRNA deacylase, and (4) post-transfer editing by aminoacyl-tRNA synthetases. All of these assays are continuous and homogenous, making them amenable for use in high-throughput screens of chemical libraries. In the case of the cyclodipeptide synthase, d-tyrosyl-tRNA deacylase, and post-transfer editing assays, the aminoacyl-tRNAs are generated in situ, avoiding the need to synthesize and purify aminoacyl-tRNA substrates prior to performing the assays. Lastly, we describe how the tyrosyl-tRNA synthetase assay can be adapted to monitor the activity of other aminoacyl-tRNA synthetases and how the approach to regenerating the tRNA substrate can be used to increase the sensitivity and decrease the cost of commercially available aminoacyl-tRNA synthetase assays.


Asunto(s)
Adenosina Monofosfato/biosíntesis , Pruebas de Enzimas , ARN de Transferencia de Tirosina/genética , Aminoacilación de ARN de Transferencia , Tirosina-ARNt Ligasa/metabolismo , Tirosina/metabolismo , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Geobacillus stearothermophilus/enzimología , Geobacillus stearothermophilus/genética , Hidrólisis , Cinética , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , NAD/metabolismo , Péptidos Cíclicos/biosíntesis , ARN de Transferencia de Tirosina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sensibilidad y Especificidad , Espectrofotometría , Estereoisomerismo , Tirosina-ARNt Ligasa/genética
14.
J Biol Chem ; 291(42): 22327-22337, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27551044

RESUMEN

Pseudouridine is found in almost all cellular ribonucleic acids (RNAs). Of the multiple characteristics attributed to pseudouridine, making messenger RNAs (mRNAs) highly translatable and non-immunogenic is one such feature that directly implicates this modification in protein synthesis. We report the existence of pseudouridine in the anticodon of Escherichia coli tyrosine transfer RNAs (tRNAs) at position 35. Pseudouridine was verified by multiple detection methods, which include pseudouridine-specific chemical derivatization and gas phase dissociation of RNA during liquid chromatography tandem mass spectrometry (LC-MS/MS). Analysis of total tRNA isolated from E. coli pseudouridine synthase knock-out mutants identified RluF as the enzyme responsible for this modification. Furthermore, the absence of this modification compromises the translational ability of a luciferase reporter gene coding sequence when it is preceded by multiple tyrosine codons. This effect has implications for the translation of mRNAs that are rich in tyrosine codons in bacterial expression systems.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidroliasas/metabolismo , Seudouridina/metabolismo , ARN Bacteriano/metabolismo , ARN de Transferencia de Tirosina/metabolismo , Catálisis , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Técnicas de Silenciamiento del Gen , Hidroliasas/genética , Seudouridina/genética , ARN Bacteriano/genética , ARN de Transferencia de Tirosina/genética
15.
Sci Rep ; 5: 17196, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26597962

RESUMEN

The diversity of protein functions is impacted in significant part by the chemical properties of the twenty amino acids, which are used as building blocks for nearly all proteins. The ability to incorporate unnatural amino acids (UAA) into proteins in a site specific manner can vastly expand the repertoire of protein functions and also allows detailed analysis of protein function. In recent years UAAs have been incorporated in a site-specific manner into proteins in a number of organisms. In nearly all cases, the amber codon is used as a sense codon, and an orthogonal tRNA/aminoacyl-tRNA synthetase (RS) pair is used to generate amber suppressing tRNAs charged with the UAA. In this work, we have developed tools to incorporate the cross-linking amino acid azido-phenylalanine (AzF) through the use of bacterial tRNA(Tyr) and a modified version of TyrRS, AzFRS, in Schizosaccharomyces pombe, which is an attractive model organism for the study of cell behavior and function. We have incorporated AzF into three different proteins. We show that the majority of AzF is modified to amino-phenyl alanine, but protein cross-linking was still observed. These studies set the stage for exploitation of this new technology for the analysis of S. pombe proteins.


Asunto(s)
Azidas/metabolismo , Fenilalanina/análogos & derivados , Schizosaccharomyces/genética , Secuencia de Aminoácidos , Codón de Terminación , Escherichia coli/genética , Fenilalanina/metabolismo , Ingeniería de Proteínas , ARN Bacteriano/genética , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Tirosina/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/biosíntesis , Proteínas de Schizosaccharomyces pombe/genética
16.
Mol Cell ; 52(2): 184-92, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24095278

RESUMEN

In cells, tRNAs are synthesized as precursor molecules bearing extra sequences at their 5' and 3' ends. Some tRNAs also contain introns, which, in archaea and eukaryotes, are cleaved by an evolutionarily conserved endonuclease complex that generates fully functional mature tRNAs. In addition, tRNAs undergo numerous posttranscriptional nucleotide chemical modifications. In Trypanosoma brucei, the single intron-containing tRNA (tRNA(Tyr)GUA) is responsible for decoding all tyrosine codons; therefore, intron removal is essential for viability. Using molecular and biochemical approaches, we show the presence of several noncanonical editing events, within the intron of pre-tRNA(Tyr)GUA, involving guanosine-to-adenosine transitions (G to A) and an adenosine-to-uridine transversion (A to U). The RNA editing described here is required for proper processing of the intron, establishing the functional significance of noncanonical editing with implications for tRNA processing in the deeply divergent kinetoplastid lineage and eukaryotes in general.


Asunto(s)
Intrones/genética , Edición de ARN , Empalme del ARN , ARN de Transferencia de Tirosina/genética , Trypanosoma brucei brucei/genética , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Protozoario/genética , ARN Protozoario/metabolismo , ARN de Transferencia de Tirosina/química , ARN de Transferencia de Tirosina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Trypanosoma brucei brucei/metabolismo
17.
Genetics ; 195(3): 1129-39, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24026098

RESUMEN

Interactions between mitochondrial and nuclear gene products that underlie eukaryotic energy metabolism can cause the fitness effects of mutations in one genome to be conditional on variation in the other genome. In ectotherms, the effects of these interactions are likely to depend upon the thermal environment, because increasing temperature accelerates molecular rates. We find that temperature strongly modifies the pleiotropic phenotypic effects of an incompatible interaction between a Drosophila melanogaster polymorphism in the nuclear-encoded, mitochondrial tyrosyl-transfer (t)RNA synthetase and a D. simulans polymorphism in the mitochondrially encoded tRNA(Tyr). The incompatible mitochondrial-nuclear genotype extends development time, decreases larval survivorship, and reduces pupation height, indicative of decreased energetic performance. These deleterious effects are ameliorated when larvae develop at 16° and exacerbated at warmer temperatures, leading to complete sterility in both sexes at 28°. The incompatible genotype has a normal metabolic rate at 16° but a significantly elevated rate at 25°, consistent with the hypothesis that inefficient energy metabolism extends development in this genotype at warmer temperatures. Furthermore, the incompatibility decreases metabolic plasticity of larvae developed at 16°, indicating that cooler development temperatures do not completely mitigate the deleterious effects of this genetic interaction. Our results suggest that the epistatic fitness effects of metabolic mutations may generally be conditional on the thermal environment. The expression of epistatic interactions in some environments, but not others, weakens the efficacy of selection in removing deleterious epistatic variants from populations and may promote the accumulation of incompatibilities whose fitness effects will depend upon the environment in which hybrids occur.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Drosophila/genética , Drosophila/fisiología , Animales , Secuencia de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , ADN Mitocondrial/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Epistasis Genética , Evolución Molecular , Femenino , Fertilidad/genética , Fertilidad/fisiología , Genes de Insecto , Aptitud Genética , Calor , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , ARN de Transferencia de Tirosina/química , ARN de Transferencia de Tirosina/genética , ARN de Transferencia de Tirosina/metabolismo , Selección Genética , Especificidad de la Especie , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo
18.
Science ; 340(6140): 1577-80, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23812715

RESUMEN

Gene expression in organisms involves many factors and is tightly controlled. Although much is known about the initial phase of transcription by RNA polymerase III (Pol III), the enzyme that synthesizes the majority of RNA molecules in eukaryotic cells, termination is poorly understood. Here, we show that the extensive structure of Pol III-synthesized transcripts dictates the release of elongation complexes at the end of genes. The poly-T termination signal, which does not cause termination in itself, causes catalytic inactivation and backtracking of Pol III, thus committing the enzyme to termination and transporting it to the nearest RNA secondary structure, which facilitates Pol III release. Similarity between termination mechanisms of Pol III and bacterial RNA polymerase suggests that hairpin-dependent termination may date back to the common ancestor of multisubunit RNA polymerases.


Asunto(s)
ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/enzimología , Terminación de la Transcripción Genética , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Poli T/metabolismo , Poli U/metabolismo , ARN Ribosómico 5S/química , ARN Ribosómico 5S/genética , ARN de Transferencia de Tirosina/química , ARN de Transferencia de Tirosina/genética , Saccharomyces cerevisiae/genética
19.
Nature ; 495(7442): 474-80, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23474986

RESUMEN

CLP1 was the first mammalian RNA kinase to be identified. However, determining its in vivo function has been elusive. Here we generated kinase-dead Clp1 (Clp1(K/K)) mice that show a progressive loss of spinal motor neurons associated with axonal degeneration in the peripheral nerves and denervation of neuromuscular junctions, resulting in impaired motor function, muscle weakness, paralysis and fatal respiratory failure. Transgenic rescue experiments show that CLP1 functions in motor neurons. Mechanistically, loss of CLP1 activity results in accumulation of a novel set of small RNA fragments, derived from aberrant processing of tyrosine pre-transfer RNA. These tRNA fragments sensitize cells to oxidative-stress-induced p53 (also known as TRP53) activation and p53-dependent cell death. Genetic inactivation of p53 rescues Clp1(K/K) mice from the motor neuron loss, muscle denervation and respiratory failure. Our experiments uncover a mechanistic link between tRNA processing, formation of a new RNA species and progressive loss of lower motor neurons regulated by p53.


Asunto(s)
Neuronas Motoras/metabolismo , Neuronas Motoras/patología , ARN de Transferencia de Tirosina/metabolismo , Factores de Transcripción/metabolismo , Esclerosis Amiotrófica Lateral , Animales , Animales Recién Nacidos , Axones/metabolismo , Axones/patología , Muerte Celular , Diafragma/inervación , Pérdida del Embrión , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Exones/genética , Femenino , Fibroblastos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Atrofia Muscular Espinal , Enfermedades Neuromusculares/metabolismo , Enfermedades Neuromusculares/patología , Estrés Oxidativo , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Tirosina/genética , Proteínas de Unión al ARN , Respiración , Nervios Espinales/citología , Factores de Transcripción/deficiencia , Proteína p53 Supresora de Tumor/metabolismo , Tirosina/genética , Tirosina/metabolismo
20.
J Biochem ; 153(3): 317-26, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23316081

RESUMEN

We developed an efficient method for introduction of 3-azidotyrosine (N(3)-Y) into proteins in Escherichia coli cells. We constructed a plasmid that is adaptable for the constitutive expression of both Methanosarcina acetivorans tyrosyl-tRNA synthetase (TyrRS) and tRNA(()(CUA)), and made an orthogonal tRNA((CUA)) that is recognized as a substrate only by the archaeal TyrRS. Random mutations were introduced into M. acetivorans TyrRS around the tyrosine binding pocket, and a TyrRS mutant recognizing N(3)-Y was selected. We then expressed rat calmodulin (CaM) containing N(3)-Y, using the CaM gene with an amber codon at position 80. Mass analyses confirmed production of CaM containing N(3)-Y, but a significant amount of CaM containing 3-aminotyrosine was also detected. To more efficiently express CaM containing N(3)-Y, we added an arabinose-inducible gene for the mutant TyrRS to the plasmid carrying the mutant TyrRS/tRNA(()(CUA)) gene. Although the yields of full-length CaM increased ~3-fold, the ratio of N(3)-Y introduction was not significantly improved. Following screening for a suitable host cell, we found that CaM expressed in E. coli SHuffle (K-12) had 97% N(3)-Y at the pre-determined site. Finally, we obtained up to 2 mg of CaM containing N(3)-Y per 100 ml of culture media, sufficient for use in various proteomics experiments, including photo-crosslinking.


Asunto(s)
Calmodulina/metabolismo , Escherichia coli K12/metabolismo , Proteínas Recombinantes/metabolismo , Tirosina/metabolismo , Animales , Arabinosa/farmacología , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Azidas/química , Secuencia de Bases , Sitios de Unión/genética , Calmodulina/química , Calmodulina/genética , Clonación Molecular/métodos , Codón de Terminación/genética , Escherichia coli K12/genética , Expresión Génica/efectos de los fármacos , Methanosarcina/enzimología , Methanosarcina/genética , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Plásmidos/genética , ARN de Transferencia de Tirosina/química , ARN de Transferencia de Tirosina/genética , ARN de Transferencia de Tirosina/metabolismo , Ratas , Proteínas Recombinantes/química , Tirosina/química , Tirosina/genética , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA